Digital Logic Design: a rigorous approach (¢

Chapter 16: Signed Addition

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 24, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1/ 25

http://www.eng.tau.ac.il/~guy/Even-Medina

Preliminary questions

© How are signed integers represented in a computer?
© How are signed integers added and subtracted in a computer?

© Can we use the same circuitry for adding unsigned and signed
integers?

'-(-> ‘«)\'\w\— s Ar\«x Y\I\(‘?Qg& QQ ‘_;\CYQ&}

tn RDDEL(W) ¢ T
A&7
. - — f
P eley # {3y = (A« (Br+cle] X5
? cCad

2 /25

Representation of negative integers

Definition
The integer represented in sign-magnitude representation by
Aln—1:01€{0,1}" and S € {0,1} is CrY =

(_1)5 : (A[n —1: O]> - \)(= -

Definition

The integer represented in one's complement representsab’\ci“pn by .
Aln—1:0] € {0,1}"is Mso'%, n-2%o0
—(2" 1 =1)- Aln— 1]+ (A[n — 2: 0]).

Definition
The integer represented in two's complement representation by
Aln—1:0]€{0,1}" is

—2" L Aln — 1] + (Aln — 2 : 0]).

3 /25

Comparison between representation methods

—T-al)s (LoD - (7)) Al datesl?
binary string X H (X) ‘ 2's cgwwp ‘ 1's cor\n/p ‘ sign-mag

000 0 0 0 +0
001 1 1 1 1
010 2 2 2 2
011 3 3 3 3
100 4 —4 -3 -0
101 5 -3 -2 -1
110 6 -2 -1 -2
111 7 -1 0 -3

@ symmetric range: one's complement and sign-magnitude.
@ two representations for zero: one's complement and

sign-magnitude. (g poc® Ahen oo -
¥ \..\\'\3 RN NVN 3

R4 L\mgw’\’RJ"? 2@1

4 /25

Range of representable integers

We denote the integer represented in two's complement
representation by A[n — 1 : 0] as follows:

[Aln—1:0]] = —2""1. Aln— 1] + (A[n —2: 0]).

We denote the set of integers that are representable in two's
complement representation using n-bit binary strings by T,. We
denote the set of integers that are representable in binary
representation using n-bit binary strings by B,.

Claim

T,={-2"1 -2"141....2"1 —1} two's comp. rep. range

B,={0,...,2" -1} binary rep. range
Q 1o 27 T - (e 27\ J

5 /25

Same string different numbers

For every Aln—1:0] € {0, 1}'7‘9;“‘ wp. b
2s N ' =

Covap [A‘] A if Aln — 1] = 0
(A =2 ifAIn—1]=1
Let n =4 and let A[3:0] = 0110, B[3 : 0] = 1001, then:
(AB:0])=6, [AB:0]]=6 4] = (A)

(B[3:0])=9, [B[3:0]]=—7 [é} — (B) - 2*

- 4+ = -3 -1 = 4-1\6

6 /25

< \ovwn U’Q_l _ 2 Ry ¥ An-l =9
(m>-7 0 AT =
\7“’“5 i Y@l\ﬁ - “Q“"- Aln-\ -+ <‘P\Yn~2:0]>
ig (\E\\—(] - 0.
TR 1= {a{na01) < (O AIN-2:0Y) = (Nn-1:])
'(Q A1) =1

[A)= —3" = ¢ADn-2:> = 7 A@* (N[n-21037

- "2’\4— <®' Afn-2:0]) = <4>\Q\f\-\ . 0}> ..ZV\
&

Alternative definition

For every Aln—1:0] € {0,1}"

[A]:{<:> ifAln—1]=0

(Ay—2" ifAln—1] =1

For every A[n—1:0] € {0,1}"

<;> — mod([ﬁ} 2.
7

b:"h\’r\g. lls C’b\-\?

7 /25

Computing a two's complement representation

g'\\rem RS BUNYN Afn-\:07] s.. Chtn_\-‘bjl =y !

Algorithm 1 two-comp(x, n) - An algorithm for computing the two's
complement representation of x using n bits.

Q If x & T, return (fail).

@ If x > 0 return (0 o bin,_1(x)).

Q If x <0 return (biny(x +2")).

Let A denote output of algorithm. If x > 0, then [/_\1 = (A) = x.

—

If x < 0, then [/T] = (A) =20 = (x+27) - 2" =x. KW_\L_O

)
%+ 71 = Ae-) =

8 /25

Computing a two's complement representation

Ta={-23,-22+1,...,2° —1}.

Hence,

two-comp(8, 4) = fail ,

two-comp(5,4) = (0 o bin3(5)) = 0101 ,
two-comp(—6,4) = (bing(—6 + 2*)) = 1010 ,
two-comp(—1,4) = (bing(—1 + 2*%)) = 1111 .

9 /25

Negation in two's complement representation

-[R] = ¢

The following claim deals with negating a value represented in
two's complement representation.

—[A[n—1:0]] = [INV(A[n — 1:0])] + 1.

Examples: A = 0110 and A = 1001.
—EO\\O-l = -0 & ‘:\00\14-\: -8+\a\ =2 =§
- [too) = ~(-3+)=3 kTouod«1 = 641 =1

10 / 25

c\odw - Y‘P\‘[\-\:oll = \-_ Pan-\:ﬂ} +

?WQ‘Q“__._,_. aml ———
Kt-\(n-\-.q—k 2 -2 . Ald F L mCn-2i0)
\Q\Q-Cm\\ 35\1\00\ Y\o)C (*) = \-X
n-2 .
- il ‘ .
P SNQERN) PR MCLAR
t=9
- - ‘”i\—“ ’Acn-\l -+ < A Ln-2" o}>}
n-2 :
_ -\ & —Z gl

Negation based on

—[A[n—1:0]] = [Inv(A[n—1:0])] +1

Q

Aln—1:0]
INV(n)
Aln—1:0] . o
n Y hcfe]:O
INC(n) f— \ o\&_/mm) ;
Cln| " ety &4 30
Bln—1:0]
(23 2 -[R]

11 / 25

Negation based on

—[A[n—1:0]] = [Inv(A[n—1:0])] +1

loo--0o

An—1:0] =2

@ We compute (A[n—1:0]) + 1.

@ But need {A[n —1: 0]} + 1 5

@ So (C[n]-B[n—1:0]) = INV(n)
(Aln—1:0]) + 1. ol

@ Does [B} = — [A]7 Aln—1:0]

@ Suspect C[n] =1 ! Assume
Cl[n] =0...

® So C«f ctrl=0) INC(n)
(Bl[n—1:0]) =(A[n—1:0]) + 1. O o om0

o[B[n—lzo]]:[A[n—lzo]}H? Cln] Bin—1:0

12 / 25

Co-vva‘v‘“’() - (P.? }

@ Very easy in sign-magnitude representation. (5{9\?? %V\ K \\
@ Easy in one's-complement representation. (Q)(ecc\‘;g \\> ’

@ In two's complement representation: need to check that
- [ﬁ] €Th..

@ Still, we need a proof and a way to tell when we fail.

13 / 25

The most significant bit A[n — 1] of a string A[n — 1 : 0] that
represents a two's complement integer is often called the sign-bit
of A. The following claim justifies this term.

(e xevciRw)

[A[n—1:0]]<0 <= An-1=1.

Do not be misled by the term sign-bit. Computing the absolute
value of [/_\1 requires negation...
Example: A =1111 and A = 0111.

CAN=" ceN=7%

14 / 25

Duplicating the most significant bit does not affect the value
represented in two's complement representation. This is similar to
padding zeros from the left in binary representation.

Claim

If Aln] = A[n — 1], then

[Aln:0]] =[A[ln—1:0]].

CL,\:) wd, on HNT. D! ﬁcn'\ll

[Aln—1]"cAln—1:0]] = [A[n—1:0]].

Example: :Y\' 1 D] = ik'\ 0:[= {\OJ
[11111111111111111110] = [10] = —2
[11111111111111111111) =[1] = -1

15 / 25

iy ATad = AT = TAtarel] = [AG-1]]
pods Catna] & =2 ALe)s 2T Bl)

(A "f'\ivv\’\) - (_‘ 2n+j\")) (’\E”"} « <]}Y_v\—-2'.01>

o 77 Al « (RTed)

= { An- e o')_l

Reduction: two's complement addition to binary addition

Goal: two’s complement addition "Rb ;u
r R v G
[A} n [B] + Clo]. \Kca\@?/@
Suppose: °‘€fj :

Aln—1:0],B[n—1:0],S[n—1:0] € {0,1}"
C[0], C[n] € {0,1}

satisfy

(Aln—1:0]) + (B[n—1:0]) + C[0] = (C[n] - S[n —1:0]). (%)

@ When does the output S[n — 1 : 0] satisfy:
[§] —[Aln—1:0]+[B[n—1:0]+C[o]? (1)

@ How can we know that Equation (1) holds?

16 / 25

Reduction of two's comp addition to binary addition

Theorem

Let C[n — 1] denote the carry-bit in position [n — 1] associated
with the binary addition described in Eq—uageﬁ—l—é and let
)

zZ [Aln—1:0]]+[B[n—1:0]] + C[0].

Then,
Cln]—Cln—1]=1 = 2=t
Cln—1]—C[n] =1 = z>2m1 1
zeT, <= C(C[n]=C[n-1]
ze T, — z=[S[n—1:0]].

N
~

o~
SN N N

~ o~ o~ —~

[A[3:0]] -3 -4| -6 7
[B[3:0]] -5 -5 5 1
Cl[o] 1 0 0 1
Cln] 1 1 1 0
Cln—1] 1 0 1 1
[S[n—1:0]] || -7 71| -7
z 7| -9]| -1 9

18 / 25

M K }g UADn-1:07] + CRTn-11613+ CTo7

0 (nTn-1] + Bin-]) + (Rl 6)) = (B[°1>+Ci0]
(p\[“ N+ - \') + | ch] 2 .n_<g[n AN 01
c;acw \\)

_ ""(A Tals Bl —Ch-]) = (STa-2.01Y
eh, of 'R

MGM Ca-v) + BCa-] « <[a-1) = & -clnd ~ S(a-1]

)

i

= ACn-1D4 B Cn-1) —CTn-] = aCcEn’J——cEn»\"D*S[ﬂ—ﬂ
we comclude N\t

’6 = -Zj\(ctn]- c_Cn—\]) —+ [-SC“"\ . O]]

?‘r\m/& (Lo-v\)\'.\ N
’6 = —Z?(C‘,Ef\]- c.Cﬂ'13> - [-S TN~ 01]
Codes

1\> ctn} = cln-\) = } = ES Cn-1- 0_1]

) cn) - cln-t) =1
= }: ,,.Qn* E_S[:""\""-ﬂ S—Qn-'- 2?-:‘ = -2-1

= }¢ ’(‘n Cr& Loo SM\\)
3) (] —clav) = —1

| n- |

= 3- L lstalz 2-2 =2
= %d'(; (g JD»*"S)

Detecting overflow

Overflow - the sum of signed integers is not in T,,.
Definition

Let z= [A[n—1:0]] +[B[n—1:0]] + C[0]. The signal OVF is
defined as follows:

OVF =)
0 otherwise.

A {1 ifz¢ T,

the term “out-of-range” is more appropriate than “overflow”
(which suggests that the sum is too big). Favor tradition...
By the theorem

OVF = XOR(C[n — 1], C[n]).

19 / 25

Determining the sign of the sum

Definition

The signal NEG is defined as follows:

A 1 IfZ<O
NEG =
0 ifz>0.

brute force method:
S[n—1] if no overflow
NEG = ¢ 1 if C[n] —C[n—1]=1 (6)
0 if C[n—1]— C[n] =1.

NEG = XOR3(A[n — 1], B[n — 1], C[n]).

20 / 25

e\

?*‘UQ-Q \

CyecCie

hewee

NeG = XO\'Ls(‘RE_n—\}’&LV\-\'L/QCn’}}
N r% e pOSN
St ertend R B by POSINON.

Ca Co
A Py Py " R
Bay &y Ba 0 B
3. S Sa S
Loye T, (hemee };[Sﬁ.g[n-(-.oﬂ>
NEG = S

Sa = XO?\SCF\V\-\,(SA-\,C“}

A two's-complement adder

A two's-complement adder with input length n is a combinational
circuit specified as follows.
Input: A[n—1:0],B[n—1:0] € {0,1}", and C[0] € {0, 1}.
Output: S[n—1:0] € {0,1}" and NEG, OVF € {0, 1}.

Functionality: Define z as follows:
zZ [Aln—1:0]]+[B[n—1:0]] + C[0].
The functionality is defined as follows:

zeT, = |[S[n—-1:0]]==z
zeT, <= ovF=0

z<0 <«—= NEG=1.

We denote a two's-complement adder by S-ADDER(n).

21 / 25

A two's complement adder S-ADDER(n)

NEG OVF Cln] S[n—1:0]

In an arithmetic logic unit (ALU), one may share the same
ADDER(n) for signed addition and unsigned addition.

22 /25

A two's complement adder/subtractor

A two's-complement adder/subtractor with input length n is a
combinational circuit specified as follows. nwo cCol 1

Input: A[n—1:0],B[n—1:0] € {0,1}", and sub € {0, 1}.
Output: S[n—1:0] € {0,1}" and NEG, OVF € {0, 1}.

Functionality: Define z as follows:
z2[AIn—1:0]+(~1)%“P.[Bln—1:0]].
The functionality is defined as follows:

zeT, = |[S[n—-1:0]]=¢z
zeT, <= ovF=0

z<0 <«—= NEG=1.

We denote a two's-complement adder/subtractor by ADD-SUB(n).

23 / 25

An implementation of an ADD-SUB(n)

Suh = o
correchniss Wolls
be comd e

s-p it onw)

1S cornech

SwWo = A
IR

Y.;"]"' ‘\N\I(\:Z)] ~\
-
=-)

-~ n\-1t&)

An—1:0]

The implementation of ADD-SUB(n) is correct.

24 / 25

@ three ways for representing negative integers: sign-magnitude,
one's-complement, and two's complement. We then focused
on two's complement representation.

@ Negating.

@ Properties of two's complement representation: (i) modulo 2"
congruent to binary rep. (ii) sign bit. (iii) sign-extension.

@ Reduce the task of two's complement addition to binary
addition, and: (i) overflow detection (ii) sign of the sum even
if an overflow occurs.

@ Implementation of a circuit of adder/subtractor (basic part in
ALU).

25 / 25

