Digital Logic Design: a rigorous approach (¢

Chapter 12: Trees

Za 2
Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 3, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1 /31

http://www.eng.tau.ac.il/~guy/Even-Medina

Preliminary questions:

@ Which Boolean functions are suited for implementation by
tree-like combinational circuits?

@ In what sense are tree-like implementations optimal?

- '\w?

2N
N delay

e

2 /31

Reminder: Binary Boolean Functions

Definition

A binary Boolean function is a function f : {0,1}? — {0,1}.

A binary function is often denoted by a dyadic operator, say *. So
instead of writing f(a, b), we write a x b.

eXaMY\as . OR,RAND woR

M — Cawn be o\v\a L. %QQQ\QR\/\ %/\Q'

3 /31

Reminder: Associative Boolean functions

Definition

A binary Boolean function * : {0,1}? — {0,1} is associative if
(x1 % x2) * x3 = x1 * (X2 % x3) ,

for every x1, x2,x3 € {0,1}.

One may omit parenthesis: x1 * x» * x3 is well defined.
Consider the function f, : {0,1}" — {0,1} defined by

Fr(X1y .oy Xn) = X1 % - % X

Q\ﬁ&wm?\,& - OQ\V\C*\,---,\/\Q = X - X,

4 /31

o\sSoc‘\owk‘wﬂ-& b:ﬁ 7\>% ot

T
Y .
(}ﬁ\ i»)
/\\ RN
x T |
i#] ! \,/
N "> N
X Y3 %5 3(3
C¥, % Xa)wxs > % QX:{#» x})

¥ assoc. = Y= 2

<-\+ ’(‘77%\;7(63

Extension of associative function

Let f : {0,1}2 — {0,1} denote a Boolean function. The function
fn: {0,1}" — {0,1}, for n > 1, is defined recursively as follows.

Q If n=1, then f1(x) = x.
Q If n=2, then H =f.
@ If n > 2, then f, is defined based on f,_; as follows:

fo(x1, X2, . . - Xn) = f(fa—1(x1, .oy Xn—1), Xn)-

Claim

| A\

If f : {0,1}2 — {0, 1} is an associative Boolean function, then

fn(X].uXZu ce e Xn) — f(fn—k(X17 ce e 7Xn—k)7 fk(Xn—k+17 ce e 7Xn))7

for every n > 2 and k € [1,n — 1].

A\

5 /31

g\'\(x\ -
1'77‘«\)

=5
omry B
\ nea

CWYrS10n

N

a

T 9%,

,gh(x\/._

‘o W Moy ¥mz 2 ¥rkell n-i]:

%an \c(x‘/ Y \«-\< ‘L(Xh-k+\)'”'yn)>

L]

mecmiv\g .

A7 5

S
_r
-
7N
\ gh—l l Y"‘
Ky Xy
?ﬁ ‘(\O'\e : rQoY KA ,
be < ewse

Qe

»r3
15
s
\gh—k k @
’Xn-k ,RK

X, Kpmi Hacxay 70

e«iw\:%:l Yo l\d g
L\'\S S e Sewe QS \Q’V\g

?v*oogg \93 Cowy. b, ow n
bxsS - "= Aryue becomse ke,
OGRS

e - LMS = RM8 W w<n xe[\,n-1]

skep: (loy prcrunes)
& 'mé.\'\x_ _
s d

T ‘
X[\'-V\-\(l ’5“% g RS \ ’gK
X n-k4) -1 PARLEY|)(['_v\ At SJ

Trees of associative Boolean gates

To simplify the presentation, consider the Boolean function OR,.

A combinational circuit H = (V, E,) that satisfies the following
conditions is called an OR-tree(n).

@ The graph DG(H) is a rooted tree with n sources.

@ Each vertex v in V that is not a source or a sink is labeled
m(v) = OR.
© The set of labels of leaves of H is {xp,...,Xxp—1}

6 /31

Correctness of OR-tree(n)

A combinational circuit H = (V, E, 7) that satisfies the following
conditions is called an ORr-tree(n).

© Topology. The graph DG(H) is a rooted tree with n sources.

@ Each vertex v in V that is not a source or a sink is labeled
m(v) = OR.

© The set of labels of leaves of H is {xp,...,Xp—1}.

Every OR-tree(n) implements the Boolean function OR,.

7 /31

i of-frar () ;mxhwés S

M'\ \33 Cév«\r\\. b . o M. Q ba&is, \41? szrc\s@
decewgoR OR-Free (). L
| " \ﬁl@@

N |
Xox =4 oAt | {op-Frer (n-le)
2 T
LN NEVIE S L -4 =
ok wp o formatdl = 0R (4)
- T
:}L
— o (N | = -
EESGalS SUNCH

- \o« Cdwam,
‘>(> < \alow

R & - \(; -
9= o({(of{K(;ZL) , o e (2&)> 2 ORW(' XLUX‘():O?“(X)&

Relation to Boolean Formulas

Definition

A Boolean formula ¢ is an ORr(n) formula if it satisfies three
conditions: (i) it is over the variables Xo, ..., X,—_1, (ii) every
variable X; appears exactly once in ¢, and (iii) the only connective
in ¢ is the OR connective.

| A\

Claim

A Boolean circuit C is an OR(n)-tree if and only if its graph
(without the input/output gates) is a parse tree of an
OR(n)-formula.

RXQYycise Q\n‘m’\; cowi\zs\e 'm&,)

8 /31

Cost of OR-tree(n)

el0] «(1] 2[2) x[3) 2(0] (1]

7 The cost of every OR-tree(n) is (n — 1) - ¢(OR).

<

Let G = (V, E) denote a rooted tree in which the in-degree of
each vertex is at most two. Then

{ve V| degin(v) =2} = [{ve V| degy(v) =0} -1

9 /31

| Qv \ Jo.&m(\u):?_j\ = \3v \é%“\(\,):b'g_« \

ml‘-g "\ Covag- Jmd . em ‘Vl

besis + WV |~ LWS =0

#leavts <N

RMS = 1-\ =0

WP - N '\"DM LNy Wiy Levwaa rolde
e Ay<e nen, =8
§3§/Q?r‘. c\‘l(owxﬂ\cgg <
S
\ EVG'\-N\ Sgn (D = ;'H L ERTon

w, \o.awcg

= \S\\I(TL\ o, () =23 {
’\'\in Tll \ J‘i&\\(vv’—'zg\ + A_

"“‘E’-__\"m. (\(\\" \>-L<(\&— \> + 1 = NI

exercise t Wwed £ &8_\(\-) = {_? DX

dqc\r\\n o vrdex ™ o rested Avee

o\t{vsr\\ (v) = ’S&MS*\\ 0& KKOA—:’
own Vo vooL.

Lor wWe vt USe o non s dacd
o\\rg\ \I\AV'\\ oW o,? é«Qﬁ'\V\\

Cav\%u\giv\ﬁ) <o o OGRS | .

Depth of tree

delay of an OR tree = number of OR-gates along the longest path
from an input to an output.

Definition (depth - nonstandard definition)

The depth of a rooted tree T is the maximum number of vertices
with in-degree greater than one in a path in T. We denote the
depth of T by depth(T).

Why is this nonstandard? o
@ Usually, depth is simply the length of the longest path. L/'\o
@ Here we count only vertices with in-degree > 2. 2
o Why? T

@ Input and output gates have zero delay (no computation)

@ Assume inverters are free and have zero delay (we will show
that for OR(n) cost & delay are not reduced even if inverters o
are free and without delay) depth =1

/‘,’\

10 / 31

Binary rooted trees

Definition

A rooted tree is a binary tree if the maximum in-degree is two.

A rooted tree is a minimum depth tree if its depth is minimum
among all the rooted trees with the same number of leaves.
All binary trees with n leaves have the same cost. But, which have
minimum depth?
@ if n that is a power of 2, then there is a unique minimum
depth tree, namely, the perfect binary tree with log, n levels.

© if nis not a power of 2, then there is more than one minimum
depth tree... (balanced trees)

11 / 31

Example: Delay analysis

Are these minimum depth trees?

‘ OR ‘
‘ OR ‘ ‘ OR ‘

Figure: Two trees with six inputs.

12 /31

Depth: lower bound

If T, is a rooted binary tree with n leaves, then the depth of T, is
at least [log, n].

© Suffice to prove depth > log, n.

© Complete induction on n.

13 / 31

b
skelen. (covg. ad) .

Y\‘_(—nl =
NN
7\ “\X /A(L-
\/ l
\\

= wox 0§ 2 2
Segn (T}
Sen () = 1+ max § daot (T degh
¢
=\ & Weex SL\%VM, \é*\a‘k

x;/ \A- 9\651(%> = \037— N

S

Min Depth: the case n = 2% (perfect binary trees)

The distance of a vertex v to the root r in a rooted tree is the
length of the path from v to r.

A rooted binary tree is perfect if:

® The in-degree of every non-leaf is 2, and
@ All leaves have the same distance to the root.

Note that the depth of a perfect tree equals the distance from the
leaves to the root (no vertices with in-degree 1).

The number of leaves in a perfect tree is 2K, where k is the
| distance of the leaves to the root.

Let n denote the number of leaves in a perfect tree. Then, the
distance from every leaf to the root is log, n.

A

v
14 / 31

Minimum depth trees

We now show that for every n, we can construct a minimum depth
tree T, of depth [log, n]. In fact, if nis not a power of 2, then
there are many such trees.

15 / 31

Balanced partitions

Two positive integers a, b are a balanced partition of n if:
©® at+b=n, and
© max{[log; al, [log, b]} < [logy n] — 1.

Claim

Ifn=2k —r, where 0 < r < 2k=1 then the set of balanced
partitions is

P={(ab) |2 —r<a<2landb=n-—al.

Nz 12 = 2°-3
P= 985, 6, (67, (5,37

16 / 31

Construction of a balanced tree
=
A A

Algorithm 1 Balanced-Tree(n) - a recursive algorithm for construct-
ing a binary tree T with n > 1 leaves.

© The case that n = 1 is trivial (an isolated root).

Q If n> 2, then let a, b be balanced partition of n.

© Compute trees T and T;. Connect their roots to a new root
to obtain T .

Definition

A rooted binary tree T, is a balanced tree if it is a valid output of
Algorithm Balanced-Tree(n).

17 / 31

Def: balanced tree

Algorithm 2 Balanced-Tree(n) - a recursive algorithm for construct-
ing a binary tree T with n > 1 leaves.

© The case that n = 1 is trivial (an isolated root).
Q If n> 2, then let a, b be balanced partition of n.

© Compute trees T and T;. Connect their roots to a new root
to obtain T, .

Claim

The depth of a binary tree T} constructed by Algorithm
Balanced-Tree(n) is [log, n].

Corollary

The propagation delay of a balanced OR-tree(n) is
flogs 1] - £pa(OR).

18 / 31

AQQXV\A Q’Y:> = \-\05; V\-\

roo,g‘. oWy, wd. O n

T2, i@\ﬂhﬂ

PRCTT Y = e Mmoo § [log, o) X\OSLQ}
< |« Y\OS)Y\’-\'—] = [leg,]

\o\)}(A \r\as n \eav e

n

= e (V) 2 Y\Q:\Q A .

g\J\V"\W\L‘N\t_/\-_’B

n ’1& lt.o ‘“"‘3 b NTLY
é\{s\r»\«u\ OR-tee (W) Golenn 0.SSoC.
cosk O~ Tree () Sane
bolowmee d e g

CKQ\&A &Q koo-\QV\cQ o& Avmg

CIRC LT (OWER BOUNDS
%.\\IQ‘(\ ’g‘" B q\LO,\'SW — 20\\3.

g’ & c: N 5= Soc\W AneX

N\
VC@W\\O. c\rq\,‘&_ COMQ)“ Mo

Covw‘)\,?re_g ,g\“

Ig) A& Comb. PRV T o

cogk (Come Nz c(w) .

Wos <ost (RN)< CCV\B)

AY\HQVN A Aol g V\QA& CW‘Y\A R 'gir\ 8

nWhkh b

Q?ﬂamf\& E gn = ORh , gzh (Q) b) = of 207+

\ower loowwmd does net veshvich Co\\«gny

Optimality of trees

¥ 30)(?. : c»s—\(éﬁt\ﬁi

Goals: prove optimality of a balanced OR-tree(n).

Theorem

Let C, denote a combinational circuit that implements OR,,. Then,

c(CGy)>n—1

| A\

Theorem

Let C, denote a combinational circuit that implements OR,,. Let k
denote the maximum fan-in of a gate in C,. Then

tpd(Cr) = [log n].

19 / 31

Flipping bits

Let flip; : {0,1}" — {0,1}" be the Boolean function defined by
flip;(X) = ¥, where

g{xf- i) # i

NOT(x;) if i=j.

Clip, (t1e) = 1o

20 / 31

The cone of a function

Definition (Cone of a Boolean function)
The cone of a Boolean function f : {0,1}" — {0,1} is defined by

cone(f) = {i : 3V such that £(V) # f(flip;(V))}

cone(XOR) = {1,2}.

We say that f depends on x; if i € cone(f).
AV 91
»oR (0,0) # Xoa (4 o) 2. X € Cone(XoR)

X®&<O’O\ ,__f; Ko R CO} (> | }UQCov\L(X'OK)

21 /31

Consider the following Boolean function:

) = {o if 5. x < 3

1 otherwise.

Suppose that one reveals the input bits one by one. As soon as 3
ones are revealed, one can determine the value of f(X).
Nevertheless, the function f(X) depends on all its inputs, and
hence, cone(f) = {1,...,n}.

Sl =) =14

£ (w0 0,4,

-~

‘>
%4
~—
L
X

22 /31

Constant Functions

cone(f) =) <= f is a constant Boolean function.

23 /31

come ()= ¢ <&=> L censton
(=) W f comsrach, Heen
v ¥ o £ = S5
= oy 4L o ()
= core (£) = @

Cone (,(;’) = =" '< C ot -\
(=) need o ?m'\rt ok (coviee—posy Ave)
C@N{Q) +Pp <& S woX Comsh.
oo+ 5 ¢ 508 —> fan
comsider Yyper Cudoe C 5\‘0\\3" £) wwre
Ca,eE it W= ga? (W)

P\B?efc_m\pg RN olo
S\0\\’5
£ comst = 3uDv:

So=0 4 gCV):L

L =0, L) =1
Cormmst & ?c:sr\-\ Lrom W Xo V W Hs?f\"(v\be.

E ?o\\—\n QRIS gk? biYs w IRLTAN

w & v &?gq,\sru owe oX o {Lime .

(X)) —5 ‘oo — \\o — \\ v -]
?G‘\}V\\ " W T XO—/ X‘ — .- _ X_Q:\/

§(r)=O Slxg) =1

— 3 .. §CxH=0 B SFRLD)= A

bt X xud e B, S0 2y Xia, i 0

—> A EQO»\QQ—QS'
S
x

Composition of Functions

If g(x) £ B(fi(X), (X)), then

cone(g) C cone(f;) U cone(fz) .

Y\/XN"‘
ENINEN
MY

®)
3

24 /31

4002 B, £.00)
coma () € Cona (£ © Come L)
(2‘(\)0@ \33 Qe')vw\'\br—voslﬂ\rﬁ R S\)%&“\QQ B
<,¢ Qew,_(%\ﬁucw Cg,\) = \Ld QO'V\QC%)_

g = (£, L))
S NN AIPER R GN)

= g Q:?-k (%))

Graphical Cone

Definition

Let G = (V, E) denote a DAG. The graphical cone of a vertex
v € V is defined by

coneg(v) = {u € V : deg;,(u) = 0 and Jpath from u to v}.

In a combinational circuit, every source is an input gate. This
means that the graphical cone of v equals the set of input gates
from which there exists a path to v. cove (\,) §x.,%3

Xo\ﬁo/\ (*)’{*}
X’LONQ\\%)Q/

V

25 /31

Functional Cone C Graphical Cone

cone CQ) = ¢ Qov\ve.’csé} = {X(}

Let H= (V,E,) denote a combinational circuit. Let
G = DG(H). For every vertex v € V, the following holds:

cone(f,) C coneg(v).

Namely, if f, depends on x;, then the input gate u that feeds the
input x; must be in the graphical cone of v.

*n-1107)

&/ Yo
X) —s> Cowb. Curomt N
s | < omd))
\\/ X~ S ALG
3

26 / 31

co‘n{(g\J S Cane, v) s\ ALe
E‘:’_\)g)cw‘?o Sort o S} N — ';v;
(\/"\/1),__’\!,\3 /3
prove Umy cowg nd o) o
L Ceme (—g\,c) 2 Ceme (v)
?‘;Si_ t=4 (or Sowras)

cowe (%Vi) - %V"E LB-V\-QG (\II> = E\I\B

\'D_ﬁ E cloimn o ds gﬁ'f 'g< .
&*QF g Qxecrcise *
= caxS: deg. i) e §0,1, 25 day o) =A

=B
.
@/ = cone(§;) € cone (S}‘&\u Cov\e.(_gvb>

e Comey (Vo) ¥ Comeg (V)

"Hidden" Rooted Trees

Claim
Let G = (V,E) denote a DAG. For every v € V, there exist
UC YV and F C E such that:

Q T = (U,F) is a rooted tree;

Q v is the root of T,

© coneg(v) equals the set of leaves of (U, F).

The sets U and F are constructed as follows.
© Initialize F=0 and U = 0.
© For every source u in coneg(v) do

(a) Find a path p, from u to v.

(b) Let g, denote the prefix of p,, the vertices and edges of which
are not contained in U or F.

(c) Add the edges of g, to F, and add the vertices of g, to U.

27 / 31

Lower Bound on Cost

Theorem (Linear Cost Lower Bound Theorem)

Let H= (V,E,x) denote a combinational circuit. If the fan-in of
every gate in H is at most 2, then

H) > f,)| — 1.
c(H) > Tea&dcone()|

Let C,, denote a combinational circuit that implements OR,. Then

c(Cy)>n—1

\cene,CORw) [:; N Oﬂh(g> = O
oRa ($%¢, (3)) = 4

28 / 31

Cosk(H) 2 max |cone(§)) -\
PNQK: Vo cewmsider DG (W) »gk NSNS LTIV NG
C,vw\g%;\,\tf\ e T\/ m@v&c& o:\— v w‘r\'\,

Qeawes (TT,) = SO iy (v)
| queT, depued=al|= |lanves |- 4

= \cev\e% w)|— |

<)

>/ \QOV\L(gV>\ — |
ot C@&*(‘r\) > \ﬁ(ua'ﬁv : J&&l (\0:;3 \

0N 0*@, B A—'\ N no X Ot twy g, g

Lower Bound on Delay

Theorem (Logarithmic Delay Lower Bound Theorem)

Let H= (V,E,x) denote a combinational circuit. If the fan-in of
every gate in H is at most 2, then

tpd(H) > max log, |cone(f,)|.
veV

Corollary

Let C,, denote a combinational circuit that implements OR,. Let 2
denote the maximum fan-in of a gate in C,,. Then

th(Cn) > [logy n].

29 /31

Coa (V) 2 Mo s | cone (5§,
r v
"TU\D,Q 3 g'\x v 9\9._ T\, Ao nste ’\'\"’L‘L Nd*&o\
W, \Leaves(Ty > = Cane W)

ot VWi BEWD
degth () 2 log, | Leaves ()|
- \0(_75:k \ Ce“emm)(“\x
> log, | come (5]

ke V) 2 c\Q?’C\‘ (T,

74

What is the effect of increasing the fan-in on the delay?

Theorem (Logarithmic Delay Lower Bound Theorem)

Let H= (V,E,x) denote a combinational circuit. If the fan-in of
every gate in H is at most k, then

tpd(H) > max log, |cone(f,)|.
veV

Let C, denote a combinational circuit that implements OR,,. Let k
denote the maximum fan-in of a gate in C,. Then

tpd(Cn) > [log, n].

C YR TCTdR

30 / 31

@ Focus on combinational circuits that have a topology of a tree
with identical gates.

@ Trees are especially suited for computing associative Boolean
functions.

o Defined an OR-tree(n) to be a combinational circuit that
implements OR,, using a topology of a tree.

@ Proved that OR-tree(n) are asymptotically optimal (cost).

@ Balance conditions to obtain good delay.
@ General lower bounds based on cone(f).

@ # gates in a combinational circuit implementing a Boolean
function f must be at least |cone(f)| — 1.

@ the propagation delay of a combinational circuit implementing
a Boolean function f is at least log, |cone(f)|.

31 /31

