
Digital Logic Design: a rigorous approach c©
Chapter 12: Trees

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 3, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1 / 31

http://www.eng.tau.ac.il/~guy/Even-Medina

Preliminary questions:

1 Which Boolean functions are suited for implementation by
tree-like combinational circuits?

2 In what sense are tree-like implementations optimal?

2 / 31

Reminder: Binary Boolean Functions

Definition

A binary Boolean function is a function f : {0, 1}2 → {0, 1}.

A binary function is often denoted by a dyadic operator, say ∗. So
instead of writing f (a, b), we write a ∗ b.

3 / 31

Reminder: Associative Boolean functions

Definition

A binary Boolean function ∗ : {0, 1}2 → {0, 1} is associative if

(x1 ∗ x2) ∗ x3 = x1 ∗ (x2 ∗ x3) ,

for every x1, x2, x3 ∈ {0, 1}.

One may omit parenthesis: x1 ∗ x2 ∗ x3 is well defined.
Consider the function fn : {0, 1}n → {0, 1} defined by

fn(x1, . . . , xn) ! x1 ∗ · · · ∗ xn

4 / 31

Extension of associative function

Definition

Let f : {0, 1}2 → {0, 1} denote a Boolean function. The function
fn : {0, 1}n → {0, 1}, for n ≥ 1, is defined recursively as follows.

1 If n = 1, then f1(x) = x .

2 If n = 2, then f2 = f .

3 If n > 2, then fn is defined based on fn−1 as follows:

fn(x1, x2, . . . xn)
!

= f (fn−1(x1, . . . , xn−1), xn).

Claim

If f : {0, 1}2 → {0, 1} is an associative Boolean function, then

fn(x1, x2, . . . xn) = f (fn−k(x1, . . . , xn−k), fk(xn−k+1, . . . , xn)),

for every n ≥ 2 and k ∈ [1, n − 1].

5 / 31

Trees of associative Boolean gates

To simplify the presentation, consider the Boolean function orn.

Definition

A combinational circuit H = (V ,E ,π) that satisfies the following
conditions is called an or-tree(n).

1 The graph DG (H) is a rooted tree with n sources.

2 Each vertex v in V that is not a source or a sink is labeled
π(v) = or.

3 The set of labels of leaves of H is {x0, . . . , xn−1}.

or

or

x[3]

y

x[2]

or

or

or

x[0] x[1] x[2] x[3]

or

x[0] x[1]

y

6 / 31

Correctness of or-tree(n)

Definition

A combinational circuit H = (V ,E ,π) that satisfies the following
conditions is called an or-tree(n).

1 Topology. The graph DG (H) is a rooted tree with n sources.

2 Each vertex v in V that is not a source or a sink is labeled
π(v) = or.

3 The set of labels of leaves of H is {x0, . . . , xn−1}.

Claim

Every or-tree(n) implements the Boolean function orn.

7 / 31

Relation to Boolean Formulas

Definition

A Boolean formula ϕ is an or(n) formula if it satisfies three
conditions: (i) it is over the variables X0, . . . ,Xn−1, (ii) every
variable Xi appears exactly once in ϕ, and (iii) the only connective
in ϕ is the or connective.

Claim

A Boolean circuit C is an or(n)-tree if and only if its graph
(without the input/output gates) is a parse tree of an
or(n)-formula.

8 / 31

Cost of or-tree(n)

or

or

x[3]

y

x[2]

or

or

or

x[0] x[1] x[2] x[3]

or

x[0] x[1]

y

Claim

The cost of every or-tree(n) is (n − 1) · c(or).

Lemma

Let G = (V ,E) denote a rooted tree in which the in-degree of
each vertex is at most two. Then

|{v ∈ V | degin(v) = 2}| = |{v ∈ V | degin(v) = 0}|− 1.

9 / 31

Depth of tree

delay of an or tree = number of or-gates along the longest path
from an input to an output.

Definition (depth - nonstandard definition)

The depth of a rooted tree T is the maximum number of vertices
with in-degree greater than one in a path in T . We denote the
depth of T by depth(T).

Why is this nonstandard?

Usually, depth is simply the length of the longest path.

Here we count only vertices with in-degree ≥ 2.

Why?
Input and output gates have zero delay (no computation)
Assume inverters are free and have zero delay (we will show
that for or(n) cost & delay are not reduced even if inverters
are free and without delay)

10 / 31

Binary rooted trees

Definition

A rooted tree is a binary tree if the maximum in-degree is two.

A rooted tree is a minimum depth tree if its depth is minimum
among all the rooted trees with the same number of leaves.
All binary trees with n leaves have the same cost. But, which have
minimum depth?

1 if n that is a power of 2, then there is a unique minimum
depth tree, namely, the perfect binary tree with log2 n levels.

2 if n is not a power of 2, then there is more than one minimum
depth tree... (balanced trees)

11 / 31

Example: Delay analysis

Are these minimum depth trees?

or

or

or

or

or or

or

or

or

or

Figure: Two trees with six inputs.

12 / 31

Depth: lower bound

Claim

If Tn is a rooted binary tree with n leaves, then the depth of Tn is
at least 'log2 n(.

1 Suffice to prove depth ≥ log2 n.

2 Complete induction on n.

13 / 31

Min Depth: the case n = 2k (perfect binary trees)

The distance of a vertex v to the root r in a rooted tree is the
length of the path from v to r .

Definition

A rooted binary tree is perfect if:

The in-degree of every non-leaf is 2, and

All leaves have the same distance to the root.

Note that the depth of a perfect tree equals the distance from the
leaves to the root (no vertices with in-degree 1).

Claim

The number of leaves in a perfect tree is 2k , where k is the
distance of the leaves to the root.

Claim

Let n denote the number of leaves in a perfect tree. Then, the
distance from every leaf to the root is log2 n.

14 / 31

Minimum depth trees

We now show that for every n, we can construct a minimum depth
tree T ∗

n of depth 'log2 n(. In fact, if n is not a power of 2, then
there are many such trees.

15 / 31

Balanced partitions

Definition

Two positive integers a, b are a balanced partition of n if:

1 a + b = n, and

2 max{'log2 a(, 'log2 b(} ≤ 'log2 n(− 1.

Claim

If n = 2k − r , where 0 ≤ r < 2k−1, then the set of balanced
partitions is

P
!

= {(a, b) | 2k−1 − r ≤ a ≤ 2k−1 and b = n − a}.

16 / 31

Construction of a balanced tree

Algorithm 1 Balanced-Tree(n) - a recursive algorithm for construct-
ing a binary tree T ∗

n with n ≥ 1 leaves.
1 The case that n = 1 is trivial (an isolated root).

2 If n ≥ 2, then let a, b be balanced partition of n.

3 Compute trees T ∗
a and T ∗

b . Connect their roots to a new root
to obtain T ∗

n .

Definition

A rooted binary tree Tn is a balanced tree if it is a valid output of
Algorithm Balanced-Tree(n).

17 / 31

Def: balanced tree

Algorithm 2 Balanced-Tree(n) - a recursive algorithm for construct-
ing a binary tree T ∗

n with n ≥ 1 leaves.
1 The case that n = 1 is trivial (an isolated root).

2 If n ≥ 2, then let a, b be balanced partition of n.

3 Compute trees T ∗
a and T ∗

b . Connect their roots to a new root
to obtain T ∗

n .

Claim

The depth of a binary tree T ∗
n constructed by Algorithm

Balanced-Tree(n) is 'log2 n(.

Corollary

The propagation delay of a balanced or-tree(n) is
'log2 n(· tpd (or).

18 / 31

Optimality of trees

Goals: prove optimality of a balanced or-tree(n).

Theorem

Let Cn denote a combinational circuit that implements orn. Then,

c(Cn) ≥ n − 1.

Theorem

Let Cn denote a combinational circuit that implements orn. Let k
denote the maximum fan-in of a gate in Cn. Then

tpd (Cn) ≥ 'logk n(.

19 / 31

Flipping bits

Definition

Let flipi : {0, 1}
n → {0, 1}n be the Boolean function defined by

flipi(#x)
!

= #y , where

yj
!

=

{

xj if j *= i

not(xj) if i = j .

20 / 31

The cone of a function

Definition (Cone of a Boolean function)

The cone of a Boolean function f : {0, 1}n → {0, 1} is defined by

cone(f)
!

= {i : ∃#v such that f (#v) *= f (flipi(#v))}

Example

cone(xor) = {1, 2}.

We say that f depends on xi if i ∈ cone(f).

21 / 31

Example

Consider the following Boolean function:

f (#x) =

{

0 if
∑

i xi < 3

1 otherwise.

Suppose that one reveals the input bits one by one. As soon as 3
ones are revealed, one can determine the value of f (#x).
Nevertheless, the function f (#x) depends on all its inputs, and
hence, cone(f) = {1, . . . , n}.

22 / 31

Constant Functions

Claim

cone(f) = ∅ ⇐⇒ f is a constant Boolean function.

23 / 31

Composition of Functions

Claim

If g(#x) ! B(f1(#x), f2(#x)), then

cone(g) ⊆ cone(f1) ∪ cone(f2) .

24 / 31

Graphical Cone

Definition

Let G = (V ,E) denote a DAG. The graphical cone of a vertex
v ∈ V is defined by

coneG (v)
!

= {u ∈ V : degin(u) = 0 and ∃path from u to v}.

In a combinational circuit, every source is an input gate. This
means that the graphical cone of v equals the set of input gates
from which there exists a path to v .

25 / 31

Functional Cone ⊆ Graphical Cone

Claim

Let H = (V ,E ,π) denote a combinational circuit. Let
G = DG (H). For every vertex v ∈ V , the following holds:

cone(fv) ⊆ coneG (v) .

Namely, if fv depends on xi , then the input gate u that feeds the
input xi must be in the graphical cone of v .

26 / 31

”Hidden” Rooted Trees

Claim

Let G = (V ,E) denote a DAG. For every v ∈ V , there exist
U ⊆ V and F ⊆ E such that:

1 T = (U,F) is a rooted tree;

2 v is the root of T ;

3 coneG (v) equals the set of leaves of (U,F).

The sets U and F are constructed as follows.

1 Initialize F = ∅ and U = ∅.
2 For every source u in coneG (v) do

(a) Find a path pu from u to v .
(b) Let qu denote the prefix of pu , the vertices and edges of which

are not contained in U or F .
(c) Add the edges of qv to F , and add the vertices of qv to U .

27 / 31

Lower Bound on Cost

Theorem (Linear Cost Lower Bound Theorem)

Let H = (V ,E ,π) denote a combinational circuit. If the fan-in of
every gate in H is at most 2, then

c(H) ≥ max
v∈V

|cone(fv)|− 1.

Corollary

Let Cn denote a combinational circuit that implements orn. Then

c(Cn) ≥ n − 1.

28 / 31

Lower Bound on Delay

Theorem (Logarithmic Delay Lower Bound Theorem)

Let H = (V ,E ,π) denote a combinational circuit. If the fan-in of
every gate in H is at most 2, then

tpd (H) ≥ max
v∈V

log2 |cone(fv)|.

Corollary

Let Cn denote a combinational circuit that implements orn. Let 2
denote the maximum fan-in of a gate in Cn. Then

tpd (Cn) ≥ 'log2 n(.

29 / 31

What is the effect of increasing the fan-in on the delay?

Theorem (Logarithmic Delay Lower Bound Theorem)

Let H = (V ,E ,π) denote a combinational circuit. If the fan-in of
every gate in H is at most k, then

tpd (H) ≥ max
v∈V

logk |cone(fv)|.

Corollary

Let Cn denote a combinational circuit that implements orn. Let k
denote the maximum fan-in of a gate in Cn. Then

tpd (Cn) ≥ 'logk n(.

30 / 31

Summary

Focus on combinational circuits that have a topology of a tree
with identical gates.

Trees are especially suited for computing associative Boolean
functions.

Defined an or-tree(n) to be a combinational circuit that
implements orn using a topology of a tree.

Proved that or-tree(n) are asymptotically optimal (cost).

Balance conditions to obtain good delay.

General lower bounds based on cone(f).
gates in a combinational circuit implementing a Boolean
function f must be at least |cone(f)|− 1.
the propagation delay of a combinational circuit implementing
a Boolean function f is at least log2 |cone(f)|.

31 / 31

