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example: longest paths in DAGs
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longest paths

We denote the length of a path ' by |I].

Definition

A path I that ends in vertex v is a longest path ending in v if
[T'| < || for every path " that ends in v.

Note: there may be multiple longest paths ending in v (hence “a
longest path” rather than “the longest path”).

Definition
A path I is a longest path in G if || < |['|, for every path " in G.

Does a longest path always exist in a directed graph?
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longest paths in DAGs

If a directed graph has a cycle, then there does not exist a longest
path. Indeed, one could walk around the cycle forever. However,
longest paths do exist in DAGs.

If G =(V,E) is a DAG, then there exists a longest path that ends
in v, for every v. In addition, there exists a longest path in G.

Proof: The length of every path in a DAG is at most |V| — 1. [Or,
every path is simple, hence, the number of paths is finite.]
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computing longest paths: specification

Goal: compute, for every v in a DAG, a longest path that ends in
v. We begin with the simpler task of computing the length of a
longest path.

Specification

Algorithm longest-path is specified as follows.
input: A DAG G = (V,E).
output: A delay function d : V — N.

functionality: For every vertex v € V: d(v) equals the length of a
longest path that ends in v.

Application: Model circuits by DAGs. Assume all gates complete
their computation in one unit of time. The delay of the output of a
gate v equals d(v)
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example: delay function
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algorithm: longest path lengths

Algorithm 2 longest-path-lengths(V/, E) - An algorithm for comput-
ing the lengths of longest paths in a DAG. Returns a delay function
d(v).
Q topological sort: (vo,...,vp—1) < TS(V,E).
@ Forj=0to (n—1)do
@ If v; is a source then d(v;) < 0.
@ Else

d(vj)) =1+ max{d(v,-) | i <jand (vi,vj) € E}.

One could design a “single pass” algorithm; the two pass algorithm
is easier to prove.
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algorithm correctness

Let

d(v) £ output of algorithm
5(v) £ the length of a longest path that ends in v

Algorithm correct: Yj : d(vj) = d(v;).

Proof: Complete induction on j. Basis for sources easy.

and. \'\l? : V“'-$A : A('VJ'LB:S(V{)
atep: frove Rk Stvg) = £ (Vi)
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algorithm correctness - cont.

We prove now that
Q 6(vj+1) > d(vj41), namely, there exists a path I that ends in
\g‘sych that || > d(vjy1).

@ 6(vj+1) < d(vj41), namely, for every path I that ends in v we
have || < d(vj41). ¥
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