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Preliminary questions:

@ Which Boolean functions are suited for implementation by
tree-like combinational circuits?

@ In what sense are tree-like implementations optimal?
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Reminder: Binary Boolean Functions

Definition

A binary Boolean function is a function f : {0,1}? — {0,1}.

A binary function is often denoted by a dyadic operator, say *. So
instead of writing f(a, b), we write a x b.
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Reminder: Associative Boolean functions

Definition

A binary Boolean function * : {0,1}? — {0,1} is associative if
(x1 % x2) * x3 = x1 * (X2 % x3) ,

for every x1, x2,x3 € {0,1}.

One may omit parenthesis: x1 * x» * x3 is well defined.
Consider the function f, : {0,1}" — {0,1} defined by

Fr(X1y .oy Xn) = X1 % - % X

Q\ﬁ&wm?\,& - OQ\V\C*\,---,\/\Q = X - X,
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Extension of associative function

Let f : {0,1}2 — {0,1} denote a Boolean function. The function
fn: {0,1}" — {0,1}, for n > 1, is defined recursively as follows.

Q If n=1, then f1(x) = x.
Q If n=2, then H =f.
@ If n > 2, then f, is defined based on f,_; as follows:

fo(x1, X2, . . - Xn) = f(fa—1(x1, .oy Xn—1), Xn)-

Claim

| A\

If f : {0,1}2 — {0, 1} is an associative Boolean function, then

fn(X].uXZu ce e Xn) — f(fn—k(X17 ce e 7Xn—k)7 fk(Xn—k+17 ce e 7Xn))7

for every n > 2 and k € [1,n — 1].

A\
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Trees of associative Boolean gates

To simplify the presentation, consider the Boolean function OR,.

A combinational circuit H = (V, E, ) that satisfies the following
conditions is called an OR-tree(n).

@ The graph DG(H) is a rooted tree with n sources.

@ Each vertex v in V that is not a source or a sink is labeled
m(v) = OR.
© The set of labels of leaves of H is {xp,...,Xxp—1}
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Correctness of OR-tree(n)

A combinational circuit H = (V, E, 7) that satisfies the following
conditions is called an ORr-tree(n).

© Topology. The graph DG(H) is a rooted tree with n sources.

@ Each vertex v in V that is not a source or a sink is labeled
m(v) = OR.

© The set of labels of leaves of H is {xp,...,Xp—1}.

Every OR-tree(n) implements the Boolean function OR,.
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Relation to Boolean Formulas

Definition

A Boolean formula ¢ is an ORr(n) formula if it satisfies three
conditions: (i) it is over the variables Xo, ..., X,—_1, (ii) every
variable X; appears exactly once in ¢, and (iii) the only connective
in ¢ is the OR connective.

| A\

Claim

A Boolean circuit C is an OR(n)-tree if and only if its graph
(without the input/output gates) is a parse tree of an
OR(n)-formula.

RXQYycise Q\n‘m’\; cowi\zs\e 'm&,)
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Cost of OR-tree(n)

el0] «(1] 2[2) x[3) 2(0] (1]

7 The cost of every OR-tree(n) is (n — 1) - ¢(OR).

<

Let G = (V, E) denote a rooted tree in which the in-degree of
each vertex is at most two. Then

{ve V| degin(v) =2} = [{ve V| degy(v) =0} -1
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Depth of tree

delay of an OR tree = number of OR-gates along the longest path
from an input to an output.

Definition (depth - nonstandard definition)

The depth of a rooted tree T is the maximum number of vertices
with in-degree greater than one in a path in T. We denote the
depth of T by depth(T).

Why is this nonstandard? o
@ Usually, depth is simply the length of the longest path. L/'\o
@ Here we count only vertices with in-degree > 2. 2
o Why? T

@ Input and output gates have zero delay (no computation)

@ Assume inverters are free and have zero delay (we will show
that for OR(n) cost & delay are not reduced even if inverters o
are free and without delay) depth =1

/‘,’\
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Binary rooted trees

Definition

A rooted tree is a binary tree if the maximum in-degree is two.

A rooted tree is a minimum depth tree if its depth is minimum
among all the rooted trees with the same number of leaves.
All binary trees with n leaves have the same cost. But, which have
minimum depth?
@ if n that is a power of 2, then there is a unique minimum
depth tree, namely, the perfect binary tree with log, n levels.

© if nis not a power of 2, then there is more than one minimum
depth tree... (balanced trees)
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Example: Delay analysis

Are these minimum depth trees?

‘ OR ‘
‘ OR ‘ ‘ OR ‘

Figure: Two trees with six inputs.
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Depth: lower bound

If T, is a rooted binary tree with n leaves, then the depth of T, is
at least [log, n].

© Suffice to prove depth > log, n.

© Complete induction on n.

13 / 31



b
skelen. (covg. ad) .

Y\‘_(—nl =
NN
7\ “\X /A(L-
\/ l
\\

= wox 0§ 2 2
Segn (T}
Sen () = 1+ max § daot (T degh
¢
=\ & Weex SL\%VM, \é*\a‘k

x;/ \A- 9\651(%> = \037— N

S



Min Depth: the case n = 2% (perfect binary trees)

The distance of a vertex v to the root r in a rooted tree is the
length of the path from v to r.

A rooted binary tree is perfect if:

® The in-degree of every non-leaf is 2, and
@ All leaves have the same distance to the root.

Note that the depth of a perfect tree equals the distance from the
leaves to the root (no vertices with in-degree 1).

The number of leaves in a perfect tree is 2K, where k is the
| distance of the leaves to the root.

Let n denote the number of leaves in a perfect tree. Then, the
distance from every leaf to the root is log, n.

A
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Minimum depth trees

We now show that for every n, we can construct a minimum depth
tree T, of depth [log, n]. In fact, if nis not a power of 2, then
there are many such trees.
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Balanced partitions

Two positive integers a, b are a balanced partition of n if:
©® at+b=n, and
© max{[log; al, [log, b]} < [logy n] — 1.

Claim

Ifn=2k —r, where 0 < r < 2k=1 then the set of balanced
partitions is

P={(ab) |2 —r<a<2landb=n-—al.

Nz 12 = 2°-3
P= 985, 6, (67, (5,37
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Construction of a balanced tree
=
A A

Algorithm 1 Balanced-Tree(n) - a recursive algorithm for construct-
ing a binary tree T with n > 1 leaves.

© The case that n = 1 is trivial (an isolated root).

Q If n> 2, then let a, b be balanced partition of n.

© Compute trees T and T;. Connect their roots to a new root
to obtain T .

Definition

A rooted binary tree T, is a balanced tree if it is a valid output of
Algorithm Balanced-Tree(n).
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Def: balanced tree

Algorithm 2 Balanced-Tree(n) - a recursive algorithm for construct-
ing a binary tree T with n > 1 leaves.

© The case that n = 1 is trivial (an isolated root).
Q If n> 2, then let a, b be balanced partition of n.

© Compute trees T and T;. Connect their roots to a new root
to obtain T, .

Claim

The depth of a binary tree T} constructed by Algorithm
Balanced-Tree(n) is [log, n].

Corollary

The propagation delay of a balanced OR-tree(n) is
flogs 1] - £pa(OR).
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Optimality of trees

¥ 30)(?. : c»s—\(éﬁt\ﬁi

Goals: prove optimality of a balanced OR-tree(n).

Theorem

Let C, denote a combinational circuit that implements OR,,. Then,

c(CGy)>n—1

| A\

Theorem

Let C, denote a combinational circuit that implements OR,,. Let k
denote the maximum fan-in of a gate in C,. Then

tpd(Cr) = [log n].
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Flipping bits

Let flip; : {0,1}" — {0,1}" be the Boolean function defined by
flip;(X) = ¥, where

g{xf- i) # i

NOT(x;) if i=j.

Clip, (t1e) = 1o
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The cone of a function

Definition (Cone of a Boolean function)
The cone of a Boolean function f : {0,1}" — {0,1} is defined by

cone(f) = {i : 3V such that £(V) # f(flip;(V))}

cone(XOR) = {1,2}.

We say that f depends on x; if i € cone(f).
AV 91
»oR (0,0) # Xoa (4 o) 2. X € Cone(XoR)

X®&<O’O\ ,__f; Ko R CO} (> | }UQCov\L(X'OK)

21 /31



Consider the following Boolean function:

) = {o if 5. x < 3

1 otherwise.

Suppose that one reveals the input bits one by one. As soon as 3
ones are revealed, one can determine the value of f(X).
Nevertheless, the function f(X) depends on all its inputs, and
hence, cone(f) = {1,...,n}.

Sl =) =14
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Constant Functions

cone(f) = ) <= f is a constant Boolean function.

23 /31
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Composition of Functions

If g(x) £ B(fi(X), (X)), then

cone(g) C cone(f;) U cone(fz) .

Y\/XN"‘
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Graphical Cone

Definition

Let G = (V, E) denote a DAG. The graphical cone of a vertex
v € V is defined by

coneg(v) = {u € V : deg;,(u) = 0 and Jpath from u to v}.

In a combinational circuit, every source is an input gate. This
means that the graphical cone of v equals the set of input gates
from which there exists a path to v. cove (\,) §x.,%3

Xo\ﬁo/\ (*)’{*}
X’LONQ\\%)Q/

V
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Functional Cone C Graphical Cone

cone CQ) = ¢ Qov\ve.’csé} = {X(}

Let H= (V,E, ) denote a combinational circuit. Let
G = DG(H). For every vertex v € V, the following holds:

cone(f,) C coneg(v).

Namely, if f, depends on x;, then the input gate u that feeds the
input x; must be in the graphical cone of v.
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"Hidden" Rooted Trees

Claim
Let G = (V,E) denote a DAG. For every v € V, there exist
UC YV and F C E such that:

Q T = (U,F) is a rooted tree;

Q v is the root of T,

© coneg(v) equals the set of leaves of (U, F).

The sets U and F are constructed as follows.
© Initialize F=0 and U = 0.
© For every source u in coneg(v) do

(a) Find a path p, from u to v.

(b) Let g, denote the prefix of p,, the vertices and edges of which
are not contained in U or F.

(c) Add the edges of g, to F, and add the vertices of g, to U.

27 / 31






Lower Bound on Cost

Theorem (Linear Cost Lower Bound Theorem)

Let H= (V,E,x) denote a combinational circuit. If the fan-in of
every gate in H is at most 2, then

H) > f,)| — 1.
c(H) > Tea&dcone( )|

Let C,, denote a combinational circuit that implements OR,. Then

c(Cy)>n—1

\cene,CORw) [:; N Oﬂh(g> = O
oRa ($%¢, (3)) = 4
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Lower Bound on Delay

Theorem (Logarithmic Delay Lower Bound Theorem)

Let H= (V,E,x) denote a combinational circuit. If the fan-in of
every gate in H is at most 2, then

tpd(H) > max log, |cone(f,)|.
veV

Corollary

Let C,, denote a combinational circuit that implements OR,. Let 2
denote the maximum fan-in of a gate in C,,. Then

th(Cn) > [logy n].
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What is the effect of increasing the fan-in on the delay?

Theorem (Logarithmic Delay Lower Bound Theorem)

Let H= (V,E,x) denote a combinational circuit. If the fan-in of
every gate in H is at most k, then

tpd(H) > max log, |cone(f,)|.
veV

Let C, denote a combinational circuit that implements OR,,. Let k
denote the maximum fan-in of a gate in C,. Then

tpd(Cn) > [log, n].

C YR TCTdR

30 / 31



@ Focus on combinational circuits that have a topology of a tree
with identical gates.

@ Trees are especially suited for computing associative Boolean
functions.

o Defined an OR-tree(n) to be a combinational circuit that
implements OR,, using a topology of a tree.

@ Proved that OR-tree(n) are asymptotically optimal (cost).

@ Balance conditions to obtain good delay.
@ General lower bounds based on cone(f).

@ # gates in a combinational circuit implementing a Boolean
function f must be at least |cone(f)| — 1.

@ the propagation delay of a combinational circuit implementing
a Boolean function f is at least log, |cone(f)|.
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