
Digital Logic Design: a rigorous approach c©
Chapter 21: The ISA of a Simplified DLX

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

June 7, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1 / 43

http://www.eng.tau.ac.il/~guy/Even-Medina


Why use abstractions?

According to the Collins Dictionary “architecture” means the
art of planning, designing, and constructing buildings.

Computer architecture refers to computers instead of
buildings.

Computers are complicated.

Very simple microprocessor is built from tens of thousands of
gates and an operating system spans thousands of lines of
instructions.

2 / 43



Why use abstractions? (cont)

To simplify things, people focus at a given time on certain
aspects of computers and ignore other aspects.

the hardware designer ignores questions such as: which
programs will be executed by the computer?
The programmer, on the other hand, often does not even know
exactly which type of computer will be executing the program
she is writing.

The architect is supposed to be aware of different aspects so
that the designed system meets the required price and
performance goals.

3 / 43



Abstractions in Computer Systems

Several abstractions are used in computer systems.

We focus on three abstractions used by different “players”:
The C programmer (who writes programs)
The user (who executes programs)
The hardware designer.

4 / 43



Our Players

The C programmer uses the abstraction of a computer that runs C
programs, owns a private memory, and has access to various
peripheral devices (such as a printer, a monitor, a keyboard, etc.).
Supporting this abstraction requires software tools (e.g., editor,
compiler, linker, loader, debugger).

5 / 43



Our Players

The user, who runs various applications, uses the abstraction of a
computer that is capable of running several applications
concurrently, supports a file system, and responds to mouse
movements and typing on the keyboard. Supporting the user’s
abstraction requires an operating system (to coordinate between
several programs running in the same time and manage the file
system), and hardware (that executes programs, but not in C).

6 / 43



Our Players

The hardware designer, is given a specification, called the
Instruction Set Architecture (in short, ISA). Her goal is to design a
circuit that implements this specification while minimizing cost and
delay.

7 / 43



The architect and the ISA

The architect is supposed to be aware of these different
viewpoints.

The architect’s main goal is to suggest an ISA.

On one hand, this ISA should provide support for the users of
the ISA (these are the programmer, the end user, and even
the operating system).

On the other, the ISA should be simple enough so that the
hardware designer can come up with an implementation that
is not too expensive or slow.

8 / 43



ISA?

What exactly is the ISA?

The ISA is a specification of the microprocessor from the
programmer’s point of view.

However, this is not a C programmer or a programmer that is
programming in a high level language. Instead, this is a
programmer programming in machine language.

Since it is not common anymore for people to program in
machine language, the machine language programmer is
actually a program!

9 / 43



The Pair: Compiler & Assembler

Programs in machine language are output by a program called
an assembler.

The input of an assembler is a program in assembly language.
Most assembly programs are also written by programs called
compilers.

Compilers are input a program in a high level language and
output assembly programs.

Hence a C program undergoes the following sequence of
translations: 1. The compiler translates it to an assembly
program. 2. The assembler translates it to a machine
language program.

10 / 43



The Pair: Compiler & Assembler

This two-stage sequence of translations starting from a C program
and ending with a machine language program has several
advantages:

1 The microprocessor executes programs written in a very
simple language (machine language). This facilitates the
design of the microprocessor.

2 The C programmer need not think about the actual platform
that executes the program.

3 Only one compiler is required. For each platform, there is an
assembler that translates the assembly programs to the
machine language of the platform.

4 Every stage of the translation works in a certain abstraction.
The amount of detail increases as one descends to lower level
abstractions. In each translation step, decisions can be made
that are suited to the current abstraction.

11 / 43





Instruction Set

The machine language of a processor is often called an
instruction set.

In general, a machine language has very few rules and a very
simple syntax. In the case of the simplified DLX, every
sequence of instructions constitutes a legal program (is this
the case in C or in Java?).

This explains why the machine language is referred to simply
as a set of instructions.

12 / 43



The Main Memory

The main memory is used to store both the program itself (i.e.,
instructions) and the data (i.e., constant and variables used by the
program). We regard the memory as an array M[0 : 232 − 1] of
words. Each element M[i ] in the array holds one word. The
memory is organized like a Random Access Memory (RAM). This
means that the processor can access the memory in one of two
ways:

Read or load M[i ]. Request to copy the contents of M[i ] to a
register called MDR (Memory Data Register).

Write or store in M[i ]. Request to store the contents of a
register called MDR in M[i ].

13 / 43







The Memory - MAR and MDR

Hence the (partial) semantics of a write operation are:

M[〈MAR〉]← MDR .

Note the angular brackets around the MAR ; they signify that we
interpret the binary string stored in the MAR as a binary number.
Similarly, the (partial) semantics of a read operation are:

MDR ← M[〈MAR〉].

14 / 43



Memory Access

For example, in a read operation we need to

1 compute the address and store it in the MAR ,

2 copy the contents of the accessed word in the memory to the
MDR , and

3 copy the contents of the MDR to a general purpose register.

However, from the point of view of the memory, the interaction
with the microprocessor is via the MAR and MDR .
This relatively neat description is incorrect when we consider the
task of reading an instruction from the memory. As we will see
later, the address of an instruction is stored in a register called PC

and M[〈PC〉] is stored in a register called IR.

15 / 43



Registers

The registers serve as the working space of the microprocessor.
They have three main purposes:

1 to control the microprocessor (e.g., the PC and IR),

2 to serve as the scratch pad for data (e.g., the GPRs), or

3 an interface with the main memory (e.g., MAR and MDR).

16 / 43



Registers

The architectural registers of the simplified DLX are all 32 bits
wide and listed below.

32 General Purpose Registers (GPRs) indexed from 0 to 31.
We refer to these registers as R0 to R31. Loosely speaking,
the general purpose registers are the objects that the program
directly manipulates. Register R0 is an exception, as its
contents always equals 032 and cannot be modified.

Program Counter (PC). The PC stores the address (i.e.,
index in memory) of the instruction that is currently being
executed.

Instruction Register (IR). The IR stores the current
instruction (i.e., IR = M[〈PC〉]).

Special Registers: MAR, MDR. As mentioned above, these
registers serve as the interface between the microprocessor
and the memory when data is written and read.

17 / 43



GPR - example

Instructions are separated to memory accesses and
“computations”.

The arguments and result of computations are stored in GPRs.

Example

Consider a high level instructions z := x + y . Such an instruction
is implemented by the following sequence of instructions. Suppose
that x is stored in M[1], y is stored in M[2], and z is stored in
M[3]. We first need to copy x and y to the GPRs. Namely, we
first need to perform two read operations that copy M[1] to R1
and M[2] to R2. We then perform the actual addition:
R3← R1 +R2. Finally, we copy R3 using a write operation to
the memory location M[3].

18 / 43





Instruction Formats

I−type:

R−type:

Opcode RS1 RD immediate

6 5 165

Opcode RS1 RDRS2 Function

6 5 65 5 5

Figure: Instruction formats of the simplified DLX. (Bits are ordered in
descending order; namely, the leftmost bit is in position [31] and the
rightmost bit is in position [0].)

19 / 43



Load/Store Instructions (I-type).

Load and store instructions deal with copying words between the
memory and the GPRs. An informal and abbreviated interpretation
of the load and store instruction is given in the table below.

Load/Store Semantics
lw RD RS1 imm RD := M[sext(imm)+RS1]
sw RD RS1 imm M[sext(imm)+RS1] := RD

20 / 43



Effective Address

Definition

The effective address in a load or store instruction is defined as
follows. Let j = 〈RS1〉, namely the binary number represented by
the 5-bit field RS1 in the instruction. Let Rj denote the word
stored in the register of the GPR whose index is j . Let 〈Rj〉 denote
the binary number represented by Rj . Recall that [imm] denotes
the two’s complement number represented by the 16-bit field imm.
We denote the effective address by ea. Then,

ea
!

= mod(〈Rj〉+ [imm] , 232).

21 / 43



Overflow?

We point out that the event that 〈Rj〉+ [imm] &∈ {0, . . . , 232 − 1}
is (most likely) an indication of a programming error. In certain
architectures, such an event creates a segmentation fault. In the
simplified DLX, we do not consider this event to be an error, and
the modulo operation is a side effect of using a simple adder for
computing the effective address

22 / 43



The semantics of load and store

Definition

Let i = 〈RD〉, namely i is the number represented in binary
representation by the 5-bit field RD in the instruction. Let Ri

denote the word stored in the ith register in the GPR.

1 A load instruction has the following meaning:

Ri ← M[ea].

This means that the word stored in M[ea] is copied to register
Ri . Of course, M[ea] retains its value.

2 A store instruction has the following meaning:

M[ea]← Ri .

This means that the word stored in Ri is copied to M[ea]. Of
course, Ri retains its value.

23 / 43



Notation

Following the notation used for load and store instructions, we use
the following notation:

Ri denotes the word stored in the register of the GPR whose
index is 〈RD〉.

Rj1 denotes the word stored in the register of the GPR whose
index is 〈RS1〉.

Rj2 denotes the word stored in the register of the GPR whose
index is 〈RS2〉.

24 / 43



Add Instruction (I-type).

There are two add instructions in the ISA. We describe below the
add instruction that belongs to the I-type format. In the table
below an informal description is provided.

Instruction Semantics
addi RD RS1 imm RD := RS1 + sext(imm)

The precise semantics of an add-immediate instruction are as
follows.

Ri ← bin(mod([Rj1] + [imm] , 232)). (1)

25 / 43



Shift Instructions (R-type).

The shift instructions perform a logical shift by one position either
to the left or to the right. The input is word Rj1 and the shifted
word is stored in Ri .

Instruction Semantics
sll RD RS1 RD := RS1 << 1
srl RD RS1 RD := RS1 >> 1

26 / 43



ALU Instructions (R-type).

Instruction Semantics
add RD RS1 RS2 RD := RS1 + RS2
sub RD RS1 RS2 RD := RS1 − RS2
and RD RS1 RS2 RD := and(RS1, RS2)
or RD RS1 RS2 RD := or(RS1, RS2)
xor RD RS1 RS2 RD := xor(RS1, RS2)

Formally, the semantics of the add and subtract instructions are:

Ri ← bin(mod([Rj1] + [Rj2] , 2
32))

Ri ← bin(mod([Rj1]− [Rj2] , 2
32)).

The semantics of the bitwise logical instructions are simple. For
example, in an and instruction Ri [!] = and(Rj1[!],Rj2[!]).

27 / 43



Test Instructions (I-type).

The test instructions compare the two’s complement numbers
[Rj1] and [imm]. The result of the comparison is stored in Ri .
For example, consider the slti instruction. The semantics of the
slti instruction are:

Ri =

{

1 if [Rj1] < [imm]

0 otherwise.

28 / 43



Test Instructions (I-type).

Instruction Semantics
sreli RD RS1 imm RD := 1, if condition is satisfied,

RD := 0 otherwise
if rel =lt test if RS1 < sext(imm)
if rel =eq test if RS1 = sext(imm)
if rel =gt test if RS1 > sext(imm)
if rel =le test if RS1 ≤ sext(imm)
if rel =ge test if RS1 ≥ sext(imm)
if rel =ne test if RS1 &= sext(imm)

29 / 43



Branch/Jump Instructions (I-type).

Branch and jump instructions modify the value stored in the the
PC. Recall that during the execution of every instruction the PC

is incremented. In a branch or jump instruction an additional
change is made to the PC.
The simplest instruction in this set is the “jump register” (jr)
instruction. It simply changes the PC so that PC← Rj1. Hence
the next instruction to be executed is the instruction stored in
M[Rj1].

30 / 43



Branch/Jump Instructions (I-type).

A somewhat more evolved instruction is the “jump and link
register” (jalr) instruction. This instruction saves the
incremented PC in R31. The idea is that this instruction is used
for calling a procedure and the return address is stored in R31.
Formally, the semantics of jalr are:

R31← bin(mod(〈PC 〉+ 1, 232))

PC← Rj1.

31 / 43



Branch/Jump Instructions (I-type).

We also have two branch instructions: “branch if zero” (beqz) and
“branch if not zero” (bnez). In a beqz instruction,

if Rj1 = 032 then a branch takes place and the address of the
next instruction is PC+ 1 + [imm].

If Rj1 &= 032, then the branch is not taken, and the address of
the next instruction is PC+ 1. In a bnez instruction, the
conditions are reversed.

32 / 43



Branch/Jump Instructions (I-type).

Instruction Semantics
beqz RS1 imm PC = PC + 1 + sext(imm), if RS1 = 0

PC = PC + 1, if RS1 &= 0
bnez RS1 imm PC = PC + 1, if RS1 = 0

PC = PC + 1 + sext(imm), if RS1 &= 0
jr RS1 PC = RS1
jalr RS1 R31 = PC+1; PC = RS1

33 / 43



Miscellaneous Instructions (I-type).

There are a few special instructions in the I-type format.

The first special instruction is a the “no operation”
(special-nop) instruction. This instruction has a null effect,
and the only thing that happens during its execution is that
the PC is incremented.

The second special instruction is the “halt” (halt)
instruction. This instruction causes the microprocessor to
“freeze” and stop the execution of the program.

34 / 43



I-type instructions

IR[31 : 26] Mnemonic Semantics

Data Transfer
100 011 lw RD = M[sext(imm)+RS1]
101 011 sw M[sext(imm)+RS1] = RD

Arithmetic, Logical Operation
001 011 addi RD = RS1 + sext(imm)

Test Set Operation
011 rel s rel i RD = (RS1 rel sext(imm))
011 001 sgti RD = (RS1 > sext(imm))
011 010 seqi RD = (RS1 = sext(imm))
011 011 sgei RD = (RS1 ≥ sext(imm))
011 100 slti RD = (RS1 < sext(imm))
011 101 snei RD = (RS1 &= sext(imm))
011 110 slei RD = (RS1 ≤ sext(imm))

Control Operation
000 100 beqz PC = PC + 1 + (RS1 = 0 ? sext(imm) : 0)
000 101 bnez PC = PC + 1 + (RS1 &= 0 ? sext(imm) : 0)
010 110 jr PC = RS1 35 / 43



R-type instructions

IR[5 : 0] Mnemonic Semantics

Shift Operation
000 000 sll RD = RS1 << 1
000 010 srl RD = RS1 >> 1

Arithmetic, Logical Operation
100 011 add RD = RS1 + RS2
100 010 sub RD = RS1 − RS2
100 110 and RD = RS1 ∧ RS2
100 101 or RD = RS1 ∨ RS2
100 100 xor RD = RS1 ⊕ RS2

Table: R-type Instructions (in R-type instructions IR[31 : 26] = 06)

36 / 43



Example 1 of Program Segments

Convert the C code segment below to a simplified DLX’s machine
code.

if (i==j)

goto L1;

f=g+h;

L1: f=f-i;

37 / 43



Register Assignment

Variable Register
f R1
g R2
h R3
i R4
j R5

Table: Register assignment for Example 1

38 / 43



Code conversion

C code DLX’s machine code
if (i==j) xor R6 R4 R5
goto L1; beqz R6 1
f=g+h; add R1 R2 R3
L1: f=f-i; sub R1 R1 R4

39 / 43



Example 2

Convert the C code segment below to a simplified DLX’s machine
code.

LOOP: g=g+A[i];

i=i+j;

if (i!=h) goto LOOP;

40 / 43



Register Assignment

Variable Register
g R1
h R2
i R3
j R4
A R5

A+i R6
A[i] R7
i!=h R8

41 / 43



Code Conversion

C code DLX’s machine code
LOOP: g=g+A[i]; add R6 R5 R3

lw R7 R6 0
add R1 R1 R7

i=i+j; add R3 R3 R4
if (i!=h) goto LOOP; xor R8 R3 R2

bnez R8 -6

42 / 43



Summary

In this chapter we described the ISA of the simplified DLX.

Even though the ISA is rather simple, C instructions and
programs can be translated to the DLX machine language.

Missing in this description is supporting systems calls,
distinguishing between protected mode and user mode, etc.

43 / 43


