Digital Logic Design: a rigorous approach © Chapter 13: Decoders and Encoders

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 13, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina

Example

An adder and a register (a memory device). The output of the adder should be stored by the register. Different name to each bit?!

Definition

A *bus* is a set of nets that are connected to the same modules. The *width* of a bus is the number of nets in the bus.

Buses

Example

PCI bus is data network that connects modules in a computer system.

- Onnection of terminals is done by assignment statements: The statement b[0 : 3] ← a[0 : 3] means connect a[i] to b[i].
- (2) "Reversing" of indexes does not take place unless explicitly stated: $b[i:j] \leftarrow a[i:j]$ and $b[i:j] \leftarrow a[j:i]$, have the same meaning, i.e., $b[i] \leftarrow a[i], \ldots, b[j] \leftarrow a[j]$.
- Shifting" is done by default: a[0 : 3] ← b[4 : 7], meaning that a[0] ← b[4], a[1] ← b[5], etc. We refer to such an implied re-assignment of indexes as hardwired shifting.

(B)

Figure: Vector notation: multiple instances of the same gate. (A) Explicit multiple instances (B) Abbreviated notation.

(A)

(A) (B)

Figure: Vector notation: b feeds all the gates. (A) Explicit multiple instances (B) Abbreviated notation.

Reminder: Binary Representation

Recall that $\langle a[n-1:0] \rangle_n$ denotes the binary number represented by an *n*-bit vector \vec{a} .

$$\langle a[n-1:0]\rangle_n \stackrel{ riangle}{=} \sum_{i=0}^{n-1} a_i \cdot 2^i.$$

Definition

Binary representation using *n*-bits is a function $bin_n : \{0, 1, \dots, 2^n - 1\} \rightarrow \{0, 1\}^n$ that is the inverse function of $\langle \cdot \rangle$. Namely, for every $a[n-1:0] \in \{0,1\}^n$,

$$bin_n(\langle a[n-1:0]\rangle_n)=a[n-1:0].$$

Division in Binary Representation

 $r = (a \mod b)$:

$$a = q \cdot b + r$$
, where $0 \le r < b$.

Claim

Let $s = \langle x[n-1:0] \rangle_n$, and $0 \le k \le n-1$. Let q and r denote the quotient and remainder obtained by dividing s by 2^k . Define the binary strings $x_R[k-1:0]$ and $x_L[n-1:n-k-1]$ as follows.

$$egin{aligned} & x_R[k-1:0] \stackrel{ riangle}{=} x[k-1:0] \ & x_L[n-k-1:0] \stackrel{ riangle}{=} x[n-1:k]. \end{aligned}$$

Then,

$$q = \langle x_L[n-k-1:0] \rangle$$

$$r = \langle x_R[k-1:0] \rangle.$$

Multiplication of A[n-1:0] by B[n-1:0] in binary representation proceeds in two steps:

- compute all the partial products $A[i] \cdot B[j]$
- add the partial products

 $\begin{array}{r} 1011 \\ \times 1110 \\ 0000 \\ 1011 \\ 1011 \\ + 1011 \\ 10011010 \end{array}$

Computation of Partial Products

Input:
$$A[n-1:0], B[n-1:0] \in \{0,1\}^n$$
.
Output: $C[i,j] \in \{0,1\}^{n^2-1}$ where $(0 \le i, j \le n-1)$
Functionality: $C[i,j] = A[i] \cdot B[i]$

We refer to such a circuit as $n \times n$ array of AND gates. Cost is n^2 and delay equals 1 (Q: What is the lower bound?).

Definition

A decoder with input length *n* is a combinational circuit specified as follows:

Input:
$$x[n-1:0] \in \{0,1\}^n$$
.
Output: $y[2^n - 1:0] \in \{0,1\}^{2^n}$

Functionality:

$$y[i] \stackrel{ riangle}{=} egin{cases} 1 & ext{if } \langle ec{x}
angle = i \ 0 & ext{otherwise.} \end{cases}$$

Number of outputs of a decoder is exponential in the number of inputs. Note also that exactly one bit of the output \vec{y} is set to one. Such a representation of a number is often termed one-hot encoding or 1-out-of-k encoding.

Definition of Decoder

Definition

A decoder with input length *n*:

Input:
$$x[n-1:0] \in \{0,1\}^n$$
.
Output: $y[2^n - 1:0] \in \{0,1\}^{2^n}$
Functionality:
 $y[i] \triangleq \begin{cases} 1 & \text{if } \langle \vec{x} \rangle = i \\ 0 & \text{otherwise.} \end{cases}$

We denote a decoder with input length n by DECODER(n).

Example

Consider a decoder DECODER(3). On input x = 101, the output y equals 00100000.

Application of decoders

An example of how a decoder is used is in decoding of controller instructions. Suppose that each instruction is coded by an 4-bit string. Our goal is to determine what instruction is to be executed. For this purpose, we feed the 4 bits to a DECODER(4). There are 16 outputs, exactly one of which will equal 1. This output will activate a module that should be activated in this instruction.

Brute force design

- simplest way: build a separate circuit for every output bit y[i].
- The circuit for y[i] is simply a product of n literals.
- Let v ≜ bin_n(i), i.e., v[n − 1 : 0] is the binary representation of the index i.
- define the minterm p_v to be $p_v \stackrel{\triangle}{=} (\ell_0^v \cdot \ell_1^v \cdots \ell_{n-1}^v)$, where:

$$\ell_j^{\mathsf{v}} \stackrel{ riangle}{=} egin{cases} x_j & ext{if } \mathsf{v}_j = 1 \ ar{x}_j & ext{if } \mathsf{v}_j = 0. \end{cases}$$

• define $y[\langle v \rangle] \triangleq \text{AND}_n(\ell_0^v, \dots, \ell_{n-1}^v)$

Claim

$$y[i] = 1$$
 iff $\langle x \rangle = i$.

The brute force decoder circuit consists of:

- *n* inverters used to compute INV (\vec{x}) , and
- a separate AND(n)-tree for every output y[i].
- The delay of the brute force design is $t_{pd}(INV) + t_{pd}(AND(n)$ -tree) = $O(\log_2 n)$.
- The cost of the brute force design is Θ(n · 2ⁿ), since we have an AND(n)-tree for each of the 2ⁿ outputs.

Wasteful because, if the binary representation of i and j differ in a single bit, then the AND-trees of y[i] and y[j] share all but a single input. Hence the product of n-1 bits is computed twice. We present a systematic way to share hardware between different submute

outputs.

Base case DECODER(1):

The circuit DECODER(1) is simply one inverter where: $y[0] \leftarrow \text{INV}(x[0])$ and $y[1] \leftarrow x[0]$.

Reduction rule DECODER(*n*):

We assume that we know how to design decoders with input length less than n, and design a decoder with input length n.

Figure: A recursive implementation of DECODER(n).

Claim (Correctness)
$$y[i] = 1 \iff \langle x[n-1:0] \rangle = i.$$

Cost analysis

We denote the cost and delay of DECODER(n) by c(n) and d(n), respectively. The cost c(n) satisfies the following recurrence equation:

$$c(n) = \begin{cases} c(\text{INV}) & \text{if } n=1\\ c(k) + c(n-k) + 2^n \cdot c(\text{AND}) & \text{otherwise.} \end{cases}$$

It follows that, up to constant factors

$$c(n) = \begin{cases} 1 \cdot & \text{if } n = 1 \\ c(k) + c(n-k) + 2^n & \text{if } n > 1. \end{cases}$$
(1)

Obviously, $c(n) = \Omega(2^n)$ (regardless of the value of k).

Claim $c(n) = O(2^n) \text{ if } k = \lceil n/2 \rceil.$

Cost analysis (cont.)

$$c(n) = \begin{cases} c(\text{INV}) & \text{if } n=1\\ c(k) + c(n-k) + 2^n & \text{otherwise.} \end{cases}$$

Claim

$$c(n) = O(2^n)$$
 if $k = \lceil n/2 \rceil$.

Proof.

 $c(n) \leq 2 \cdot 2^n$ by complete induction on n.

• basis: check for
$$n \in \{1, 2, 3\}$$
.

• step:

$$egin{aligned} c(n) &= c(\lceil n/2 \rceil) + c(\lfloor n/2 \rfloor) + 2^n \ &\leq 2^{1+\lceil n/2 \rceil} + 2^{1+\lfloor n/2 \rfloor} + 2^n \ &= 2 \cdot 2^n \cdot (2^{-\lfloor n/2 \rfloor} + 2^{-\lceil n/2 \rceil} + 1/2) \end{aligned}$$

The delay of DECODER(n) satisfies the following recurrence equation:

$$d(n) = \begin{cases} d(\text{INV}) & \text{if } n=1\\ \max\{d(k), d(n-k)\} + d(\text{AND}) & \text{otherwise.} \end{cases}$$

Set k = n/2. It follows that $d(n) = \Theta(\log n)$.

Asymptotic Optimality

Theorem

For every decoder G of input length n:

 $d(G) = \Omega(\log n)$ $c(G) = \Omega(2^n).$

Proof.

- Iower bound on delay : use log delay lower bound theorem.
- Over bound on cost? The proof is based on the following observations:
 - Computing each output bit requires at least one nontrivial gate.
 - No two output bits are identical.

- An encoder implements the inverse Boolean function implemented by a decoder.
- the Boolean function implemented by a decoder is not surjective.
- the range of the Boolean function implemented by a decoder is the set of binary vectors in which exactly one bit equals 1.
- It follows that an encoder implements a partial Boolean function (i.e., a function that is not defined for every binary string).

Definition

The Hamming distance between two binary strings $u, v \in \{0, 1\}^n$ is defined by

$$dist(u,v) \stackrel{\scriptscriptstyle \triangle}{=} |\{i \mid u_i \neq v_i\}|.$$

Definition

The Hamming weight of a binary string $u \in \{0, 1\}^n$ equals $dist(u, 0^n)$. Namely, the number of non-zero symbols in the string.

We denote the Hamming weight of a binary string \vec{a} by $wt(\vec{a})$, namely,

$$\mathit{wt}(\mathit{a}[\mathit{n}-1:0]) \stackrel{\scriptscriptstyle riangle}{=} |\{i:\mathit{a}[i]
eq 0\}|.$$

Recall that the concatenation of the strings *a* and *b* is denoted by $a \circ b$.

Definition

The binary string obtained by *i* concatenations of the string *a* is denoted by a^i .

Consider the following examples of string concatenation:

- If a = 01 and b = 10, then $a \circ b = 0110$.
- If a = 1 and i = 5, then $a^i = 11111$.
- If a = 01 and i = 3, then $a^i = 010101$.
- We denote the zeros string of length n by 0^n .

We define the encoder partial function as follows.

Definition

The function ENCODER_n: $\{\vec{y} \in \{0,1\}^{2^n} : wt(\vec{y}) = 1\} \rightarrow \{0,1\}^n$ is defined as follows: $\langle \text{ENCODER}_n(\vec{y}) \rangle$ equals the index of the bit of $y[2^n - 1:0]$ that equals one. Formally,

$$\text{ENCODER}_n(0^{2^n-k-1} \circ 1 \circ 0^k) = bin_n(k)$$

Examples:

• ENCODER₂(0001) = 00, ENCODER₂(0010) = 01, ENCODER₂(0100) = 10, ENCODER₂(1000) = 11.

Definition

An encoder with input length 2^n and output length n is a combinational circuit that implements the Boolean function ENCODER_n.

We denote an encoder with input length 2^n and output length n by ENCODER(n). An ENCODER(n) can be also specified as follows: Input: $y[2^n - 1:0] \in \{0,1\}^{2^n}$. Output: $x[n - 1:0] \in \{0,1\}^n$. Functionality: If $wt(\vec{y}) = 1$, let i denote the index such that y[i] = 1. In this case \vec{x} should satisfy $\langle \vec{x} \rangle = i$. Formally:

 $\vec{x} = \text{ENCODER}_n(\vec{y})$.

- functionality is not specified for all inputs \vec{y} .
- functionality is only specified for inputs whose Hamming weight equals one.
- Since an encoder is a combinational circuit, it implements a Boolean function. This means that it outputs a digital value even if $wt(y) \neq 1$. Thus, two encoders must agree only with respect to inputs whose Hamming weight equals one.
- If \vec{y} is output by a decoder, then $wt(\vec{y}) = 1$, and hence an encoder implements the inverse function of a decoder.

Recall that $bin_n(i)[j]$ denotes the *j*th bit in the binary representation of *i*. Let A_j denote the set

$$A_j \stackrel{\triangle}{=} \{i \in [0: 2^n - 1] \mid bin_n(i)[j] = 1\}.$$

Claim

If wt(y) = 1, then
$$x[j] = \bigvee_{i \in A_i} y[i]$$
.

Claim

If wt(y) = 1, then
$$x[j] = \bigvee_{i \in A_j} y[i]$$
.

Implementing an ENCODER(n):

- For each output x_j , use a separate OR-tree whose inputs are $\{y[i] \mid i \in A_j\}$.
- Each such OR-tree has at most 2ⁿ inputs.
- the cost of each OR-tree is $O(2^n)$.
- total cost is $O(n \cdot 2^n)$.
- The delay of each OR-tree is $O(\log 2^n) = O(n)$.

- We will prove that in every combinational circuit E that implements an encoder, the cardinality of the graphical cone of the first output X[0] is at least 2ⁿ/2.
- So for every encoder E: $c(E) = \Omega(2^n)$ and $d(E) = \Omega(n)$.
- The brute force design is not that bad. Can we reduce the cost?
- Let's try...

ENCODER'(n) - a recursive design

For n = 1, is simply $x[0] \leftarrow y[1]$. Reduction step:

$$y_L[2^{n-1} - 1:0] = y[2^n - 1:2^{n-1}]$$

 $y_R[2^{n-1} - 1:0] = y[2^{n-1} - 1:0].$

Use two ENCODER'(n-1) with inputs $\vec{y_L}$ and $\vec{y_R}$. But,

$$wt(\vec{y}) = 1 \Rightarrow (wt(\vec{y_L}) = 0) \lor (wt(\vec{y_R}) = 0).$$

What does an encoder output when input all-zeros?

Augment the definition of the $ENCODER_n$ function so that its domain also includes the all-zeros string 0^{2^n} . We define

 $\mathrm{ENCODER}_n(0^{2^n}) \stackrel{\scriptscriptstyle \bigtriangleup}{=} 0^n.$

Note that ENCODER'(1) (i.e., $x[0] \leftarrow y[1]$) also meets this new condition, so the induction basis of the correctness proof holds.

Reduction step for ENCODER'(n)

Claim

The circuit encoder(n) implements the Boolean function $encoder_n$.

Cost Analysis

$$c(\text{ENCODER}'(n)) = \begin{cases} 0 & \text{if } n = 1\\ 2 \cdot c(\text{ENCODER}'(n-1)) & \\ +c(\text{OR-tree}(2^{n-1})) & \\ +(n-1) \cdot c(\text{OR}) & \text{if } n > 1. \end{cases}$$

Let
$$c(n) \stackrel{\triangle}{=} c(\text{ENCODER}'(n))/c(\text{OR}).$$

$$c(n) = \begin{cases} 0 & \text{if } n = 1\\ 2 \cdot c(n-1) + (2^{n-1} - 1 + n - 1) & \text{if } n > 1. \end{cases}$$
(2)

Claim

$$c(n) = \Theta(n \cdot 2^n).$$

So c(ENCODER'(n)) (asymptotically) equals the cost of the brute force design...

Claim

If wt $(y[2^n - 1:0]) \le 1$, then

 $\begin{aligned} & \text{ENCODER}_{n-1}(\text{OR}(\vec{y_L}, \vec{y_R})) \\ & = \text{OR}(\text{ENCODER}_{n-1}(\vec{y_L}), \text{ENCODER}_{n-1}(\vec{y_R})). \end{aligned}$

Correctness?

Definition

Two combinational circuits are functionally equivalent if they implement the same Boolean function.

Claim

If
$$wt(y[2^n - 1:0]) \le 1$$
, then

 $\mathrm{ENCODER}_{n-1}(\mathrm{OR}(\vec{y}_L, \vec{y}_R)) = \mathrm{OR}(\mathrm{ENCODER}_{n-1}(\vec{y}_L), \mathrm{ENCODER}_{n-1}(\vec{y}_R)).$

Claim

ENCODER'(n) and $ENCODER^*(n)$ are functionally equivalent.

Corollary

ENCODER^{*}(n) implements the ENCODER_n function.

The cost of $ENCODER^*(n)$ satisfies the following recurrence equation:

$$c(\text{ENCODER}^*(n)) = \begin{cases} 0 & \text{if } n=1\\ c(\text{ENCODER}^*(n-1)) + (2^n-1) \cdot c(\text{OR}) & \text{otherwise} \end{cases}$$

 $C(2^k) \stackrel{\scriptscriptstyle riangle}{=} c(\text{ENCODER}^*(k))/c(\text{OR}).$ Then,

$$\mathcal{C}(2^k) = egin{cases} 0 & ext{if } k{=}0\ \mathcal{C}(2^{k-1}) + (2^k-1) & ext{otherwise}. \end{cases}$$

we conclude that $C(2^k) = \Theta(2^k)$.

Claim

$$c(\text{ENCODER}^*(n)) = \Theta(2^n) \cdot c(\text{OR}).$$

The delay of $ENCODER^*(n)$ satisfies the following recurrence equation:

$$d(\text{ENCODER}^*(n)) = \begin{cases} 0 & \text{if } n=1 \\ \max\{d(\text{OR-tree}(2^{n-1})), \\ d(\text{ENCODER}^*(n-1) + d(\text{OR}))\} & \text{otherwise.} \end{cases}$$

Since $d(\text{OR-tree}(2^{n-1})) = (n-1) \cdot d(\text{OR})$, it follows that

 $d(\text{ENCODER}^*(n)) = n \cdot d(\text{OR}).$

Theorem

For every encoder E of input length n:

 $d(E) = \Omega(n)$ $c(E) = \Omega(2^n).$

Wrong Proof:

Focus on the output x[0] and the Boolean function f_0 that corresponds to x[0]. Tempting to claim that $|cone(f_0)| \ge 2^{n-1}$, and hence the lower bounds follow.

But, this is not a valid argument because the specification of f_0 is a partial function (domain consists only of inputs whose Hamming weight equals one)... must come up with a correct proof!

Asymptotic Optimality

Theorem

For every encoder E of input length n:

$$d(E) = \Omega(n)$$

$$c(E) = \Omega(2^n).$$

Proof.

Consider the output x[0]. We claim that the graphical cone satisfies:

$$|cone_G(x[0])| \geq rac{1}{2} \cdot 2^n.$$

Otherwise, there exists an even index i and an odd index j such that $\{i, j\} \cap cone_G(x[0]) = \emptyset$. Now consider two inputs: e_i (a unit vector with a one in position i) and e_j . The output x[0] is the same for e_i , $0^{2^n} = flip_i(e_i) = flip_j(e_j)$ and e_j . This implies that x[0] errs for at least of the inputs e_i or e_j .

- The specification of DECODER(n) and ENCODER(n) uses the parameter n.
- The parameter *n* specifies the length of the input in the case of a decoder and the length of the output in an encoder.
- DECODER(8) and DECODER(16) are completely different circuits.
- {DECODER(n)}[∞]_{n=1} is a family of circuits, one for each input length.

We discussed:

- buses
- decoders
- encoders

Three main techniques were used in this chapter.

- Divide & Conquer a recursive design methodology.
- Extend specification to make problem easier. Adding restrictions to the specification made the task easier since we were able to add assumptions in our recursive designs.
- Evolution. Naive, correct, costly design. Improved while preserving functionality to obtain a cheaper design.