Digital Logic Design: a rigorous approach (C) Chapter 13: Decoders and Encoders

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 13, 2020

Book Homepage: <http://www.eng.tau.ac.il/~guy/Even-Medina>

Example

An adder and a register (a memory device). The output of the adder should be stored by the register. Different name to each bit?!

Definition

A bus is a set of nets that are connected to the same modules. The width of a bus is the number of nets in the bus.

Buses

Example

PCI bus is data network that connects modules in a computer system.

- **1** Connection of terminals is done by assignment statements: The statement $b[0:3] \leftarrow a[0:3]$ means connect $a[i]$ to $b[i]$.
- ² "Reversing" of indexes does not take place unless explicitly stated: $b[i : j] \leftarrow a[i : j]$ and $b[i : j] \leftarrow a[i : j]$, have the same meaning, i.e., $b[i] \leftarrow a[i], \ldots, b[i] \leftarrow a[i]$.
- **3** "Shifting" is done by default: $a[0:3] \leftarrow b[4:7]$, meaning that $a[0] \leftarrow b[4], a[1] \leftarrow b[5]$, etc. We refer to such an implied re-assignment of indexes as hardwired shifting.

 (A) (B)

Figure: Vector notation: multiple instances of the same gate. (A) Explicit multiple instances (B) Abbreviated notation.

 (A) (B)

Figure: Vector notation: b feeds all the gates. (A) Explicit multiple instances (B) Abbreviated notation.

Reminder: Binary Representation

Recall that $\langle a[n - 1 : 0] \rangle_n$ denotes the binary number represented by an *n*-bit vector \vec{a} .

$$
\langle a[n-1:0]\rangle_n \stackrel{\triangle}{=} \sum_{i=0}^{n-1} a_i \cdot 2^i.
$$

Definition

Binary representation using n-bits is a function $bin_n: \{0, 1, \ldots, 2^n - 1\} \rightarrow \{0, 1\}^n$ that is the inverse function of $\langle \cdot \rangle$. Namely, for every $a[n-1:0] \in \{0,1\}^n$,

$$
bin_n(\langle a[n-1:0]\rangle_n)=a[n-1:0].
$$

Division in Binary Representation

 $r = (a \mod b)$:

$$
a=q\cdot b+r, \text{ where } 0\leq r
$$

Claim

Let $s = \langle x[n - 1 : 0] \rangle_n$, and $0 \le k \le n - 1$. Let q and r denote the quotient and remainder obtained by dividing s by 2^k . Define the binary strings $x_R[k - 1: 0]$ and $x_L[n - 1: n - k - 1]$ as follows.

$$
x_R[k-1:0] \stackrel{\triangle}{=} x[k-1:0]
$$

$$
x_L[n-k-1:0] \stackrel{\triangle}{=} x[n-1:k].
$$

Then,

$$
q = \langle x_L[n-k-1:0] \rangle
$$

$$
r = \langle x_R[k-1:0] \rangle.
$$

Multiplication of $A[n-1:0]$ by $B[n-1:0]$ in binary representation proceeds in two steps:

- compute all the partial products $A[i] \cdot B[j]$
- add the partial products

Computation of Partial Products

Input:
$$
A[n-1:0], B[n-1:0] \in \{0,1\}^n
$$
.
\nOutput: $C[i,j] \in \{0,1\}^{n^2-1}$ where $(0 \le i, j \le n-1)$
\nFunctionality: $C[i,j] = A[i] \cdot B[i]$

We refer to such a circuit as $n \times n$ array of <code>AND</code> gates. Cost is n^2 and delay equals 1 (Q: What is the lower bound?).

Definition

A decoder with input length n is a combinational circuit specified as follows:

Input:
$$
x[n-1:0] \in \{0,1\}^n
$$
.
Output: $y[2^n - 1:0] \in \{0,1\}^{2^n}$

Functionality:

$$
y[i] \stackrel{\triangle}{=} \begin{cases} 1 & \text{if } \langle \vec{x} \rangle = i \\ 0 & \text{otherwise.} \end{cases}
$$

Number of outputs of a decoder is exponential in the number of inputs. Note also that exactly one bit of the output \vec{v} is set to one. Such a representation of a number is often termed one-hot encoding or 1-out-of-k encoding.

Definition

A decoder with input length n :

Input:
$$
x[n-1:0] \in \{0,1\}^n
$$
.

\nOutput: $y[2^n - 1:0] \in \{0,1\}^{2^n}$

\nFunctionality: $y[i] \triangleq \begin{cases} 1 & \text{if } \langle \vec{x} \rangle = i \\ 0 & \text{otherwise.} \end{cases}$

We denote a decoder with input length n by $DECODER(n)$.

Example

Consider a decoder DECODER(3). On input $x = 101$, the output y equals 00100000.

Application of decoders

An example of how a decoder is used is in decoding of controller instructions. Suppose that each instruction is coded by an 4-bit string. Our goal is to determine what instruction is to be executed. For this purpose, we feed the 4 bits to a $DECODER(4)$. There are 16 outputs, exactly one of which will equal 1. This output will activate a module that should be activated in this instruction.

Brute force design

- \bullet simplest way: build a separate circuit for every output bit $y[i]$.
- The circuit for $y[i]$ is simply a product of *n* literals.
- Let $v \stackrel{\scriptscriptstyle\triangle}{=} \mathit{bin}_n(i)$, i.e., $v[n-1:0]$ is the binary representation of the index i.
- define the minterm ρ_v to be $\rho_v \stackrel{\triangle}{=} (\ell_0^v \cdot \ell_1^v \cdots \ell_{n-1}^v)$, where:

$$
\ell_j^v \stackrel{\triangle}{=} \begin{cases} x_j & \text{if } v_j = 1 \\ \bar{x}_j & \text{if } v_j = 0. \end{cases}
$$

define $y[\langle v \rangle] \triangleq \text{AND}_n(\ell_0^v, \ldots, \ell_{n-1}^v)$

Claim

$$
y[i] = 1 \text{ iff } \langle x \rangle = i.
$$

The brute force decoder circuit consists of:

- *n* inverters used to compute INV (\vec{x}) , and
- a separate $AND(n)$ -tree for every output y[i].
- The delay of the brute force design is t_{nd} (INV) + t_{nd} (AND(n)-tree) = $O(\log_2 n)$.
- The cost of the brute force design is $\Theta(n \cdot 2^n)$, since we have an $AND(n)$ -tree for each of the 2^n outputs.

Wasteful because, if the binary representation of i and j differ in a single bit, then the AND-trees of y[i] and y[j] share all but a single input. Hence the product of $n-1$ bits is computed twice. We present a systematic way to share hardware between different

outputs.

Base case $DECODER(1)$:

The circuit $DECODER(1)$ is simply one inverter where: $y[0] \leftarrow \text{INV}(x[0])$ and $y[1] \leftarrow x[0]$. Reduction rule $DECODER(n)$:

We assume that we know how to design decoders with input length less than n , and design a decoder with input length n .

Figure: A recursive implementation of $DECODER(n)$.

Claim (Correctness)		
$y[i] = 1$	\Leftrightarrow	$\langle x[n-1:0] \rangle = i$.

We denote the cost and delay of $DECODER(n)$ by $c(n)$ and $d(n)$, respectively. The cost $c(n)$ satisfies the following recurrence equation:

$$
c(n) = \begin{cases} c(\text{INV}) & \text{if } n=1\\ c(k) + c(n-k) + 2^n \cdot c(\text{AND}) & \text{otherwise.} \end{cases}
$$

It follows that, up to constant factors

$$
c(n) = \begin{cases} 1 & \text{if } n = 1 \\ c(k) + c(n - k) + 2^n & \text{if } n > 1. \end{cases}
$$
 (1)

Obviously, $c(n) = \Omega(2^n)$ (regardless of the value of k).

Claim

$$
c(n) = O(2^n) \text{ if } k = \lceil n/2 \rceil.
$$

Cost analysis (cont.)

$$
c(n) = \begin{cases} c(\text{INV}) & \text{if } n=1\\ c(k) + c(n-k) + 2^n & \text{otherwise.} \end{cases}
$$

Claim

$$
c(n) = O(2^n) \text{ if } k = \lceil n/2 \rceil.
$$

Proof.

 $c(n) \leq 2 \cdot 2^n$ by complete induction on *n*.

• basis: check for $n \in \{1, 2, 3\}$.

o step:

$$
c(n) = c(\lceil n/2 \rceil) + c(\lfloor n/2 \rfloor) + 2^n
$$

\n
$$
\leq 2^{1+\lceil n/2 \rceil} + 2^{1+\lfloor n/2 \rfloor} + 2^n
$$

\n
$$
= 2 \cdot 2^n \cdot (2^{-\lfloor n/2 \rfloor} + 2^{-\lceil n/2 \rceil} + 1/2)
$$

 \Box

The delay of $DECODER(n)$ satisfies the following recurrence equation:

$$
d(n) = \begin{cases} d(\text{INV}) & \text{if } n=1\\ \max\{d(k), d(n-k)\} + d(\text{AND}) & \text{otherwise.} \end{cases}
$$

Set $k = n/2$. It follows that $d(n) = \Theta(\log n)$.

Theorem

For every decoder G of input length n:

 $d(G) = \Omega(\log n)$ $c(G) = \Omega(2^n)$.

Proof.

- **1** lower bound on delay : use log delay lower bound theorem.
- **2** lower bound on cost? The proof is based on the following observations:
	- Computing each output bit requires at least one nontrivial gate.
	- No two output bits are identical.

□

- An encoder implements the inverse Boolean function implemented by a decoder.
- the Boolean function implemented by a decoder is not surjective.
- the range of the Boolean function implemented by a decoder is the set of binary vectors in which exactly one bit equals 1.
- **•** It follows that an encoder implements a partial Boolean function (i.e., a function that is not defined for every binary string).

Definition

The Hamming distance between two binary strings $u, v \in \{0,1\}^n$ is defined by

$$
\mathsf{dist}(u, v) \stackrel{\triangle}{=} |\{i \mid u_i \neq v_i\}|.
$$

Definition

The Hamming weight of a binary string $u \in \{0,1\}^n$ equals $dist(u, 0^n)$. Namely, the number of non-zero symbols in the string.

We denote the Hamming weight of a binary string \vec{a} by wt(\vec{a}), namely,

$$
\mathit{wt}(a[n-1:0]) \stackrel{\triangle}{=} |\{i : a[i] \neq 0\}|.
$$

Recall that the concatenation of the strings a and b is denoted by $a \circ b$.

Definition

The binary string obtained by *i* concatenations of the string *a* is denoted by a^i .

Consider the following examples of string concatenation:

- If $a = 01$ and $b = 10$, then $a \circ b = 0110$.
- If $a = 1$ and $i = 5$, then $a^{i} = 11111$.
- If $a = 01$ and $i = 3$, then $a^i = 010101$.
- We denote the zeros string of length n by 0^n .

We define the encoder partial function as follows.

Definition

The function $\textsc{encoder}_n: \{\vec{y} \in \{0,1\}^{2^n}: \textit{wt}(\vec{y}) = 1\} \rightarrow \{0,1\}^n$ is defined as follows: \langle ENCODER_n $(\vec{y})\rangle$ equals the index of the bit of $y[2^n - 1: 0]$ that equals one. Formally,

$$
\mathrm{ENCODER}_n(0^{2^n-k-1}\circ 1\circ 0^k)=bin_n(k)
$$

Examples:

1 ENCODER₂(0001) = 00, ENCODER₂(0010) = 01, $\text{ENCODER}_2(0100) = 10$, $\text{ENCODER}_2(1000) = 11$.

Definition

An encoder with input length 2^n and output length n is a combinational circuit that implements the Boolean function $ENCODER_n$.

We denote an encoder with input length 2^n and output length n by $ENCODER(n)$. An $ENCODER(n)$ can be also specified as follows: Input: $y[2^n - 1 : 0] \in \{0, 1\}^{2^n}$. Output: $x[n-1:0] \in \{0,1\}^n$. Functionality: If $wt(\vec{y}) = 1$, let *i* denote the index such that $y[i] = 1$. In this case \vec{x} should satisfy $\langle \vec{x} \rangle = i$. Formally:

 $\vec{x} =$ ENCODER_n (\vec{y}) .

- functionality is not specified for all inputs \vec{y} .
- **•** functionality is only specified for inputs whose Hamming weight equals one.
- Since an encoder is a combinational circuit, it implements a Boolean function. This means that it outputs a digital value even if $wt(y) \neq 1$. Thus, two encoders must agree only with respect to inputs whose Hamming weight equals one.
- If \vec{y} is output by a decoder, then $wt(\vec{y}) = 1$, and hence an encoder implements the inverse function of a decoder.

Recall that $bin_n(i)[j]$ denotes the *j*th bit in the binary representation of *i*. Let A_i denote the set

$$
A_j \stackrel{\triangle}{=} \{i \in [0:2^n-1] \mid bin_n(i)[j] = 1\}.
$$

Claim

If wt
$$
(y)
$$
 = 1, then x[j] = $\bigvee_{i \in A_j} y[i]$.

Claim

If wt(
$$
y
$$
) = 1, then x[j] = $\bigvee_{i \in A_j} y[i]$.

Implementing an $ENCODER(n)$:

- For each output x_j , use a separate OR-tree whose inputs are $\{y[i] \mid i \in A_i\}.$
- Each such OR-tree has at most 2^n inputs.
- the cost of each OR-tree is $O(2^n)$.
- total cost is $O(n \cdot 2^n)$.
- The delay of each OR-tree is $O(\log 2^n) = O(n)$.
- \bullet We will prove that in every combinational circuit E that implements an encoder, the cardinality of the graphical cone of the first output $X[0]$ is at least $2^n/2$.
- So for every encoder $E: c(E) = \Omega(2^n)$ and $d(E) = \Omega(n)$.
- The brute force design is not that bad. Can we reduce the cost?
- Let's try...

For $n = 1$, is simply $x[0] \leftarrow y[1]$. Reduction step:

$$
y_L[2^{n-1} - 1:0] = y[2^n - 1:2^{n-1}]
$$

$$
y_R[2^{n-1} - 1:0] = y[2^{n-1} - 1:0].
$$

Use two $\text{ENCODER}'(n-1)$ with inputs $\vec{y_L}$ and $\vec{y_R}$. But,

$$
\mathit{wt}(\vec{y})=1 \Rightarrow (\mathit{wt}(\vec{y_L})=0) \vee (\mathit{wt}(\vec{y_R})=0).
$$

What does an encoder output when input all-zeros?

Augment the definition of the $ENCODER_n$ function so that its domain also includes the all-zeros string $0^{2^n}.$ We define

 $\text{ENCODER}_{n}(0^{2^{n}}) \stackrel{\triangle}{=} 0^{n}.$

Note that $\textsc{encoder}'(1)$ (i.e., $x[0] \leftarrow y[1]$) also meets this new condition, so the induction basis of the correctness proof holds.

Reduction step for $\text{ENCODER}'(n)$

Claim

The circuit $ENCODER'(n)$ implements the Boolean function $ENCODER_n$.

$$
c(\text{ENCODER}'(n)) = \begin{cases} 0 & \text{if } n = 1 \\ 2 \cdot c(\text{ENCODER}'(n-1)) \\ +c(\text{OR-tree}(2^{n-1})) \\ + (n-1) \cdot c(\text{OR}) & \text{if } n > 1. \end{cases}
$$

Let $c(n) \stackrel{\triangle}{=} c(\text{ENCODER}'(n))/c(\text{OR}).$

$$
c(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2 \cdot c(n-1) + (2^{n-1} - 1 + n - 1) & \text{if } n > 1. \end{cases}
$$
 (2)

Claim

 $c(n) = \Theta(n \cdot 2^n).$

So $c(\text{ENCODER}'(n))$ (asymptotically) equals the cost of the brute force design...

Claim

If wt(y[$2^{n} - 1 : 0$]) ≤ 1 , then

 $ENCODER_{n-1}(OR(\vec{y}_L, \vec{y}_R))$ $=$ OR(ENCODER_{n−1}(\vec{y}_L), ENCODER_{n−1}(\vec{y}_R)).

Definition

Two combinational circuits are functionally equivalent if they implement the same Boolean function.

Claim

If wt
$$
(y[2^n-1:0]) \leq 1
$$
, then

 $\text{ENCODER}_{n-1}(\text{OR}(\vec{y}_L, \vec{y}_R)) = \text{OR}(\text{ENCODER}_{n-1}(\vec{y}_L), \text{ENCODER}_{n-1}(\vec{y}_R)).$

Claim

 $\textsc{encoder}'(n)$ and $\textsc{encoder}^*(n)$ are functionally equivalent.

Corollary

 $\text{ENCODER}^*(n)$ implements the ENCODER_n function.

The cost of $\textsc{encoder}^*(n)$ satisfies the following recurrence equation:

$$
c(\text{ENCODER}^*(n)) = \begin{cases} 0 & \text{if } n=1\\ c(\text{ENCODER}^*(n-1)) + (2^n - 1) \cdot c(\text{OR}) & \text{otherwise} \end{cases}
$$

$$
C(2^k) \stackrel{\triangle}{=} c(\text{ENCODER}^*(k))/c(\text{OR}). \text{ Then,}
$$

$$
C(2k) = \begin{cases} 0 & \text{if k=0} \\ C(2k-1) + (2k - 1) & \text{otherwise.} \end{cases}
$$

we conclude that $C(2^k) = \Theta(2^k)$.

Claim

$$
c(\text{ENCODER}^*(n)) = \Theta(2^n) \cdot c(\text{OR}).
$$

The delay of $\textsc{encoder}^*(n)$ satisfies the following recurrence equation:

$$
d(\text{ENCODER}^*(n)) = \begin{cases} 0 & \text{if } n=1\\ \max\{d(\text{OR-tree}(2^{n-1})),\\ d(\text{ENCODER}^*(n-1) + d(\text{OR}))\} & \text{otherwise.} \end{cases}
$$

Since $d({\rm OR\text{-}tree}(2^{n-1}))=(n-1)\cdot d({\rm OR})$, it follows that

 $d(\text{ENCODER}^*(n)) = n \cdot d(\text{OR}).$

Theorem

For every encoder E of input length n:

 $d(E) = \Omega(n)$ $c(E) = \Omega(2^n)$.

Wrong Proof:

Focus on the output $x[0]$ and the Boolean function f_0 that corresponds to $x[0].$ Tempting to claim that $|\mathit{cone}(f_0)| \geq 2^{n-1}$, and hence the lower bounds follow.

But, this is not a valid argument because the specification of f_0 is a partial function (domain consists only of inputs whose Hamming weight equals one)... must come up with a correct proof!

Theorem

For every encoder E of input length n:

$$
d(E) = \Omega(n)
$$

$$
c(E) = \Omega(2^n).
$$

Proof.

Consider the output $x[0]$. We claim that the graphical cone satisfies:

$$
|cone_G(x[0])| \geq \frac{1}{2} \cdot 2^n.
$$

Otherwise, there exists an even index i and an odd index j such that $\{i, j\} \cap cone_G(x[0]) = \emptyset$. Now consider two inputs: e_i (a unit vector with a one in position $i)$ and $e_j.$ The output $\mathrm{x}[0]$ is the same for e_i , $0^{2^n}=$ fli $p_i(e_i)=$ fli $p_j(e_j)$ and e_j . This implies that $\mathrm{x}[0]$ errs for at least of the inputs e_i or e_j .

- The specification of $DECODER(n)$ and $ENCODER(n)$ uses the parameter n.
- The parameter *n* specifies the length of the input in the case of a decoder and the length of the output in an encoder.
- \bullet DECODER(8) and DECODER(16) are completely different circuits.
- $\{\texttt{DECODER}(n)\}_{n=1}^{\infty}$ is a family of circuits, one for each input length.

We discussed:

- **o** buses
- **o** decoders
- **e** encoders

Three main techniques were used in this chapter.

- **•** Divide & Conquer a recursive design methodology.
- **•** Extend specification to make problem easier. Adding restrictions to the specification made the task easier since we were able to add assumptions in our recursive designs.
- Evolution. Naive, correct, costly design. Improved while preserving functionality to obtain a cheaper design.