Digital Logic Design: a rigorous approach © Chapter 14: Selectors

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 14, 2020

Book Homepage:

http://www.eng.tau.ac.il/~guy/Even-Medina

Multiplexer (MUX)

Definition

A MUX-gate is a combinational gate that has three inputs D[0], D[1], S and one output Y. The functionality is defined by

$$Y = \begin{cases} D[0] & \text{if } S = 0 \\ D[1] & \text{if } S = 1. \end{cases}$$

Note that we could have used the shorter expression Y=D[S] to define the functionality of a MUX-gate. D[S]

n-bit selector

Definition

An (n:1)-MUX is a combinational circuit defined as follows:

Input: data input
$$D[n-1:0]$$
 and select input $S[k-1:0]$

where
$$k = \lceil \log_2 n \rceil$$
.

Output:
$$Y \in \{0, 1\}$$
.

Functionality:

$$Y = D[\langle \vec{S} \rangle].$$

D[n-1:0]

To simplify the discussion, we will assume in this chapter that n is a power of 2, namely, $n = 2^k$.

Example

Let
$$n = 4$$
 and $D[3:0] = 0101$. If $S[1:0] = 00$, then

$$Y = D[0] = 1$$
. If $S[1:0] = 01$, then $Y = D[1] = 0$.

Implementation

We describe two implementations of (n:1)-MUX.

- translate the number $\langle \vec{S} \rangle$ to 1-out-of-n representation (using a decoder).
- tree based.

decoder based (n:1)-MUX

Claim

The (n:1)-MUX design is correct.

decoder based (n:1)-MUX - cost

$$D[n-1:0] \qquad S[k-1:0]$$

$$k$$

$$DECODER(k) \qquad Cost = \theta (2^{k})$$

$$M[2^{k}-1:0] \qquad Cost = \theta (2^{k})$$

$$Z[2^{k}-1:0] \geq 2^{k}$$

$$OR-tree(2^{k}) \qquad Cost = \theta (2^{k})$$

$$1$$

$$Y \qquad total cost = \theta (2^{k}) = \theta (n)$$

Claim

The cost of the (n:1)-MUX design is $\Theta(n)$.

decoder based (n:1)-MUX - delay

Claim

The delay of the (n:1)-MUX design is $\Theta(\log n)$.

(n:1)-MUX - lower bounds

Claim

The cone of the Boolean function implemented by a (n:1)-MUX circuit contains at least n elements.

Consider combinational circuits with gates of constant fan-in.

Corollary

The cost of the (n:1)-MUX design is asymptotically optimal.

Corollary

The delay of the (n:1)-MUX design is asymptotically optimal.

|core (mux)) | > n fix ie {0,..., n-13. let $\langle S \rangle = i$ consider $D[n-1:0] = O^n S \rightarrow \overline{Mux(n:1)}$ then, output Y = 0 , flip; (o") for flip; (D[n-1:0]) output Y = 1. $S \rightarrow [mv \times (n:n)]$

|X|

tree based (n:1)-MUX (recursive design) D = D[n-1]

Claim

The (n:1)-MUX design is correct.

tree based (n:1)-MUX - cost

Claim

The cost of the (n:1)-MUX design is $\Theta(n)$.

tree based (n:1)-MUX - delay

Claim

The delay of the (n:1)-MUX design is $\Theta(\log n)$.

Comparison

- Both implementations are asymptotically optimal with respect to cost and delay.
- The cost/delay table suggests that the tree-like implementation is cheaper and faster.
- Fast and cheap implementations of MUX-gates in CMOS technology (called "pass transistors") do not restore the signals well. This means that long paths consisting only of such MUX-gates are not allowed (must interleave with invertors to restore the signals).
- What about physical layout? Which design has a smaller "drawing"? (beyond the scope of this course)
- Conclusion: our simplified model cannot be used to deduce conclusively which multiplexer design is better.

both are asymp. optimal.