Digital Logic Design: a rigorous approach (¢

Chapter 15: Addition

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 21, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1/ 22

http://www.eng.tau.ac.il/~guy/Even-Medina

Definition of a binary adder

Definition
ADDER(n) - a binary adder with input length n is a combinational
circuit specified as follows.
Input: A[n—1:0],B[n—1:0] € {0,1}", and C[0] € {0, 1}.
Output: S[n—1:0] € {0,1}" and C[n] € {0,1}.

Functionality:

-, —

(5)+2"-Clnl = (A) + (B) + C[0]. (1)

Addition terminology:
o addends: (A) = """ A[] -2/, and (B) = 27— BJi] - 2/
@ carry-in bit : C[0]
o sum: (S)
@ carry-out bit: C[n]

2 /22

binary adder definition (cont)

Definition

ADDER(n) - a binary adder with input length n is a combinational
circuit specified as follows.

Input: A[n—1:0],B[n—1:0] € {0,1}", and C[0] € {0, 1}.
Output: S[n—1:0] € {0,1}" and C[n] € {0, 1}.
Functionality:

-, —

(5) +2"- C[n] = (A) + (B) + C[0]. (2)

Claim (ADDER(n) is well defined)

For every Aln—1:0],B[n—1:0] € {0,1}", and C[0] € {0,1},
there exist S[n—1:0] € {0,1}" and C[n] € {0,1} such that

. —

(S)+2"- C[n] = (A) + (B) + C[0]

3 /22

coban (W o Ae__g‘w\e&
04 {ay+ by +clol 2 (-0 |

w4\

- 22 _ |\

a««é\ IN-\" o7) QLV\—X C o N?*&S&»C"T

c_\\ \\Aw \a{v‘s wWA AV\:\& (‘waé&

i°>\)--_, £+\- |3

Full Adder

An ADDER(1) is called a full adder.

Definition (Full-Adder)
FA - a Full-Adder is a combinational circuit with 3 inputs
x,y,z € {0,1} and 2 outputs ¢, s € {0,1} that satisfies:

2c+s=x+y+z

Terminology: s -sum output, ¢ -carry-out output.

(exerciw)

S=xdy®z,
c=xy)V(y-z)V(x-2).

4 /22

Ripple Carry Adder RCA(n)

Bln—1] Aln—1] | Bln—2| Aln— 2| B[1] A[1] B[0] Ao]
L | | L
37{ (jF nizs """" c/Kls_ c i s
[\ \ |

(7(:,].5‘[:1, -1 Ch—1 Sr-2 Chrh-2| C[2] S[1] C S[o]

@ same addition algorithm that we use for adding numbers by
hand.

@ row of n Full-Adders connected in a chain.

@ the weight of every signal is two to the power of its index.
(Do not confuse weight here with Hamming weight. Weight
means here the value in binary representation.)

&> 2 Laltg- 2t
wt‘gs\f\‘ L\? &Ezj [L

5 /22

Recursive definition of RCA(n)

<§’74 i\.c[_w\} = <‘\7+<Vb7"’q°3

Basis: an RCA(1) is simply a Full-Adder.

Reduction Step:

Bln —1] Aln —1]

Bln—2:0] Aln—2:0]

Jrn—l Jrn-l

FA,,_

— 0

1
S

C[n] S[n — 1]

RCA(n — 1)

— C[0]

T

Cln —1] Sin—2:0]

6 /22

RCA(n) - correctness

RCA(n) is a correct implementation of ADDER(n).

Bn—1] Aln—1] Bn—2:0] An—2:0]

| fol o

FA,_ roa(n—1) [Y

T

Cln] S[n—1] Cn —1] Sin—2:0]

1
S

— 0

7 /22

Cov Ol s AR TSNEN
\;‘)3 (-\'\& own n .

Besty L N=A (en e veed)

PR

\,\:3() - RCN™ Q\n—\) S Coriecy

Sep (Aln-1:01) = { BIn- 037 & Cle]

(AT 2l)+ (AD-2i0)) +(B2 w0])+(]

\

1)

(NEENERE _b-\— 7?’.'0):(\—11 +~ {S[0-2 '-0]>
-1 ([\E{\-—\l—& %En’\l—kccv\—\tb ~+ <g[n,2‘_01>
! (STa~y+ Q'C,]:\f\}>—‘ (S (n-2:03>

— MNcinl s (SIn-1t0l) =

L

2

N\~
2
2
2.

0

Delay and cost analysis

The cost of an RCA(n) satisfies:

c(rca(n)) = n- c(FA) = ©(n).
The delay of an RCA(n) satisfies

d(rcA(n)) = n- d(FA) = O(n).

Clock rates in modern microprocessors correspond to the delay of
15-20 gates (in more aggressive designs, the critical paths are even
shorter). Most microprocessors easily add 32-bit numbers within
one clock cycle (high-end microprocessors even add 100-bit
number in a cycle). Obviously, adders in such microprocessors are
not Ripple Carry Adders.

8 /22

We now define the carry bits associated with the addition

(Al[n—1:0]) + (B[n—1:0]) + C[0] = (S[n—1:0]) +2"- C[n]

Definition

The carry bits C[n : 0] are defined as the values of the stable
signals C[n : 0] in an RCA(n).

Bn—1] Aln—1] Bn—2] Aln—2] B[1] A[1] B[0] A[0]
\

— Clo]
FA, 1 FAp—2 | | FAq FAp
c s c s c s ¢ s
[\ \ |
cpl

Cl)Sn—1 Clh—1] Sh—2 Cln—2 s] cnl s

This definition is well defined in light of the Simulation Theorem of
combinational circuits.

9 /22

Cone of adder outputs

The correctness proof of RCA(n) implies that, for every
0<i<n-1,

(A[i : 0]) + (B[i : 0]) + C[0] = 2" - C[i + 1] + (S[i : Q]).

Hence, for every 0 < i< n-—1:

Cli+1]=1<= (A]i: 0]) + (B[i: 0]) + C[0] > 2+*
(S[i : 0]) = mod((A[i : 0]) + (B[i : 0]) + C[0],2" ™).

For each 0 < i < n—1, the cone of Boolean functions
corresponding to C[i + 1] and S[i] consists of 2i + 3 inputs
corresponding to Ali : 0], B[i : 0], and CJ[0].

10 / 22

Cowne ° zg o_é & XT ToWN
Y)Y‘oog -\Aac\)r clol € Cowne (C En—l)
(gimac (""’os‘g Show s SNGEEEA ““VV:_S e
m A o of cTel % SCa))

O @) 1

AN---- 1 @ AN---- 4
<

Qo ---- o ® QO ---- O

[

OAN A .- A A0 ~--- O

sy cn)

Lower bounds

Claim

Let A’denote a combinational circuit that implements an
ADDER(n). If the fan-in in C is at most 2, then

c(A) = 2n,
d(A) > log,(2n + 1).

Compare with the cost and delay of RCA(n).

c (R O
ARG = Bw) 2

11 / 22

Conditional Sum Adder - motivation

12 / 22

Conditional Sum Adder - motivation

Hi,
I’'m Alice
I’m on Earth

12 / 22

Conditional Sum Adder - motivation

Alice,
Let’s have some fun!

12 / 22

Conditional Sum Adder - motivation

Sure!
Let’s add numbers!
Together!!!

12 / 22

Conditional Sum Adder - motivation

Never done that before!
Let’s try...

12 / 22

Conditional Sum Adder - motivation

It’s lots of fun?
I’'ll hold:
Alk-1:0]
B[k-1:0]

12 / 22

Conditional Sum Adder - motivation

It’s lots of fun?
I’'ll hold:
Alk-1:0]
B[k-1:0]

and I’1l hold:
A[n—1:k]
B[n-1:k]

12 / 22

Conditional Sum Adder - motivation

The rules are:
—at the end we must
know the sum.

12 / 22

Conditional Sum Adder - motivation

—communcation is costly,
and

—our goal is to compute the
sum asap.

12 / 22

Conditional Sum Adder - motivation

I have a great strategy...

12 / 22

Conditional Sum Adder - motivation

I’'ll send you just
one bit!

12 / 22

Conditional Sum Adder - motivation

I’'ll send you
Clk]

12 / 22

Conditional Sum Adder - motivation

It’s taking her a while...
Is there anything I could
do in the meantime?

12 / 22

Conditional Sum Adder - motivation

I have an idea:
Her message will be
either zero or one...

12 / 22

Conditional Sum Adder - motivation

So I will compute my
answers for both cases...

12 / 22

Conditional Sum Adder - motivation

As soon as C[k] arrives,
I'll select one of my
pre—computed answers!

A Tael e A1)
B Cn-t e BnA e}
A
o 2
s e e

ey

12 / 22

Conditional Sum Adder - motivation

Alice,
I have to tell you,
This game is FUN!!!

12 / 22

Conditional Sum Adder - motivation

It reminds me of this
course I took once...

12 / 22

Conditional Sum Adder csA(n)

basis: A csa(1) is simply a Full-Adder. Aice
reduction step:

n-le-y [

Bn—1: k] Aln—1:k|

Ci[n] - Siln—1: k] n] So[n —1|: k]
{n— k+1

The cSA(n) is a correct ADDER(n) design.

13 / 22

Qorrechwess cSAGW)

'\,\'\é\ o N .

AR

t/CEK'S' 2 (SCr-\ Gl < <P~t\¢-l:0—l>*(%Y_K—l‘.oj>+c,{o]
o

Z I el STy s (AT 1))« Splonid) - Ciy)

=)
Qn'd“l + (STn:0)) + Cy‘/l(’— (RATn-10)) + (/1) + Cy/lé\:q"]

Delay analysis

To simplify the analysis we assume that n = 2. To optimize the
delay, we use k = n/2.

Let d(FA) denote the delay of a Full-Adder. The delay of a csa(n)
satisfies the following recurrence:

d(Fa) ifn=1
d(csa(n/2)) + d(MuUX) otherwise.

d(csa(n)) = {

Hence, the delay of a ¢sA(n) is

d(csa(n)) = £ - d(MUx) + d(Fa)
= O(logn).

14 / 22

Cost analysis.

Let c(FA) denote the cost of a Full-Adder. The cost of a csA(n)
satisfies the following recurrence:

c(FA) ifn=1
3-c(csa(n/2)) + (n/2 +1) - c(MUX) otherwise.

c(csa(n)) = {

the solution of this recurrence is c(csa(n)) = © (n'°g23).

@ log, 3 ~ 1.58, so a CSA(n) is costly.
@ but delay is logarithmic!

@ the csA(n) design uses three half-size adders (easy to use).

fl) = & £(%) ~ &
Py = B0 %) x BnF)

15 / 22

Compound Adder

Definition

COMP-ADDER(n) - a Compound Adder with input length n is a
combinational circuit specified as follows.

Input: A[n—1:0],B[n—1:0] € {0,1}".
Output: S[n: 0], T[n:0] € {0,1}+1.

Functionality:

Note that a Compound Adder does not have carry-in input. To
simplify notation, the carry-out bits are denoted by S[n] for the
sum and by T[n] for the incremented sum.

16 / 22

(7\.\5({\"4\03(2\/4_ vie w o,Q Cow\\‘). odder

S.QL]‘.cawns_(_w-
P2 <8y N \
Rl By & R\
/ s ° S N
®o® | ® e B

e \SQ\\CQQ \ t/

/ 3/ T ‘[\Ll ooy S ——————
S Py +48,2 + 2

COMP-ADDER(n) - Implementation

basis: n =1, we simply use a Full-Adder and a Half-Adder.
reduction step:

Bn—1:k] An—1:k Blk—1:0] Alk—1:0]
n—k n—k k k
COMP-ADDER(n — k) COMP-ADDER(k)

n—k+1 n—Fk+1
T"[n : k] S”[n : k|

T 0 10
MUX(n —k+ 1Tk |Mux(n — k4 1) S

%nkarl %nf}a‘«kl

Tn : k] Sln : k]

17 / 22

COMP-ADDER(n) - example

A 0110 {e) Ol ol 10
Bln—1:k] An—1:k Blk—1:0] Ak—1:0]
& V09l n—k n—k k k
I
g ol 1 COMP-ADDER(n — k) COMP-ADDER (k)
- (99 o o n—k+1 n—k+1 kE+1 k+1
\oo |77 [n: k] S7[n: k] S\ lmT’[}c:O] S'[k: 0]
. 1ot
1Tk o5'K]
k k
T 0 1 0
MUX(n —k+1D)— Tk |mux(n—k+ 1) S'K]
A © Tk-1:0] Sk-1:0
/\’n—k+1 /\’n—k-%—l 00 0"
Tn: k] Sn : K]
loo o\

Consider a COMP-ADDER(4) with input A[3 : 0] = 0110 and
B[3 : 0] = 1001.

18 / 22

COMP-ADDER(n) - example

B[nfi:k‘] Aln —/1: k]
n—k n—k

COMP—ADDER{(n —k)

|

Blk—1:0] A[kl%:()]

CO*VIP/»ADDER(%)

n—k+1

T"[n: k]

1 0 -
MUX(n —k — T'[K]

=
Tinkk]

k+1
' [k : 0]

Tk—1:0 Sk-—
4’(nfk+1

1:0]

The COMP-ADDER(n) design is a correct adder.

18 / 22

Can ot
W w:\\
%0\— S <

grd*(T~

CovrQ- acdton (W) Corre dmnes s
&\mei\‘\:\ (sea o)

—\-nr-ow.ci
wee o vedweivon A CSR(W.
ore W GO abhlan ouwhpw

Cawme GS CSR wivh o= o.

N Py
w'.lr\/\ QEO'&T;A\ .

< 6ovne S CCSh

Delay analysis

To simplify the analysis we assume that n = 2. To optimize the
delay, we use k = n/2.

The delay of a COMP-ADDER(n) satisfies the following recurrence:
d(Fa) ifn=1

d(COMP-ADDER(n)) =
((n)) {d(COMP-ADDER(n/2))+d(MUX) otherwise.

Hence,

d(coMP-ADDER(n)) = £ - d(MUX) + d(FA)
= O(logn).

19 / 22

Cost analysis

The cost of a COMP-ADDER(n) satisfies the following recurrence:

c(FA) + c(HA) 0.

c(COMP-ADDER(n)) = {2 - ¢(COMP-ADDER(n/2)) + (n/2 4 1) - ¢(MUX)

Hence, c(COMP-ADDER) = ©(nlog n).

SURPRISE!!! ¢(comP-ADDER(n)) < c(csa(n)).

Cw) = 2.8 (3) & 9w
LOw = O elgw)

20 / 22

Reductions between sum and carry bits

The correctness of RCA(n) implies that, for every 0 </ < n—1,

dx@gﬁ@%/ M]@m]i?j Jes@c. (3)

YD s
By xoring C[i] & S[i] to both sides, we obtain

C[i] = Alil @ B[i] @ S[i] . (4)

21 / 22

@ defined binary addition.

@ Three adder designs: Ripple Carry Adder, Conditional Sum
Adder, Compound Adder.

@ The problems of computing the sum bits and the carry bits
are equivalent with respect to a constant-time linear-cost
reduction. Since the cost of every adder is Q(n) and the delay
is Q(log n), we regard the problems of computing the sum bits
and the carry bits as equivalently hard.

@ Design methodology: divide & conquer.

@ Surprise! COMP-ADDER(n) is much cheaper asymptotically
than a csa(n).

@ Left to show: an adder with linear cost and logarithmic
delay....

22 /22

