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Preliminary questions

© How is time measured in a synchronous circuit? ?

@ What is a “clock” in a microprocessor? AGHZ CPWw
© What is the frequency of a clock?

© What is memory? How are bits stored?
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The clock

the clock is generated by rectifying and amplifying a signal
generated by special non-digital devices (e.g., crystal oscillators).

Definition

A clock is a periodic logical signal that oscillates instantaneously
between logical one and logical zero. There are two instantaneous
transitions in every clock period: (i) in the beginning of the clock
period, the clock transitions instantaneously from zero to one; and
(ii) at some time in the interior of the clock period, the clock
transitions instantaneously from one to zero.

logical level )
clock fall clock rise

clock period

pulse width
rrrrrrrrrrrr < P P

time

3/75



Clock cycles

@ A clock partitions time into discrete intervals.
@ t; - the starting time of the ith clock cycle.

® [tj, ti11) -clock cycle i. —%%4%%:\_5%

@ Clock period = ti11 — t;. e 4 ks

We assume that the clock period equals 1.

tiy1 =t +1.
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Flip-Flop

Definition

A flip-flop is defined as follows.
Inputs: Digital signals D(t) and a clock CLK.
Output: A digital signal Q(t).

Functionality:

Q(t+1)=D(t).
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Clock enabled flip-flops

Definition
A clock enabled flip-flop is defined as follows.
Inputs: Digital signals D(t), CE(t) and a clock CLK.
Output: A digital signal Q(t).
Functionality:
D(t) ifce(t)=1
Q(t) if ce(t) =0.

Q(t—i—l):{

We refer to the input signal CE(t) as the clock-enable signal. Note
that the input CE(t) indicates whether the flip-flop samples the
input D(t) or maintains its previous value.
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Which design is a correct clock enabled FF?

CE(t) —o

CLK —&|
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The Zero Delay Model

@ Transitions of all signals are instantaneous.
@ Combinational gates: tp,g = teont = 0.

© Flip-flops satisfy:
Q(t+1)=D(t).

© Simplified model for specifying and simulating the
functionality of circuits with flip-flops.

© For a signal X, let X; denote its value during the ith clock
cycle.
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Example: Sequential XOR

A 2
XOR
Y ‘\V\'-k'\at&é\\w\
A /
CLK — D P A Y| 4
Q ol[[oj] o]0
1(/[o]| oJ'0
| 211 1]| 170
twd. basis 7 3 0 ]_\\J 1
N = AL (Rezo) Lian® G 4| lo]] 1 "1
° 5|1 0¢1-1
skept i = XoR (P\;‘%ﬂ 6 || 01 0«0
MianT xot UN"“;L"“ 7 \ﬁ"’ 1<-0
= WoR (A, YD ds iy 8l o|1]1

= Xor (B By .. N) Yoz XoRPe ..., 0

9/75



Sequential Adder

A sequential adder is defined as follows.

Inputs: A, B and a clock signal CLK, where
A;, B;, reset; € {0,1}.
Output: S, where S; € {0, 1}.

Functionality: Then, for every i > 0,
(A[i : 0]) + (B[i : 0]) = (S[i : 0]) (mod 2/*1).
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Sequential Adder Implementation
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Sequential Adder: Correctness

ZA 2J+ZB o = Zs 2 4 coue(i) - 2741

Proof

The proof is by induction on .
The induction basis for i = 0 follows from the functionality of the

full-adder:

| A\

Ao+ By + C,'n(O) =2- Cout(o) + Sy .

This requires that Ci,(0) = 0! Namely, that the FF is initialized to
zero. (We will discuss how to partly mitigate the issue of
initialization later.) O

v
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Sequential Adder: Implementation - correctness (cont.)

We now prove the induction step for i > 0.

i i i—1 i—1
SADHY B A =(A+B) 2+ AP+ B
j=0 j=0 J=0 =0 wd.

=(Si+2-Couw(i))-2°+> 52

j=0

j=0 | 1
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Relation between RCA(n) and Sequential Adder

© Fa; is “simulated” by the FA (in Seq. Adder) in the i'th clock
cycle.

© We can view RCA(n) as an “unrolling” of the Seq. Adder.

Bln —2] Aln—2]
|

n—2
s

FA
c

Cn—1] Sn—-2] Cln-2]
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Comparison with Combinational Lower Bounds

@ Addition and XOR,, have fur;&clional cone of size n.

© Every combinational circuit’has cost Q(n) and delay Q(log n).

© But sequential versions have cost O(1)! How can that be?
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A term register is used to define a memory device that stores a bit
or more. There are two main types of register depending on how
their contents are loaded.

© Parallel Load Register
© Shift Register (also called a serial load register)
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Parallel Load Register - specification

An n-bit parallel load register is specified as follows.
Inputs: @ D[n—1:0](¢t),
@ CE(t), and
@ a clock CLK.

Output: Q[n — 1 : 0](¢).
Functionality:

D[n—1:0](t) if cE(t) =1

Qn—1:0)(t+1)= {Q[n —1:0](t) ifce(t)=0.

An n-bit parallel load register is simply built from n clock enabled
flip-flops.
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Parallel Load Register - design

CLK —&|

CE —&|

CLK —&
CE —e

CLK —&

CE —e&

Figure: A 4-bit parallel load register

Q3 : 0]
D[1]
|
CLK —&| CE-FF
CE —&|
Y
Q]

CLK —&

CE —e&

CE-FF
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Parallel Load Register - simulation

D3]

it

CLK —&

CE —e|

CE-FF
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CLK —= CE-FF CLK —= CE-FF
CE —e| i CE —e|
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Q2 Qn]
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2| 1100 0 0101
3] 1100 1 0101
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CLK —&
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Shift Register - definition

A shift register of n bits is defined as follows.
Inputs: D[0](t) and a clock CLK.
Output: Q[n — 1](t).
Functionality: Q[n — 1](t + n) = D[0](¢).
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Shift Register - design

D[3] D[2] D[1] DJo0]
1 i 1 j 1 i 1
ok ke ok —eb L CLK —&] rli:o
" o il H
Q3] Q2| QM Q[o]

Figure: A 4-bit shift register. Functionality: Q[3](t + 4) = D[0](t)
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Shift Registers - simulation
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ROM - definition/design

A ROM(2") that implements a Boolean function
M :10..2" — 1] — {0,1} is defined as follows.
w ~~ Inputs: Address[n — 1 : 0](¢).

foud Output: Doyt(t). e o3

Functionality :

Doyt = M[{Address)] .
M2"=1:0] (A s Lixed)

Addressin —1: O}T (2" : 1) — MUX
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Read-Only Memory (ROM)

@ The contents stored in each memory cell are preset and fixed.

@ ROMs are used to store information that should not be
changed.

@ For example, the ROM stores the program that is executed
when the computer is turned on.

. " (4
@ Modern computers use non-volatile memory as ROI\/{ (such
memory does allow write operations - and writing is often
limited by “permissions”)
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Random Access Memory (RAM)

© Hardware module that implements an array of memory cells,
where each memory cell stores a single bit.

@ In each cycle, a single memory cell is accessed.

© Two operations are supported: read and write.

@ read operation: the contents of the accessed memory is output.
@ write operation: a new value is stored in the accessed memory
cell.

The number of memory cells is denoted by 2.
Each cell has a distinct address between 0 and 27 — 1.

The cell to be accessed is specified by an n-bit string called
Address.

The array of memory cells is denoted by M[2" —1:0]. Let
M[i](t) denote the value stored in the ith entry of the array
M during clock cycle t.

© 0060
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RAM - definition

A RAM(2") is specified as follows.
Inputs: Address[n —1:0](t) € {0,1}",Din(t) € {0, 1},
R/W(t) € {0,1} and a clock CLK.

Output: Dowt(t) € {0,1}.
Functionality :

Q data: array M[2" —1: 0] of bits.
@ initialize: Vi : M[i] + 0.
© Fort =0 to oo do

@ Doui(t) = M[(Address)](t).

@ For all i # (Address): M[i](t + 1) «+ M[i](¢t).
(3

Din(2) if R/W(t) =0
M[(Address)](t + 1) {I\/I[<Address>](t) else.
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RAM - schematic

Di, Addressin—1:0]

't

CLE 7 panm(2n)
R/W—e
Dout

Figure: A schematic of a RAM(2").
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RAM -design
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Memory Cell - specification

Definition

A single bit memory cell is defined as follows.
Inputs: Din(t), R/W(t), sel(t), and a clock CLK.
Output: Doyt(t).
2 oo FF
Functionality: owke .

Let S(t) € {0,1} denote the state of memory cell in cycle t.
Assume that the state is initialized to be $(0) = 0. The
functionality is defined according to the following cases.

Din(1) if sel(t) =1 and R/W(t) =0
0 5(t) {S(t — 1) otherwise.
Q Dout(t) «+ S(t —1).
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Memory Cell - design

Din

CLK — FF
sel A\NOT(R/W) —e| CE
Dout

Figure: An implementation of a memory cell.
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Summary of Part 1

Clock signal & clock cycles.

@ Flip-Flops and clock-enabled FF's
@ Examples:
@ Sequential XOR
@ Sequential Adder
© Comparison with combinational lower bounds.
@ Registers: parallel load and shift registers.
@ ROM and RAM.
W\(SS(V\B . Limia (SQ"» \°°‘°\‘) N
lwl*?o\\lg,. 10 QQ&;'\\B Qowu\l& e vaxYt ‘'l )
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Preliminary questions

© What is a synchronous circuit?

© How can we initialize a synchronous circuit?

RS T AR S
‘Q&:?‘QQOKQ?‘
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Synchronous Circuits

@ Building blocks: combinational gates, wires, and flip-flops.

@ The graph G of a synchronous circuit is directed but may
contain cycles (e.g., sequential adder).

@ A flip-flop has two inputs D and CLK that play quite different
roles. We must make sure that we know the input port of
each incoming edge.

@ Definition based on a reduction to a combinational circuit...

iy
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Synchronous Circuits

A synchronous circuit is a circuit C composed of combinational
gates, wires, and flip-flops that satisfies the following conditions:

@ There is an input gate that feeds the clock signal CLK.

© The set of ports that are fed by the clock CLK equals the set
of clock-inputs of the flip-flops.

© Let C’ denote a circuit obtained from C by stripping the
flip-flops away. Then, the circuit C’ is a combinational circuit.

£
@
iz}

clk
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Stripping Flip-Flops Away

comdidede Sov

e .
C Swnc ek

p—

@ Delete the input gate that feeds the clock CLK and all the
wires carrying the clock signal.

@ Remove all the flip-flops.
© Add an output gate for each D port.
© Add an input gate for each Q port.
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Example - stripping FFs away

O Ore
S

CLK

:i

|
]

OR

Y oo
C O 00

O—o

—

OR

Figure: A synchronous circuit C and the combinational circuit C’
obtained from C by stripping away the flip-flops.
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It is easy to check if a given circuit C is a synchronous circuit.

@ Check if there is a clock signal that is connected to all the
clock terminals of the flip-flops and only to them.

@ Strip the flip-flops away to obtain the circuit C’. Check if C’
is a combinational circuit.
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Cycles (closed paths) in a synchronous circuit

Every closed path in a synchronous circuit traverses at least one
flip-flop.

o)

R C—\O S‘QA\ ’e G-A'\’\ 3<\~»A— \o«e,\L$ v ] g
trom 5%»«- meiown  © ,g:

“S\A*"\T‘\\PB‘- *\""
S r\,‘,'w\ra o0y TF's
Twas , Cirowty s N N
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Logical Simulation of Synchronous Circuits

Assumptions:

o Initialization (magical?): For every flip-flop FF;, let
So(FF;i) € {0,1} denote the value output by FF; in clock cycle
t=0.

@ Input sequence: For every input gate X let IN:(X) € {0,1}
the input fed by X in clock cycle t.

Initialization serves a crucial role in the induction basis!

39 / 75



Simulation Algorithm

Algorithm 1 SIM(C, So, {IN;:}]=5') - An algorithm for simulating
a synchronous circuit C with respect to an initialization Sy and a

sequence of inputs {/N; tT:_Ol.

@ Construct the combinational circuit C’ obtained from C by
stripping away the flip-flops.
Q Fort=0to T —1do:

@ Simulate the combinational circuit C’ with input values
corresponding to S; and IN;. Namely, every input gate in C
feeds a value according to IN;, and every Q-port of a flip-flop
feeds a value according to S;. For every sink z in C’, let z
denote the value fed to z according to this simulation.

@ For every Q-port S of a flip-flop, define S;11 + NS;, where
NS denotes the D-port of the flip-flop.

\fi'é,\’siﬂqj |5

tngts ’ﬁk O}:/) oS
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The Canonic Form of a Synchronous Circuit

*comb. circuit

A

A

e OUT

IN—e@

*comb. circuit|
o—o )

NS

CLK

Figure: A synchronous circuit in canonic form.
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Initialization

@ We require that the output of every flip-flop be defined during
the first clock cycle. Impossible?
@ How can we even define the “first” clock cycle?
@ What is the state of a flip-flop after power on?
© How can anything be set or determined after power on?

@ Deus ex machine: introduce a reset signal:

rese =
0 otherwise.

@ How is a reset signal generated? How could a reset signal
differ from the the output of a flip-flop?

@ No solution to this problem within the digital abstraction. All
we can try to do is reduce the probability of such an event.

@ In practice, a special circuit, called a reset controller, generates
a proper reset signal with very high probability. Oddly enough,
a reset controller is usually constructed by cascading flip-flops!
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Using the reset

> comb.)\cn"cult oUT

J

IN—e@

* comb. circuit

1)
S <o
NS
VQ\"\&

Svm& 2k \ 0 P

sel ¥J_7 |

\j

'}

%%mﬁ? | initial state CLK
\ Se\ = 0
oy AN D) e

wn O-’ \- "‘
Restart ‘time”: If reset(t) = 1, then set t < 0.

43 / 75



Functionality: the canonic form

We denote the logical value of a signal X during the i'th clock
cycle by X;.

Claim

For every i > 0:

So = initial state

NS; = o(IN;, Si)
OUT; = A(IN;, S;)
5,‘_:,_]_ = NS,
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Sequential Adder with Reset

Cin A B
AN D * *
reset Full-Adder
c S
CLK —& Q FF
D
Cout

S

Note: Mux controlled by reset implemented by an AND-gate.
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Sequential Adder with Reset

What happens if |{t | reset(t) = 1}| > 17 If reset(t) = 1, then we
forget about the past, we treat clock cycle t as the first clock cycle.
Formally, we define the last initialization r(/) as follows:

r(i) & max{t < i: reset(t) = 1}.

Namely, r(i) specifies the last time reset(t) = 1 not after cycle i.
If reset; =0, for every j < i, then r(i) is not defined, and
functionality is unspecified. If r(i) is well defined, then the
functionality is that, for every i > 0,

(Ali = r(i)]) + (BLi = r(i)]) = (S[i : r()]) (mod 27—r()F1).
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Finite State Machines

The functionality of a synchronous circuit in the canonic form is so
important that it justifies a term called finite state machines.
Definition

A finite state machine (FSM) is a 6-tuple A = (Q, X, A, 4, A, qo),
where

@ @ is a set of states.

@ Y is the alphabet of the input.

@ A is the alphabet of the output.

@ 0: QXX — Q is a transition function.
°

°

A @ x X — Ais an output function.

go € Q is an initial state.
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What does an FSM do?

An FSM is an abstract machine that operates as follows. The
input is a sequence {x; 7:_01 of symbols over the alphabet . The
output is a sequence {y; ,'-’:_01 of symbols over the alphabet A. An
FSM transitions through the sequence of states {g;}"_,. The state
qg; is defined recursively as follows:

Giv1 = 8(qi, x;)

The output y; is defined as follows: /

Yi = Aqi, xi)- .y
(%e,Y,) €%y .4,) @
& > ® - I
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FSM - terminology

Other terms for a finite state machine are a finite automaton with
outputs and transducer. In the literature, an FSM according to our
definition is often called a Mealy Machine. Another type of
machine, called Moore Machine, is an FSM in which the domain of
output function X is @ (namely, the output is only a function of
the state and does not depend on the input).
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State Diagrams

FSMs are often depicted using state diagrams.

Definition

The state diagram corresponding to an FSM A is a directed graph
G = (Q, E) with edge labels (x,y) € ¥ x A. The edge set E is
defined by

E<{(q,0(q,x)): g€ Qand x € X}.

Each edge (g,0(g, x)) is labeled (x, A(g, x)).

The vertex g corresponding to the initial state of an FSM is
usually marked in an FSM by a double circle.

We remark that a state diagram is in fact a multi-graph, namely,
one allows more than one directed edge between two vertices.
Such edges are often called parallel edges. Note that the
out-degree of every vertex in a state diagram equals)/&\( \Z (
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Example: A two-state FSM

Consider the FSM A = (Q, X, A, J, \, qo) depicted in the next
figure, where

Q — {qO) ql})
¥ =A=1{01}.
(1,0) (0,1)
(0,1)
(L,1)
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Synthesis and Analysis

Two tasks are often associated with synchronous circuits. These
tasks are defined as follows.
© Analysis: given a synchronous circuit C, describe its
functionality by an FSM.

© Synthesis: given an FSM A, design a synchronous circuit C
that implements A.

0\\"\0\\33'\5‘
w T
Sc\%\’zvi)"
Sbv\‘\’.\\Q.S\s
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Analysis: Sync Circuit — FSM

The task of analyzing a synchronous circuit C is carried out as
follows.

© Define the FSM A = (Q, X, A0, A, qo) as follows.

© The set of states is Q = {0,1}*, where k denotes the number

of flip-flops in C.

Define the initial state g to be the initial outputs of the

flip-flops.

¥ = {0,1}*, where ¢ denotes the number of input gates in C.

A = {0,1}", where r denotes the number of output gates in C.

Define the transition function & : {0,1}% x {0,1}* — {0,1}*

to be the function implemented by the combinational “part” of

C for the inputs of the flip-flops.

O Define the output function A : {0,1}* x {0,1}* — {0,1}" to
be the function implemented by the combinational “part” of C
for the output gates.

00 O
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A Counter

Definition

A counter(n) is defined as follows.
Inputs: a clock CLK.
Output: N € {0,1}".
Functionality:

vVt : (Ng) = t(mod 2)

No input?! Input is “implied”: it is the (missing) reset signal!
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Counter Implementation

Nl vt s

&—o
incrementer(n) oddCn)

T T
v iv\L g-&:r;
D
(N9= ©
CLK —&> FF(n)
n Q "y .
Ny = © (wned 2")
n
5&?";0“‘_ C.
oy (\Mu& 7—)
v (DPF <N ?
NES
Ny oy

R
Figure: A synchronous circuit that implements a counter. ‘
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Counter Analysis

Figure: An FSM of a counter(2). The output always equals binary
representation of the state from which the edge emanates.

56 / 75



A Counter with input

A counter(n) is defined as follows.

Inputs: X € {0,1} and a clock CLK.
Output: N € {0,1}".
Functionality:

YVt o (Ny) = zt:X,-(mod 2"
i=0
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Implementation of Counter with Input

+
(Ny= L% et D)

Y w10 () .
tnertnta o axercise

D S STy
x* D) Yot vt Eas
e Sing
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Analysis of Counter with Input for n = 2

(0,y)

(0,n)
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Sequential Adder: Analysis

v o dber Wit rese

((reset =1, A+ B =2),0)
(A+B<1),A®B) ((reset =0,A+B>1),19 A® B)

N

((reset =0,A+ B =0),1)
((reset =1,A+ B <1),A® B)

Figure: an FSM of a sequential adder (each transition is labeled by a
pair: the condition that the input satisfies and the value of the output).
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Revisiting Shift Registerers

Recall the definition of a shift register of n bits, that is:
Inputs: D[0](t) and a clock CLK.
Output: Q[n — 1](t).
Functionality: Q[n — 1](t + n) = D[0](¢).
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Implementation of Shift Register

CLK —&

D[3) D2 D[ D[]
1 ii 1 ii 1 ii 1 i
FF3 CLK —& FFy CLK —& FFy CLK —& FFo
4 ' ' '
Q[3] Q2] Q[1] Q[0]

Figure: A 4-bit shift register.
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Analysis of Shift Register for n = 2
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Revisiting RAM

A RAM(2") is specified as follows.
Inputs: Address[n —1: 0](t) € {0,1}",Din(t) € {0,1},
R/W(t) € {0,1} and a clock CLK.
Output: Dowt(t) € {0,1}.
Functionality : The functionality of a RAM is specified by the
following program:

© data: array M[2" —1: 0] of bits.

@ initialize: Vi: M[i] + 0.

© Fort =0 to oo do
O Doui(t) = M[(Address)](t).
@ For all i # (Address): M[i](t + 1) < M[i](¢t).
8]

Din(t) if R/W(t) =0
M[{Address)](t) else.

M[{Address)](t + 1) + {

64 / 75



oddvess
L biks in Memery
(

) /
 FE s ) (R/W—lO) (R/

| skoes| = D.

W =1, Address = 1,0)
w

=1, Address = 0,1)

((R/W =0, Address = 0, Dy, = 1),0)

[ 0

((R/W =0, Address = 0, Dy, = 0),1)

((R/W =0, Address = 1, Dy, = Oﬁ ((R/W =0, Address = 1, Dy, = 1),0)
((R/W =0, Address = 0, Dy, = 1),0)
[ 1
((R/W =0, Address = 0, Diy, = 0),1)

(R/W =1, Address = 0,0) (R/W =1,1)
(R/W =1, Address = 1,1)

Figure: A (partial) FSM of a RaM(2?) (the “legend” of the edge
labels:(( Din, address, R/ W), out))

’EQO Q&wvrQ.\ C&‘)]'ﬁ(‘& ! \’\0’\. o {_:E—(.e d\V& \)J(k\%
o desCribe o REM .
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Effect of Adding Initialization to a Synchronous Circuit

(]

(]

(]

N
C —— C (wom resed)
L\ $S ({ L)l
D Y e Y SN
C is a synchronous circuit without an initialization signal (but

we assume FFs output a specific value in t = 0).

Introduce an initialization signal reset that initializes the
outputs of all flip-flops (namely, it cause the outputs of the
flip-flops to equal a value that encodes the initial state).

How? add a MUX after every FF that selects @ or initial-state
based on reset.

Denote the new synchronous circuit by C.

Let A and A denote the FSMs that model the functionality of
C and C, respectively.

What is the relation between A and A?
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Adding the initialization signal to an FSM - cont

Theorem

Let A=(Q,X,A,d, )\ qo) denote the FSM that models the
functionality of the synchronous circuit C. Let

A= (Q, X A", 8", N, q}) denote the FSM that models the
synchronous circuit C. Then,

(Fe's |
Ql é Q, (: {o\\'s 3
/
90 . q0, resed. $}<(:§kul
Y =% x{0,1},
A2 A,

. N
5,(617 (o, reset)) 2 { q,0), if rese ,

qo,0), ifreset=1,

q,0), if reset = 0,

N(q, (o, reset)) = {

qo,0), if reset = 1.

>
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Synthesis: FSM +— Sync Circuit

Given an FSM A = (Q, X, A, 4, A\, qo), the task of designing a
synchronous circuit C that implements A is carried out as follows.
@ Encode Q, X and A by binary strings. Formally, let f, g, h
denote one-to-one functions, where
f:Q—{0,1}*
g: ¥ —{0,1}*
h:A — {0,1}".
© Design a combinational circuit Cs that implements the
(partial) Boolean function B : {0,1}% x {0,1}¢ — {0,1}k
defined by

Bs(f(x),&(y)) = F(8(x,y)), for every (x,y) € @ x ¥.

© Design a combinational circuit Cy that implements the
(partial) Boolean function By : {0,1}% x {0,1}* — {0,1}"

Bx(f(x),&(2)) = h(A(x,z)), for every (x,z) € Q x A.
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Synthesis - cont

@ How many flip-flops are required? f: Q — {0,1} is
one-to-one. So

k > logy | Q|

@ It is not clear that minimizing k is a always a good idea.
Certain encodings lead to more complicated Boolean functions
Bs and B,.

@ The question of selecting a “good” encoding is a very
complicated task, and there is no simple solution to this
problem.
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Example: A two-state FSM

Consider the FSM A = (Q, X, A, J, \, qo) depicted in the next
figure, where

Q — {qO) ql})
¥ =A=1{01}.
(1,0) (0,1)
(0,1)
(1,1)

Figure: A two-state FSM.
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Two-State FSMs: Synthesis

Given an FSM A = (Q, X, A, 4, A\, qo), the synchronous circuit C
that is obtained by executing the synthesis procedure is as follows.
We encode @, X and A by binary strings Formally, let f, g, h
denote one-to-one functions, where

f:Q - {0,1}
g X =Y {3
h:A— X {603

where
f(q0) = 0,f(q1) =1,

and
Vx € {0,1} : g(x) = h(x) = x.
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Two-State FSMs: Synthesis - C;

We design a combinational circuit Cs that implements the Boolean
function Bs: {0,1}? — {0,1} defined by

Bs(f(x),&(y)) = F(3(x,y)), for every (x,y) € @ x ¥.

f(x) | &y) || f(6(x,y))
0 | 0 1

1 0 1

0 1 0

1 1 0

Table: The truth table of Bs.

It follows that Bs(f(x),g(y)) = NoT(g(y)).
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Two-State FSMs: Synthesis - C,

We design a combinational circuit Cy that implements the Boolean
function By : {0,1}2 — {0,1} defined by

Bx(f(x),&(y)) = h(A(x,y)), for every (x,y) € Q x ¥.

f(x) | gly) || h(A(x,5))
0 | 0 1

1 0 1

0 1 0

1 1 1

Table: The truth table of B,.

It follows that Bx(f(x),g(y)) = f(x) V g(y)-
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Two-State FSMs: Synthesis - the Synch. circuit C

The synchronous circuit in canonic form constructed from a
flip-flops and two combinational circuits is depicted in Figure 14.

C
— OUT
IN—e
Cs
S Q FF D NS

CLK

Figure: Synthesis of A.
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Summary of Part 2

@ Definition of synchronous circuits.

@ Simulation algorithm.

@ Synchronous circuits in canonic form.

@ Initialization & reset signal.

@ Functionality: finite-state machines & state diagrams.

@ Analysis and synthesis of synchronous circuits.
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