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Division and Modulo

Definition

Given a € Z and b € Z* (b > 0) define:

(a+=b)=max{ge€Z|qg-b<a}
mod(a, b) 2 a— b-(a= b).

o (a-= b) is called the quotient and mod(a, b) is called the
remainder.

@ if mod(a, b) =0, then a is a multiple of b (a is divisible by b).

o (a+b)=2].
@ (a mod b),mod(a, b), a(mod b) denote the same thing.
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© 3mod5=3and 5mod 3=2.

© 999 mod 10 =9 and 123 mod 10 = 3.

© amod 2 equals 1 if ais odd, and 0 if a is even.
Q@ amod b>0.

Q@ amod b< b-1.
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Division & Mod are Well Defined

mod(a, b) € {0,1...,b—1}.

Ifa=qg-b+rand0<r<b—1, then

g=a-=+b
r=a(mod b) .
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Modular Addition

Lemma

For every z € 7,

xmod b = (x+2z-b)modb

Lemma

((x mod b) + (y mod b)) mod b = (x+y) mod b
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binary strings

Definition
A binary string is a finite sequence of bits.

Ways to denote strings:
 sequence {A;}1,
Q vector A[0: n—1], or
Q A if the indexes are known.
We often use A[i] to denote A;.
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@ A[0:3] =1100 means Ap =1, A1 =1, A, =0, A3 =0.
@ The notation A[0 : 5] is zero baseij, i.e., the first bit in Alis
A[0]. Therefore, the third bit of A is A[2] (which equals 0).
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concatenation

A basic operation that is applied to strings is called concatenation.
Given two strings A[0 : n — 1] and B[0 : m — 1], the concatenated
string is a string C[0 : n+ m — 1] defined by

i Ali] if0<i<n,
1| =
Bli—n ifn<i<n+m-1.

We denote the operation of concatenating string by o, e.g.,
C=AoB.
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Examples of concatenation of strings. Let A[0: 2] = 111,
B[0: 1] =01, C[0: 1] = 10, then:

AoB =111001 = 11101,
oC=111010 = 11110,
o C=01010=0110,
o B =01001=0101.

W Wy :l>1
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bidirectionality (MSB first / LSB first)

Let i < j. Both A[i : j] and A[j : i] denote the same sequence
{Ak},._;- However, when we write A[/ : j] as a string, the leftmost
bit is A[i] and the rightmost bit is A[j]. On the other hand, when
we write A[j : i] as a string, the leftmost bit is A[j] and the
rightmost bit is A[/].

The string A[3 : 0] and the string A[O : 3] denote the same 4-bit
string. However, when we write A[3 : 0] = 1100 it means that
A[3] = A[2] =1 and A[1] = A[0] = 0. When we write

A[0 : 3] = 1100 it means that A[3] = A[2] =0 and

Al1] = A0] = 1.
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least /most significant bits

Definition

The least significant bit of the string A[i : j] is the bit A[k], where
k= min{/,j}. The most significant bit of the string A[i : j] is the
bit A[¢], where £ = max{i, j}.

The abbreviations LSB and MSB are used to abbreviate the least
significant bit and the most significant bit, respectively.
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LSB/MSB - examples

@ The least significant bit (LSB) of A[0: 3] = 1100 is A[0] = 1.
The most significant bit (MSB) of A is A[3] = 0.

Q@ The LSB of A[3: 0] = 1100 is A[0] = 0. The MSB of A is
A3l = 1.

© The least significant and most significant bits are determined
by the indexes. In our convention, it is not the case that the
LSB is always the leftmost bit. Namely, if i < j, then LSB in

Ali : j] is the leftmost bit, whereas in A[j : i], the leftmost bit
is the MSB.
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Binary Representation

We are now ready to define the binary number represented by a
string A[n —1:0].

Definition

The natural number, a, represented in binary representation by the
binary string A[n — 1 : 0] is defined by

n—1
a= ) Ali]-2.
i=0

In binary representation, each bit has a weight associated with it.
The weight of the bit A[i] is 2.

peed, ALY, Ala)  coefficients of

Oower seees 22 - P2

’
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Consider a binary string A[n — 1 : 0]. We introduce the following
notation:

n—1
(Aln—1:0)) =) A[i]-2'.
i=0

To simplify notation, we often denote strings by capital letters
(e.g., A, B, S) and we denote the number represented by a string
by a lowercase letter (e.g., a, b, and s).
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Consider the strings: A[2 : 0] = 000, B[3 : 0] = 0001, and

C[3:0] £ 1000. The natural numbers represented by the binary
strings A, B and C are as follows.

(A[2:0]) = A[0] - 20 + A[1] - 2! + A[2] - 22
=0-2240-2'+0-2°=0,

(B[3:0]) = B[0] - 2° 4 B[1] - 2! + B[2] - 2° + B[3] - 23
=1-2°40-2'40-2240-28=1,

(C[3:0]) = C[0] - 2° + C[1] - 2t + C[2] - 2° + C[3] - 2°
=0-2040-2'40-22+1.2%=38.
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Leading Zeros

Consider a binary string A[n — 1 : 0]. Extending A by leading zeros
means concatenating zeros in indexes higher than n — 1. Namely,
Q extending the length of A[n—1:0] to A[m—1:0], for
m > n, and

@ defining A[i] =0, for every i € [m—1: n].

A[2:0] =111
B[1:0] =00
C[4:0] = B[1:0]0A[2:0] =000111 = 00111.
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Leading Zeros

The following lemma states that extending a binary string by
leading zeros does not change the number it represents in binary
representation.

Let m > n. If Alm — 1 : n] is all zeros, then
(A[m—=1:0]) = (A[n—1:0]).

Consider C[6 : 0] = 0001100 and D[3: 0] = 1100. Note that
(C) = (D) = 12. Since the leading zeros do not affect the value
represented by a string, a natural number has infinitely many
binary representations.
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Representable Ranges

The following lemma bounds the value of a number represented by
a k-bit binary string.

Let Alk — 1 : 0] denote a k-bit binary string. Then,

0<(Alk—1:0))<2k—1.

What is the largest number representable by the following number
of bits: (i) 8 bits, (ii) 10 bits, (iii) 16 bits, (iv) 32 bits, and (v) 64
bits? \Q
G% ~
B =56 ¥ =65,53 2z

1'° = ok 2P = 4 giaaki % 429°10°
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Computing a Binary Representation

Fix k the number of bits (i.e., length of binary string).
Goals:

@ show how to compute a binary representation of a natural
number using k bits.

@ prove that every natural number in [0,2% — 1] has a unique
binary representation that uses k bits.

D X1 ) W ==y &heo

A
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binary representation algorithm: specification

Algorithm BR(x, k) for computing a binary representation is
specified as follows:

Inputs: x € N and k € NT, where x is a natural number for
which a binary representation is sought, and k is the
length of the binary string that the algorithm should

output.
Output: The algorithm outputs “fail” or a k-bit binary string
Alk—1:0].
Functionality: The relation between the inputs and the output is
as follows:

Q If 0 < x < 2%, then the algorithm outputs a
k-bit string Alk — 1 : 0] that satisfies
x=(Alk —1:0]).

@ If x > 2k, then the algorithm outputs “fail”.
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binary representation algorithm

Algorithm 1 BR(x, k) - An algorithm for computing a binary rep-
resentation of a natural number a using k bits.
© Base Cases:
© If x > 2K then return (fail).
© If k =1 then return (x).
@ Reduction Rule:
@ If x > 2571 then return (10 BR(x — 2k71 k — 1)).
@ If x <25k~ —1 then return (00 BR(x, k — 1)).

example: execution of BR(2,1) and BR(7,3)

If x €N, k € Nt, and x < 2, then algorithm BR(x, k) returns a
k-bit binary string Ak — 1 : 0] such that (A[k —1:0]) = x.
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How many bits do we need to represent x?

Every positive integer x has a binary representation by a k-bit
binary string if k > log,(x).

BR(x, k) succeeds if x < 2%, Take a log:

log,(x) < k.

22 / 24



unique binary representation

Theorem (unique binary representation)

The binary representation function
<>k : {O?I}k - {0?'--’21( - 1}
defined by

(Alk —1:0])x éZA[] 2f

is a bijection (i.e., one-to-one and onto).

QX

=y
2) W\ =g
:>,Q‘w\ A- 4]

Proof
Q ()k is onto because (BR(x, k))x = x.

@ |Domain| = |Range| implies that () is one-to-one.

W
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We claim that when a natural number is multiplied by two, its
binary representation is “shifted left” while a single zero bit is

padded from the right. That property is summarized in the
following lemma.

Let a€ N. Let Ak —1:0] be a k-bit string such that
a=(Alk—1:0]). Let Blk:0] £ Alk —1:0] 00, then

2.a=(B[k:0]).

(1000) = 2 - (100) = 22 - (10) =23 (1) = 8.

</\000>=1+ (\07¢2
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