Digital Logic Design: a rigorous approach (C) Chapter 5: Binary Representation

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 22, 2020

Book Homepage: <http://www.eng.tau.ac.il/~guy/Even-Medina>

Definition

Given $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$ $(b > 0)$ define:

$$
(a \div b) \triangleq \max\{q \in \mathbb{Z} \mid q \cdot b \leq a\}
$$

$$
\mod(a, b) \triangleq a - b \cdot (a \div b).
$$

- \bullet ($a \div b$) is called the quotient and $mod(a, b)$ is called the remainder.
- if $mod(a, b) = 0$, then a is a multiple of b (a is divisible by b).
- $(a \div b) = \left| \frac{a}{b} \right|$ $\frac{a}{b}$.
- (a mod b), mod(a, b), $a \pmod{b}$ denote the same thing.
- 1 3 mod $5 = 3$ and 5 mod $3 = 2$.
- 2 999 mod $10 = 9$ and $123 \text{ mod } 10 = 3$.
- \bullet a mod 2 equals 1 if a is odd, and 0 if a is even.
- \bullet a mod $b > 0$.
- \bullet a mod $b \leq b-1$.

Claim

$$
\bmod(a,b)\in\{0,1\ldots,b-1\}.
$$

Claim

If
$$
a = q \cdot b + r
$$
 and $0 \le r \le b - 1$, then

$$
q = a \div b
$$

$$
r = a \pmod{b}.
$$

Lemma

For every $z \in \mathbb{Z}$,

$$
x \bmod b = (x + z \cdot b) \bmod b
$$

Lemma

$$
((x \bmod b) + (y \bmod b)) \bmod b = (x + y) \bmod b
$$

Definition

A binary string is a finite sequence of bits.

Ways to denote strings:

- **1** sequence $\{A_i\}_{i=0}^{n-1}$,
- \bullet vector $A[0:n-1]$, or
- \vec{a} \vec{A} if the indexes are known.

We often use $A[i]$ to denote A_i .

- $A[0:3] = 1100$ means $A_0 = 1$, $A_1 = 1$, $A_2 = 0$, $A_3 = 0$.
- The notation $A[0:5]$ is zero based, i.e., the first bit in \vec{A} is A[0]. Therefore, the third bit of \vec{A} is A[2] (which equals 0).

A basic operation that is applied to strings is called concatenation. Given two strings $A[0: n-1]$ and $B[0: m-1]$, the concatenated string is a string $C[0: n+m-1]$ defined by

$$
C[i] \triangleq \begin{cases} A[i] & \text{if } 0 \leq i < n, \\ B[i - n] & \text{if } n \leq i \leq n + m - 1. \end{cases}
$$

We denote the operation of concatenating string by ○, e.g., $\vec{C} = \vec{A} \circ \vec{B}$.

Examples of concatenation of strings. Let $A[0:2] = 111$, $B[0:1] = 01, C[0:1] = 10,$ then:

$$
\vec{A} \circ \vec{B} = 111 \circ 01 = 11101 ,
$$

\n
$$
\vec{A} \circ \vec{C} = 111 \circ 10 = 11110 ,
$$

\n
$$
\vec{B} \circ \vec{C} = 01 \circ 10 = 0110 ,
$$

\n
$$
\vec{B} \circ \vec{B} = 01 \circ 01 = 0101 .
$$

bidirectionality (MSB first / LSB first)

Let $i \leq j$. Both $A[i:j]$ and $A[j:j]$ denote the same sequence ${A_k}$ $\mathcal{A}_{k=i}$. However, when we write $A[i:j]$ as a string, the leftmost bit is $A[i]$ and the rightmost bit is $A[j]$. On the other hand, when we write $A[j : i]$ as a string, the leftmost bit is $A[j]$ and the rightmost bit is A[i].

Example

The string $A[3:0]$ and the string $A[0:3]$ denote the same 4-bit string. However, when we write $A[3:0] = 1100$ it means that $A[3] = A[2] = 1$ and $A[1] = A[0] = 0$. When we write $A[0:3] = 1100$ it means that $A[3] = A[2] = 0$ and $A[1] = A[0] = 1.$

Definition

The least significant bit of the string $A[i:j]$ is the bit $A[k]$, where $k \stackrel{\scriptscriptstyle\triangle}{=} \min\{i,j\}.$ The most significant bit of the string $A[i:j]$ is the bit $A[\ell]$, where $\ell \stackrel{\scriptscriptstyle\triangle}{=} \max\{i,j\}.$

The abbreviations LSB and MSB are used to abbreviate the least significant bit and the most significant bit, respectively.

- **1** The least significant bit (LSB) of $A[0:3] = 1100$ is $A[0] = 1$. The most significant bit (MSB) of \vec{A} is $A[3] = 0$.
- **2** The LSB of $A[3:0] = 1100$ is $A[0] = 0$. The MSB of \vec{A} is $A[3] = 1.$
- ³ The least significant and most significant bits are determined by the indexes. In our convention, it is not the case that the LSB is always the leftmost bit. Namely, if $i \leq j$, then LSB in $A[i:j]$ is the leftmost bit, whereas in $A[j:i]$, the leftmost bit is the MSB.

We are now ready to define the binary number represented by a string $A[n-1:0]$.

Definition

The natural number, a, represented in binary representation by the binary string $A[n-1:0]$ is defined by

$$
a \stackrel{\triangle}{=} \sum_{i=0}^{n-1} A[i] \cdot 2^i.
$$

In binary representation, each bit has a weight associated with it. The weight of the bit $A[i]$ is 2^i .

Consider a binary string $A[n-1:0]$. We introduce the following notation:

$$
\langle A[n-1:0]\rangle \stackrel{\triangle}{=} \sum_{i=0}^{n-1} A[i] \cdot 2^i.
$$

To simplify notation, we often denote strings by capital letters (e.g., A , B , S) and we denote the number represented by a string by a lowercase letter (e.g., a, b , and s).

Examples

Consider the strings: $A[2:0] \stackrel{\scriptscriptstyle \triangle}{=} 000, B[3:0] \stackrel{\scriptscriptstyle \triangle}{=} 0001$, and $C[3:0] \stackrel{\triangle}{=} 1000$. The natural numbers represented by the binary strings A, B and C are as follows.

$$
\langle A[2:0] \rangle = A[0] \cdot 2^0 + A[1] \cdot 2^1 + A[2] \cdot 2^2
$$

= 0 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 = 0,

$$
\langle B[3:0] \rangle = B[0] \cdot 2^0 + B[1] \cdot 2^1 + B[2] \cdot 2^2 + B[3] \cdot 2^3
$$

= 1 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 + 0 \cdot 2^3 = 1,

$$
\langle C[3:0] \rangle = C[0] \cdot 2^0 + C[1] \cdot 2^1 + C[2] \cdot 2^2 + C[3] \cdot 2^3
$$

= 0 \cdot 2^0 + 0 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 = 8.

Consider a binary string $A[n-1:0]$. Extending \vec{A} by leading zeros means concatenating zeros in indexes higher than $n - 1$. Namely,

- \bullet extending the length of $A[n-1:0]$ to $A[m-1:0]$, for $m > n$, and
- 2 defining $A[i] = 0$, for every $i \in [m-1:n]$.

Example

$$
A[2:0] = 111
$$

\n
$$
B[1:0] = 00
$$

\n
$$
C[4:0] = B[1:0] \circ A[2:0] = 00 \circ 111 = 00111.
$$

The following lemma states that extending a binary string by leading zeros does not change the number it represents in binary representation.

Lemma

Let
$$
m > n
$$
. If $A[m-1:n]$ is all zeros, then
\n $\langle A[m-1:0] \rangle = \langle A[n-1:0] \rangle$.

Example

Consider $C[6:0] = 0001100$ and $D[3:0] = 1100$. Note that $\langle \vec{C} \rangle = \langle \vec{D} \rangle = 12$. Since the leading zeros do not affect the value represented by a string, a natural number has infinitely many binary representations.

The following lemma bounds the value of a number represented by a k-bit binary string.

Lemma

Let $A[k-1:0]$ denote a k-bit binary string. Then,

$$
0\leq \langle A[k-1:0]\rangle \leq 2^k-1.
$$

What is the largest number representable by the following number of bits: (i) 8 bits, (ii) 10 bits, (iii) 16 bits, (iv) 32 bits, and (v) 64 bits?

Fix k the number of bits (i.e., length of binary string). Goals:

- **1** show how to compute a binary representation of a natural number using k bits.
- $\textbf{2}$ prove that every natural number in $[0,2^k-1]$ has a unique binary representation that uses k bits.

binary representation algorithm: specification

Algorithm $BR(x, k)$ for computing a binary representation is specified as follows:

- Inputs: $x \in \mathbb{N}$ and $k \in \mathbb{N}^+$, where x is a natural number for which a binary representation is sought, and k is the length of the binary string that the algorithm should output.
- Output: The algorithm outputs "fail" or a k -bit binary string $A[k - 1 : 0].$

Functionality: The relation between the inputs and the output is as follows:

- $\textbf{1}$ If $0 \leq \textcolor{black}{x} < 2^k$, then the algorithm outputs a k-bit string $A[k - 1: 0]$ that satisfies $x = \langle A[k - 1 : 0]\rangle.$
- 2 If $x \geq 2^k$, then the algorithm outputs "fail".

Algorithm 1 BR (x, k) - An algorithm for computing a binary representation of a natural number a using k bits.

example: execution of $BR(2, 1)$ and $BR(7, 3)$

Theorem

If $x \in \mathbb{N}$, $k \in \mathbb{N}^+$, and $x < 2^k$, then algorithm $BR(x, k)$ returns a k-bit binary string $A[k - 1 : 0]$ such that $\langle A[k - 1 : 0] \rangle = x$.

Corollary

Every positive integer x has a binary representation by a k -bit binary string if $k > \log_2(x)$.

Proof.

 $BR(x, k)$ succeeds if $x < 2^k$. Take a log:

 $log_2(x) < k$.

 \Box

Theorem (unique binary representation)

The binary representation function

$$
\langle \rangle_k: \{0,1\}^k \rightarrow \{0,\ldots,2^k-1\}
$$

defined by

$$
\langle A[k-1:0]\rangle_k \stackrel{\triangle}{=} \sum_{i=0}^{k-1} A[i] \cdot 2^i
$$

is a bijection (i.e., one-to-one and onto).

Proof.

$$
\mathbf{D} \langle \rangle_k
$$
 is onto because $\langle BR(x, k) \rangle_k = x$.

2 |Domain| = |Range| implies that $\langle \rangle_k$ is one-to-one.

 \Box

We claim that when a natural number is multiplied by two, its binary representation is "shifted left" while a single zero bit is padded from the right. That property is summarized in the following lemma.

Lemma

Let $a \in \mathbb{N}$. Let $A[k-1:0]$ be a k-bit string such that $\mathsf{a} = \langle \mathsf{A}[k-1:0] \rangle$. Let $\mathsf{B}[k:0] \stackrel{\scriptscriptstyle\triangle}{=} \mathsf{A}[k-1:0] \circ 0$, then $2 \cdot a = \langle B[k : 0] \rangle$.

Example

$$
\langle 1000 \rangle = 2 \cdot \langle 100 \rangle = 2^2 \cdot \langle 10 \rangle = 2^3 \cdot \langle 1 \rangle = 8.
$$