
Digital Logic Design: a rigorous approach c©
Chapter 11: Foundations of combinational circuits

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 26, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1 / 56

http://www.eng.tau.ac.il/~guy/Even-Medina


Combinational Circuit

Different ways to represent and implement a Boolean function:

Truth tables can be implemented by a ROM (e.g., lookup
tables, FPGAs)

SOP Boolean formulas can be implemented by PLA circuits.

Boolean formulas can be implemented by rooted trees
(corresponding to the parse tree of the formula) with gates in
internal nodes.

The general case: combinational circuits - topic of this
chapter!

2 / 56



Digital and Logical Signals

1 An analog signal is a function f : [0,∞)→ R.

2 A digital signal is a function d : [0,∞)→ {0, 1, non-logical}

3 A digital signal d(t) is logical at time t if d(t) ∈ {0, 1}.

4 A digital signal d(t) is logically stable during interval I if d
restricted to I is a constant function (i.e., 0 or 1).

3 / 56



Digital Approach to Combinational Circuits

interested only in value(output) when the inputs are logical.

logical inputs imply logical outputs (eventually).

but how long does it take for outputs to become logically
stable?

4 / 56



Digital view of combinational circuits

Setting and notation:

Combinational gate g

Inputs: x1 and x2
Output: y .

We refer only to digital signals.

A terminal means an input or an output.

The digital signal at terminal z is denoted by z(t).

Our goals are to:

specify the functionality of combinational gate g by a Boolean
function,

define when a combinational gate g is consistent, and

define the propagation delay of g .

5 / 56



Propagation delay

Definition

A combinational gate g is consistent with a Boolean function B at
time t if the input values are logical at time t and

y(t) = B(x1(t), x2(t)).

Note that y(t) must be also logical since x1(t), x2(t) ∈ {0, 1} and
B is a Boolean function.

We attach a Boolean function B to each combinational gate g ,
namely, B is the functionality of g .

Definition

The propagation delay of a combinational gate g is tpd if the
following holds. If the inputs are stable during the interval [t1, t2],
the gate is consistent with the function B during the interval
[t1 + tpd , t2].

6 / 56



Propagation delay - remarks

What if t2 < t1 + tpd? Periods of steady state must be longer
than the propagation delays. Otherwise, the combinational
gate may not reach consistency.

tpd is an upper bound on the amount of time that elapses till
a combinational gate becomes consistent (provided that its
inputs are stable). The actual time depends on:

x(t) during the interval (−∞, t) (i.e., how fast does the input
change?),
noise, and
manufacturing variance.

pessimistic assumptions should not render a circuit incorrect
(no error is introduced if actual propagation delay is shorter
than tpd ).

Timing analysis of circuits composed of many gates depends
on the upper bounds we use; the tighter the bounds, the more
accurate the timing analysis is.

7 / 56



Contamination delay

Definition

The contamination delay of a combinational device is a lower
bound on the amount of time that the output of a consistent gate
remains stable after its inputs stop being stable.

We usually make the most “pessimistic” assumption about the
contamination delay: contamination delay is zero.
We do not rely on an output remaining stable after an input
becomes instable.

8 / 56



propagation delay and contamination delay

The outputs become stable at most tpd time units after the inputs
become stable. The outputs remain stable at least tcont time units
after the inputs become instable.

inputs

tpd
outputs

tcont

Figure: The x-axis corresponds to time. The red segments signify that
the signal is not guaranteed to be logical; the green segments signify that
the signal is guaranteed to be stable.

9 / 56



Example

and-gate with inputs x1(t) and x2(t) and
an output y(t). Suppose that the
propagation delay of the gate is tpd = 2
seconds.

the inputs equal 1 during the
interval [100, 109] . When is the
gate consistent?

x1(t) = 1 during the interval
(109, 115], x2(t) = non-logical
during the interval (109, 110), and
x2(t) = 0 during the interval
[110, 115]. What can we say about
y(t)?

x2(t) remains stable during the
interval [110, 120], x1(t) becomes
non-logical during the interval
(115, 116), and x1(t) equals 1
again during the interval [116, 120].
What can we say about y(t)?

10 / 56



and(0, non− logical) = 0?

Our formalism does not imply that and(0, non − logical) = 0.
Such an assumption depends on the technology used for
implementing the and-gate. For example, in a CMOS nand-gate,
one can determine that the output is zero if one of the outputs is
one (even if the other input is non-logical).
Another drawback of assuming that and(0, non − logical) = 0 is
that such an assumption complicates timing analysis (the
propagation delay will depend on the analog values of the signals).
In particular, instead of analyzing timing in linear time, timing
analysis (using such assumptions) becomes an NP-hard task (i.e., a
task that is unlikely to be solvable in polynomial time).

11 / 56



Building Blocks

The building blocks of combinational circuits:

Combinational gates (e.g., inverter, or-gate, nor-gate, etc.)

Wires and nets

12 / 56



combinational gates - terminology

The basic gates that we consider are: inverter (not-gate),
or-gate, nor-gate, and-gate, nand-gate, xor-gate,
nxor-gate, multiplexer (mux). All this gates have a single
output.

inputs and outputs of a gate are often referred to as
terminals, ports, or even pins.

fan-in of a gate g = number of input terminals of g (i.e., the
number of bits in the domain of the Boolean function that
specifies the functionality of g).

basic gates have constant fan-in (2-3).

fan-out &= the number of output ports.

13 / 56



combinational gates - terminology

{in(g)i}ni=1 = the input ports of a gate g , where n

=fan-in(g).

{out(g)i}ki=1 = the output ports of a gate g , where
k=number of output ports of g .

terminals(g)
!

= {in(g)i}
n
i=1 ∪ {out(g)i}

k
i=1.

14 / 56



Input/Output gates

Definition (input and output gates)

An input gate is a gate with zero inputs and a single output. An
output gate is a gate with one input and zero outputs.

Output GateInput Gate

Inputs from the “external world” are fed to a circuit via input
gates.

Outputs to the “external world” are fed by the circuit via
output gates.

an input gate is labeled (in, xi), where xi is the name of the
signal along the wire that emanates from it.

an output gate is labeled (out, yi ), where yi is the name of
the signal along the wire that enters it.

15 / 56



Wires and nets

A wire is a connection between two terminals (e.g., an output of
one gate and an input of another gate). In the zero-noise model,
the signals at both ends of a wire are identical.
Very often we need to connect several terminals (i.e., inputs and
outputs of gates) together. We could, of course, use any set of
edges (i.e., wires) that connects these terminals together. Instead
of specifying how the terminals are physically connected together,
we use nets.

Definition

A net is a subset of terminals that are connected by wires. The
fan-out of a net N is the number of input terminals that are
contained in N.

16 / 56



Example

We may draw a net in any way that we find convenient or
aesthetic. The interpretation of the drawing is that terminals that
are connected by lines or curves constitute a net.

Figure: Three equivalent nets.

17 / 56



Digital Signal in a Net

How do we define the digital signal N(t) for the whole net?

Many terminals, perhaps far away, why should they “agree”?

We solve this problem by defining N(t) as logical only if there
is a consensus among all the digital interpretations of the
analog signals at all the terminals of the net.

If there is no consensus, then N(t) is non-logical.

The easiest way to achieve consensus in a net: single output
terminal (all other terminals in the net are input terminals).

18 / 56



Direction in nets

We say that a net N feeds an input terminal t if the input terminal
t is in N.
We say that a net N is fed by an output terminal t if t is in N.
Direction of signals along nets is obtained in “pure” CMOS gates
as follows. Output terminals are connected (via low resistance) to
the ground or to the power (but not both!). Input terminals, on
the other hand, are connected only to capacitors.

G

a net fed by G
a net that feeds G

19 / 56



Simple nets

Definition

A net N is simple if (i) N is fed by exactly one output terminal,
and (ii) N feeds at least one input terminal.

Consider a simple net N = {t, t1, t2, . . . , tk}, where:

t is an output terminal

each ti is an input terminal.

The simple net N can be modeled by a “star” of edges (or wires):

t → t1, t → t2, . . . , t → tk

(Directed edges because information flows in one direction.)

take home message

Simple nets make life simpler...

20 / 56



Library of gates

Let Γ denote a library of combinational gates that contains
standard combinational gates such as an inverter, or-gate,
and-gate, et cetera.
The library Γ contains a sub-library IO that contains two special
types of gates: input-gates (in, xi ) and output-gates (out, yj).

21 / 56



How to describe a circuit?

Suppose we want to design a circuit that contains two and gates,
three inputs, x1, x2, x3, and two outputs y1, y2, where
y1 = and(x1, x2) and y2 = and(x2, x3). One way to describe the
circuit is to draw a schematic. We would like to describe the
circuit formally (a schematic is perhaps easy to “read”, but hard to
argue about).

(in, x3)

(in, x1)

(in, x2)

(out, y1)

(out, y2)

and

and

Figure: A combinational circuit.

22 / 56



How to describe a circuit? vertex assignment

(in, x3)

(in, x1)

(in, x2)

(out, y1)

(out, y2)

and

and

Circuit has 7 gates, so define a set V
!

= {vi}7i=1 of vertices. Now,
we need to assign a gate type to each vertex. This assignment is
specified by a function π : V → Γ.

π(v1) = (in, x1),π(v2) = (in, x2),π(v3) = (in, x3),

π(v4) = π(v5) = and,

π(v6) = (out, y1),π(v7) = (out, y2).

23 / 56



How to describe a circuit? terminals names

(in, x3)

(in, x1)

(in, x2)

(out, y1)

(out, y2)

and

and

Every terminal in a circuit has a name (v , t), where v ∈ V and
t ∈ terminals(π(v)).

Example

If π(v) = and, then v has three terminals:
(v , in(and)1), (v , in2(and)2), (v , out(and)).

No ambiguity between terminals of two occurrences of the same
gate.

24 / 56



Netlist

A netlist is a language for describing circuits.

Definition

A netlist is a tuple H = (V ,N,π), where

1 V is a set of nodes,

2 π : V → Γ assigns a gate type to each node, and

3 N is a partition of {(v , t) | v ∈ V , t ∈ terminals(π(v))} to
pairwise disjoint nets.

Important: every terminal appears in exactly one net.

25 / 56



Netlist

(in, x3)

(in, x1)

(in, x2)

(out, y1)

(out, y2)

and

and

The set N of nets consists of the following nets.

{(v1, ((in, x1), out)), (v4, in(and)1)} ,

{(v2, ((in, x2), out)), (v4, in(and)2), (v5, in(and)1)} ,

{(v3, ((in, x3), out)), (v5, in(and)2)} ,

{(v4, out(and)), (v6, ((out, y1), in)} ,

{(v5, out(and)), (v7, ((out, y2), in))} .

26 / 56



Graph Representation of a Netlist with Simple Nets

A netlist H = (V ,N,π) in which all nets are simple can be
represented by a directed graph DG (H) = (V , Ñ).

For every net {t, t1, . . . , tk} with an output terminal t and
input terminals t1, . . . , tk . Let v denote the vertex of t, and vi
the vertex of ti . Add the directed edges: (v , vi ), where
i = 1, . . . , k to Ñ .

27 / 56



Graph Representation of a Netlist with Simple Nets

(in, x3)

(in, x1)

(in, x2)

(out, y1)

(out, y2)

and

and

Set V = {v1, . . . , v7} and

Ñ = {(v1, v4), (v2, v4), (v2, v5), (v3, v5), (v4, v6), (v5, v7)} .

28 / 56



Graph representation of a netlist

DG (H) may have directed edges of the form (v , v); such
edges are called self-loops. Self-loops can be obtained by
gates that their output is connected to their input.

DG (H) may have parallel edges.

29 / 56



Definition of Combinational Circuits.

Definition

A netlist H = (V ,N,π) is a combinational circuit if it satisfies the
following conditions.

1 Every net in N is simple.

2 The directed graph DG (H) is acyclic.

Question

Can you check if a netlist is a combinational circuit?

30 / 56



Gate Symbols

Instead of writing the label π(v) in the vertex v , one sometimes
depicts the vertex by a symbol that represents π(v).

XOR−gate OR−gate NOR−gate

inverter AND−gate NAND−gate

31 / 56



Example : Half Adder

The combinational circuit C = (G ,π) is called a Half-Adder.

(in, b)

(in, a)

(out, s)

(out, cout) v1

v2

v3

v4

v5

v6

Figure: A Half-Adder combinational circuit and its matching DAG.

The set of the combinational gates in this example is
Γ = {and,xor}. The labeling function π : V → Γ ∪ IO is as
follows.

π(1) = (in, a), π(2) = (in, b),

π(3) = and, π(4) = xor,

π(5) = (out, cout), π(6) = (out, s) .

32 / 56



Bad Circuits

Can you explain why these are not valid combinational circuits?

Figure: Two examples of non-combinational circuits.

33 / 56



Important properties of combinational circuits

Completeness: For every Boolean function B , there exists a
combinational circuit that implements B .

Soundness: Every combinational circuit implements a Boolean
function.

Simulation: Given the digital values of the inputs of a
combinational circuit, one can simulate the circuit
efficiently (the running time is linear in the size of
the circuit). Namely, one can compute the digital
values of the outputs of the circuit that are output by
the circuit once the circuit becomes consistent.

Delay analysis: Given the propagation delays of all the gates in a
combinational circuit, one can compute in linear time
an upper bound on the propagation delay of the
circuit.

34 / 56



Plan

algorithm for simulation and delay analysis.

algorithm implies soundness.

prove completeness by implementing Boolean formulas.

35 / 56



Assumptions

To simplify matters, assume that every combinational gate:

has a single output terminal

has at most two input terminals (fan-in ≤ 2)

implements a commutative Boolean function.

Reason: port information of each wire can be easily deduced...

36 / 56



Notation

Consider a combinational circuit C = (G ,π).

We identify a vertex v with its output terminal, and denote
the digital signal at the output terminal of v simply by v(t).

For an output-gate v , we denote the digital signal at the input
terminal of v also by v(t).

We assume that C has k input gates named them x1, . . . , xk .

To simplify notation, we use "x(t) to denote the vector
x1(t), . . . , xk(t).

37 / 56



Simulation theorem of combinational circuits

Theorem

Assume that the digital signals {xi (t)}ki=1 are stable during the

interval [t1, t2]. Then, for every vertex v ∈ V there exist:

1 a Boolean function fv : {0, 1}k → {0, 1}, and

2 a propagation delay tpd (v)

such that v(t) = fv ("x(t)), for every t ∈ [t1 + tpd (v), t2].

Note that tpd (v) &= tpd (π(v)). The propagation delay tpd (π(v))
refers to the delay of a single gate of type π(v). This delay is
measured with respect to the input of the gate. On the other
hand, the propagation delay tpd (v) refers to the delay of the
output of v with respect to the input gates of the circuit C .

38 / 56



Proof by Algorithm

Simulation algorithm:

Similar to EVAL algorithm.

Sorts vertices in topological order.

Given "x evaluates value of every output terminal (and
therefore, wire).

Computes accumulated delay along longest paths.

39 / 56



Algorithm 1 SIM(C , "x) - An algorithm for simulating the combina-
tional circuit C = (G ,π) with respect an input vector "x .

(v1, v2, . . . , vn)← TS(G ) {topological sorting of G}

For i = 1 to n do
switch degin(vi )

case degin(vi ) = 0: {π(vi ) = (in, xj)}

Set fvi ("x)
!

= xj and tpd(vi )
!

= 0.



Algorithm 2 SIM(C , "x) - An algorithm for simulating the combina-
tional circuit C = (G ,π) with respect an input vector "x .

(v1, v2, . . . , vn)← TS(G ) {topological sorting of G}

For i = 1 to n do
switch degin(vi )

case degin(vi ) = 1:
If {π(vi ) = not}, then

Let vj −→ vi denote the arc that enters vi .
Set fvi ("x) = not(fvj ("x)) and
tpd(vi ) = tpd(vj ) + tpd(not).

If {π(vi ) = (out, y)}, then
Let vj −→ vi denote the arc that enters vi .
Set fvi ("x) = fvj ("x) and tpd(vi ) = tpd(vj).



Algorithm 3 SIM(C , "x) - An algorithm for simulating the combina-
tional circuit C = (G ,π) with respect an input vector "x .

(v1, v2, . . . , vn)← TS(G ) {topological sorting of G}

For i = 1 to n do
switch degin(vi )

case degin(vi ) = 2:
Let vj −→ vi and vk −→ vi denote the arcs that
enter vi .
Set fvi ("x) = B

π(vi )(fvj ("x), fvk ("x)), and
tpd(vi ) = max{tpd(vj), tpd(vk )}+ tpd(π(vi )).



Algorithm Correctness

∀i ∈ [1..n] ∀"x ∈ {0, 1}k ∀t ∈ [t1 + tpd (vi), t2] : vi(t) = fvi ("x).

The proof is by complete induction on i , the index of a vertex after
topological sorting takes place.

induction basis: v1 is a source, and hence π(v1) = (in, xj).

induction step: three cases...

43 / 56







Multiple topological orderings?!

Recall that a DAG may have more than one topological ordering.

Lemma

The output of SIM(C , "x) does not depend on the topological

ordering computed by TS(G ).

44 / 56







Soundness

The simulation Theorem enables us to regard a combinational
circuit as a “macro-gate”.

This macro-gate computes a Boolean function
B : {0, 1}k → {0, 1}!, where k denotes the number of input
gates and # denotes the number of output gates.

All instances of the same combinational circuit implement the
same Boolean function and have the same propagation delay.

Corollary (Soundness)

Every combinational circuit implements a Boolean function.

45 / 56



Remarks

Simulation algorithm generalizes EVAL from trees to DAGs.

The computation of the propagation delays is, in fact, a
computation of longest paths in DAGs with non-unit delays
δ : V → R≥0.

Algorithm 4 weighted-longest-path-lengths(V ,E , δ) - An algorithm
for computing the longest delays of paths in a DAG. Returns a delay
function d(v).

1 topological sort: (v0, . . . , vn−1)← TS(V ,E ).
2 For j = 0 to (n − 1) do

1 If vj is a source then d(vj)← δ(vj).
2 Else

d(vj ) = δ(vj) + max
{

d(vi ) | i < j and (vi , vj) ∈ E
}

.

46 / 56



What about constant inputs?

We do not rule out the usage of constants as inputs.

In this case we add the possibility for input-gates labeled
(in, 0) and (in, 1). Such an input gate feeds a constant to the
circuit.

Algorithm SIM needs to be modified to handle constant
inputs. Namely, the case that vi is a source has to be split to
a constant input and a variable input.

47 / 56



Completeness

Want to prove that every Boolean function can be
implemented by a combinational circuit.

{¬,or,and} is a complete set of logical connectives.

Given a Boolean function B : {0, 1}n → {0, 1}, represent it by
a Boolean formula ϕ.

We need to show how to implement ϕ by a combinational
circuit.

48 / 56



From formulas to circuits

Demonstrate by example (full proof in book).

X1X1 X2

or

and

not

and

X1 X2 X1

notor

or

and

(in, X1) (in, X2)

(out, y)

not

Figure: (a) the parse tree of ϕ, (G ,π), (b) merge sources labeled by same
variable, (c) combinational circuit that implements ϕ.

49 / 56



From formulas to circuits

Take parse tree of ϕ.

Merge sources labeled by the same variable.

Theorem: tree becomes a DAG.

label sources by input gates.

Add root & label it by output gate.

Voilà!

50 / 56



Cost

Let C = (G ,π) denote a combinational circuit where
G = (V ,E ) is a directed graph and π : V → Γ ∪ IO is a
labeling.

Let c : Γ ∪ IO → R≥0 denote a cost function. Usually,
input-gates and output-gates have zero cost.

Definition

The cost of C is defined by

c(C )
!

=
∑

v∈V

c(π(v)).

51 / 56



Propagation delay

The propagation delays tpd (v) are computed by Algorithm
SIM(C , "x).

Definition

The propagation delay of C is defined by

tpd (C )
!

= max
v∈V

tpd (v).

We often refer to the propagation delay of a combinational circuit
as its depth or simply its delay.

Definition

The propagation delay of a path p in G is defined as

tpd (p)
!

=
∑

v∈p

tpd (π(v)).

52 / 56



Critical paths

Algorithm SIM(C , "x) computes the largest delay of a path in G .

Claim

tpd (C ) = max {tpd (p) | p is a path in G}

Definition

Let G = (G ,π) denote a combinational circuit. A path p in G is
critical if tpd (p) = tpd (C ).

We focus on critical paths that are maximal (i.e., cannot be further
augmented). This means that maximal critical paths begin in an
input-gate and end in an output-gate.

53 / 56



Semantics and Syntax

semantics - the function that a circuit implements
(functionality, behavior).
In a circuit that is not combinational, the output may depend
on the “history”, so semantics cannot be described simply by
a Boolean function.

syntax - a formal set of rules that govern how “grammatically
correct” circuits are constructed from smaller circuits (just as
sentences are built by combining words).

the functionality (or gate-type) of each gate is not important.
rules for connecting gates together must be followed.
syntax does not guarantee that the resulting circuit is useful.
syntax is a restriction that brings many benefits: well defined
functionality, simple simulation, and simple timing analysis.

54 / 56



Design Rules

In this chapter we defined design rules for building combinational
circuits. These design rules define syntactically correct circuits.
Our main result is that syntactically correct circuits, called
combinational circuits, can implement any Boolean function.

We are now left with the following design task: Given a Boolean
function B , design a combinational circuit C that implements B
such that the delay and cost of C is as small as possible.

55 / 56



Summary

Combinational circuits: formal definition.

Bottom-up approach: basic building blocks: gates and wires.
Each gate has a simple specification: functionality and tpd .

Syntactic definition of combinational circuits: only depends on
the topology of the circuit, namely, how the terminals of the
gates are connected.
One can check in linear time whether a given circuit is indeed
a combinational circuit.

Easy simulation: one can compute in linear time the digital
signals of every wire in the circuit. Moreover, one can also
compute in linear time the propagation delay of every wire.

Two quality measures: cost and propagation delay. The cost
of a combinational circuit is the sum of the costs of the gates
in the circuit. The propagation delay of a combinational is the
maximum delay of a path in the circuit.

56 / 56


