Digital Logic Design: a rigorous approach © Chapter 7: Asymptotics

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 19, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina We study functions that describe the number of gates in a circuit, the delay of a circuit (length of longest path), the running time of an algorithm, number of bits in a data structure, etc. In all these cases it is natural to assume that

$$\forall n \in \mathbb{N} : f(n) \geq 1.$$

Assumption

The functions we study are functions $f : \mathbb{N} \to \mathbb{R}^{\geq 1}$.

- We want to compare functions asymptotically (how fast does f(n) grow as $n \to \infty$).
- Ignore constants (not because they are not important, but because we want to focus on "high order" terms).

big-O, big-Omega, big-Theta

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}^{\geq 1}$ denote two functions.

• We say that f(n) = O(g(n)), if there exist constants $c \in \mathbb{R}^+$ and $N \in \mathbb{N}$, such that,

$$\forall n > N : f(n) \leq c \cdot g(n)$$
.

② We say that $f(n) = \Omega(g(n))$, if there exist constants $c \in \mathbb{R}^+$ and $N \in \mathbb{N}$, such that,

$$\forall n > N : f(n) \ge c \cdot g(n) .$$

• We say that $f(n) = \Theta(g(n))$, if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

What does "=" actually mean here?!

What does the equality sign in f = O(g) mean?

• O(g) in fact refers to a set of functions:

$$O(g) riangleq \{h: \mathbb{N}
ightarrow \mathbb{R}^{\geq 1} \mid \exists c \exists N orall n > N: h(n) \leq c \cdot g(n) \}$$

- Would have been much better to write f ∈ O(g) instead of f = O(g).
- But we want to abuse notation and write expressions like:

$$(2n^2 + 3n) \cdot 5 \log(n^2) = O(n^2 \cdot \log n^2)$$

= $O(n^2 \cdot \log n)$.

Justification: transitivity.

big-O, big-Omega, big-Theta

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}^{\geq 1}$ denote two functions.

We say that f(n) = O(g(n)), if there exist constants $c \in \mathbb{R}^+$ and $N \in \mathbb{N}$, such that,

$$\forall n > N : f(n) \leq c \cdot g(n)$$
.

2 We say that $f(n) = \Omega(g(n))$, if there exist constants $c \in \mathbb{R}^+$ and $N \in \mathbb{N}$, such that,

$$\forall n > N : f(n) \geq c \cdot g(n)$$
.

3 We say that $f(n) = \Theta(g(n))$, if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

If f(n) = O(g(n)), then "asymptotically, f(n) does not grow faster than g(n)". If $f(n) = \Omega(g(n))$, then "asymptotically, f(n) grows as least as fast as g(n)". Finally, if $f(n) = \Theta(g(n))$, then "asymptotically, f(n) grows as fast as g(n)".

$$n=O(n^2)$$

$$\log(n) = O(n)$$

Examples

$$10n = O(n), 10^2 n = O(n), \dots, 10^{100} n = O(n)$$

 $n \cdot \log \log \log n \neq O(n)$

When proving that f(n) = O(g(n)), it is not necessary to find the "smallest" constant c.

Example

Suppose you want to prove that $n + \sqrt{n} = O(n^{1.1})$. Then, it suffices to prove that for $n > 2^{100}$:

$$n+\sqrt{n}\leq 10^6\cdot n^{1.1}$$
 .

Any other constants you can prove the statement for are just as good!

Constant Function

Claim

f(n) = O(1) iff there exists a constant c such that $f(n) \le c$, for every n.

Sum of Functions

Claim

If
$$f_i(n) = O(g(n))$$
 for $i \in \{1, \ldots, k\}$ (k is a constant), then $f_1(n) + \cdots + f_k(n) = O(g(n))$.

Claim

If $\{a_n\}_n$ is an arithmetic sequence with $a_0 \ge 0$ and d > 0, then $\sum_{i \le n} a_i = \Theta(n \cdot a_n).$

Consequence:

$$\sum_{i=1}^n i = \Theta(n^2) \; .$$

Claim

If $\{b_n\}_n$ is a geometric sequence with $b_0 \ge 1$ and q > 1, then $\sum_{i \le n} b_i = \Theta(b_n)$.

Consequence: If q > 1, then $\sum_{i=1}^{n} q^i = \Theta(q^n)$.

Asymptotic Algebra (big-O)

Abbreviate:
$$f_i = O(h)$$
 means $f_i(n) = O(h(n))$.

Claim

Suppose that $f_i = O(g_i)$ for $i \in \{1, ..., k\}$, then:

$$\max\{f_i\}_i = O(\max\{g_i\}_i)$$
$$\sum_i f_i = O(\sum_i g_i)$$
$$\prod_i f_i = O(\prod_i g_i).$$

Consequences:

2n = O(n) mult. by constant $50n^2 + 2n + 1 = O(n^2)$ polynomial with positive leading coefficient

Claim

Suppose that $f_i = \Omega(g_i)$ for $i \in \{1, ..., k\}$, then:

$$\min\{f_i\}_i = \Omega(\min\{g_i\}_i)$$

 $\sum_i f_i = \Omega(\sum g_i)$
 $\prod_i f_i = \Omega(\prod_i g_i)$.

Consequences:

 $2n=\Omega(n) \qquad \qquad {\rm mult.\ by\ constant}$ $10^{-6}\cdot n^2+2n+1=\Omega(n^2) \quad {\rm polynomial\ with\ positive\ leading\ coefficient}$

Asymptotics as an Equivalence Relation

Claim

$$f = O(f)$$
 reflexivity
 $f = O(g) \implies g = O(f)$ no symmetry
 $(f = O(g)) \land (g = O(h)) \implies f = O(h)$ transitivity

What about Ω ?

Claim

Assume $f(n), g(n) \ge 1$, for every n. Then,

$$f(n) = O(g(n)) \quad \Leftrightarrow \quad g(n) = \Omega(f(n)).$$

In this section we deal with the problem of solving or bounding the rate of growth of functions $f : \mathbb{N}^+ \to \mathbb{R}$ that are defined recursively. We consider the typical cases that we will encounter later.

$$f(n) \stackrel{ riangle}{=} \begin{cases} 1 & ext{if } n = 1 \\ n + f(\lfloor \frac{n}{2} \rfloor) & ext{if } n > 1. \end{cases}$$

- Why is f(n) interesting?
- What is the rate of growth of f(n)?

Recurrence 1 - motivation

$$\hat{f}(n) \stackrel{ riangle}{=} egin{cases} 0 & ext{if } n=1 \ rac{n}{2} + \hat{f}(\lfloor rac{n}{2}
floor) & ext{if } n>1. \end{cases} [f(n) = 1 + 2\hat{f}(n) = \Theta(\hat{f}(n))]$$

Algorithm 1 $MAX(x_1, ..., x_n)$ - assume *n* is a power of 2

Q Base Case: If n = 1 then return x_1 .

2 Reduction Rule:

1

) For
$$i = 1$$
 to $\frac{n}{2}$ Do: $y_i \leftarrow \max\{x_{2i-1}, x_{2i}\}$

2 Return
$$MAX(y_1, \ldots, y_{n/2})$$

Claim

Number of comparisons in $MAX(x_1,...,x_n)$ equals $\hat{f}(n)$.

Recurrence 1 - analysis

$$f(n) \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } n = 1 \\ n + f(\lfloor \frac{n}{2} \rfloor) & \text{if } n > 1. \end{cases}$$

Lemma

The rate of growth of the function f(n) is $\Theta(n)$.

- start by proving for powers of 2.
- what if *n* is not a power of 2?
- what about $f(n) = n + f(\lceil \frac{n}{2} \rceil)$?

Lemma

Assume that:

- The functions f(n) and g(n) are both monotonically nondecreasing.
- **2** The constant ρ satisfies, for every $k \in \mathbb{N}$,

$$\frac{g(2^{k+1})}{g(2^k)} \le \rho \; .$$

Then,

- If $f(2^k) = O(g(2^k))$, then f(n) = O(g(n)).
- **2** If $f(2^k) = \Omega(g(2^k))$, then $f(n) = \Omega(g(n))$.

$$f(n) \stackrel{ riangle}{=} \begin{cases} 1 & ext{if } n = 1 \\ n + 2 \cdot f(\lfloor \frac{n}{2} \rfloor) & ext{if } n > 1. \end{cases}$$

- Why is f(n) interesting?
- What is the rate of growth of f(n)?

Recurrence 2 - motivation

$$\hat{f}(n) \stackrel{\scriptscriptstyle riangle}{=} egin{cases} 0 & ext{if } n=1 \ (n-1)+2\hat{f}(\lfloor \frac{n}{2}
floor) & ext{if } n>1. \end{cases} \ [f(n)=\hat{f}(n)+2n-1]$$

Algorithm 2 $SORT(x_1, \ldots, x_n)$ - assume *n* is a power of 2

- **Q** Base Case: If n = 1 then return x_1 .
- Reduction Rule:

●
$$(y_1, ..., y_{n/2}) \leftarrow SORT(x_1, ..., x_{n/2})$$

● $(y_{n/2+1}, ..., y_n) \leftarrow SORT(x_{n/2+1}, ..., x_n)$
● Return $MERGE((y_1, ..., y_{n/2}), (y_{n/2+1}, ..., y_n))$

Claim

Number of comparisons in $SORT(x_1, ..., x_n)$ equals $\hat{f}(n)$.

$$f(n) \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } n = 1 \\ n + 2 \cdot f(\lfloor \frac{n}{2} \rfloor) & \text{if } n > 1. \end{cases}$$

Lemma

The rate of growth of the function f(n) is $\Theta(n \log n)$.

- prove for powers of 2
- extend to arbitrary n

$$f(n) \stackrel{\scriptscriptstyle riangle}{=} egin{cases} 1 & ext{if } n=1 \ n+3 \cdot f(\lfloor \frac{n}{2} \rfloor) & ext{if } n>1. \end{cases}$$

Lemma

The rate of growth of the function f(n) is $\Theta(n^{\log_2 3})$.

hint: $f(2^k) = 3^{k+1} - 2^{k+1}$.

$$f(n) \stackrel{\scriptscriptstyle \triangle}{=} \begin{cases} c & \text{if } n = 1 \\ a \cdot n + b + f(\lfloor \frac{n}{2} \rfloor) & \text{if } n > 1, \end{cases}$$

where a, b, c are non-negative constants and $a \neq 0$.

Lemma

The rate of growth of the function f(n) is $\Theta(n)$.

proof: $f(2^k) = 2a \cdot 2^k + b \cdot k + c - 2a...$

$$f(n) \stackrel{\triangle}{=} \begin{cases} c & \text{if } n = 1\\ a \cdot n + b + 2 \cdot f(\lfloor \frac{n}{2} \rfloor) & \text{if } n > 1, \end{cases}$$

where constants $a, b, c \ge 0$ and $a \ne 0$.

Lemma

The rate of growth of the function f(n) is $\Theta(n \log n)$.

proof: We claim that $f(2^k) = a \cdot k2^k + (b+c) \cdot 2^k - b...$

$$egin{aligned} \mathsf{F}(k) & \stackrel{ riangle}{=} egin{cases} 1 & ext{if } k = 0 \ 2^k + 2 \cdot \mathsf{F}(k-1) & ext{if } k > 0, \end{aligned}$$

Lemma

$$F(k) = (k+1) \cdot 2^k.$$

Proof: Define $f(n) \stackrel{\scriptscriptstyle \triangle}{=} F(\lceil \log_2 n \rceil)$. Observe that $f(2^x) \stackrel{\scriptscriptstyle \triangle}{=} F(x)$

Examples with floor and ceiling

2

 $f(n) \stackrel{\scriptscriptstyle riangle}{=} egin{cases} 1 & ext{if } n = 1 \ 1 + f(\lfloor \frac{n}{2}
floor) & ext{if } n > 1, \end{cases}$

 $f(n) \stackrel{\scriptscriptstyle riangle}{=} \begin{cases} 1 & \text{if } n = 1 \\ n + f(\lfloor \frac{n}{2} \rfloor) + f(\lceil \frac{n}{2} \rceil) & \text{if } n > 1, \end{cases}$

If $n = 2^k$, then floor and ceiling functions can be ignored!