Digital Logic Design: a rigorous approach (¢

Chapter 13: Decoders and Encoders

Guy Even  Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 13, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1/ 47


http://www.eng.tau.ac.il/~guy/Even-Medina

Buses

An adder and a register (a memory device). The output of the
adder should be stored by the register. Different name to each bit?!

2 /47



Buses

Definition

A bus is a set of nets that are connected to the same modules.
The width of a bus is the number of nets in the bus.

3 /47



Buses

PCI bus is data network that connects modules in a computer
system.

CPU
Cache
Memory Controller Main Memory Disk
PCl Bus

Network Interace

Audio Card

Graphic Card

Network

Speaker/Mic

Monitor

4/ 47



Indexing conventions

@ Connection of terminals is done by assignment statements:
The statement b[0 : 3] < a[0 : 3] means connect a[i] to b[i].

@ "Reversing” of indexes does not take place unless explicitly
stated: b[i : j] < a[i : j] and b[i : j] < a[j : i], have the same
meaning, i.e., b[i] < a[i], ..., b[j] < alj].

© 'Shifting” is done by default: a[0 : 3] <— b[4 : 7], meaning
that a[0] < b[4], a[1] < b[5], etc. We refer to such an implied
re-assignment of indexes as hardwired shifting.

5 / 47



Example - 1

ao

bo

Go

Z0

Figure: Vector notation: multiple instances of the same gate. (A) Explicit

(4)

multiple instances (B) Abbreviated notation.

al0:n—1] b0:n—1]

{ -

6 / 47



Go

20

Gy

(A)

(B)

Figure: Vector notation: b feeds all the gates. (A) Explicit multiple
instances (B) Abbreviated notation.

7 /47



Reminder: Binary Representation

Recall that (a[n — 1 : 0]), denotes the binary number represented
by an n-bit vector a.

n—1
(a[n—1:0]), = Za,- 2
i=0

Definition

Binary representation using n-bits is a function
bin, : {0,1,...,2" — 1} — {0,1}" that is the inverse function of
(). Namely, for every a[n —1:0] € {0,1}",

binp((a[n —1:0]),) = a[n —1:0].

8 / 47



Division in Binary Representation
r = (a mod b):

a=q-b+r, where 0 < r < b.

Claim

Let s=(x[n—1:0]),, and0 < k < n—1. Let q and r denote the
quotient and remainder obtained by dividing s by 2¥. Define the
binary strings xg[k —1: 0] and x.[n —1: n— k — 1] as follows.

xg[k —1:0] = x[k —1: 0]
x([n—k—1:0]=x[n—1: K.
Then,

qg=(x[n—k—1:0])
r = (xg[k —1:0]).

9 / 47



Multiplication

Multiplication of A[n —1:0] by B[n—1:0] in binary
representation proceeds in two steps:

@ compute all the partial products A[i] - B[j]
@ add the partial products

1011
x 1110
0000
1011
1011
+ 1011
10011010

10 / 47



Computation of Partial Products

Input: A[n—1:0],B[n—1:0] € {0,1}".
Output: C[i,j] € {0,1}™ 1 where (0 < i,j < n—1)

Functionality: C[i,j] = A[i] - B[i]

By

Ao

,‘LDfllo By

Ay

LDA By

We refer to such a circuit as n x n array of AND gates. Cost is n

o
[

Aoy - By

A By

2

and delay equals 1 (Q: What is the lower bound?).

11 / 47



Definition of Decoder

Definition

A decoder with input length n is a combinational circuit specified
as follows:

Input: x[n—1:0] € {0,1}".
Output: y[2" —1:0] € {0,1}*

Functionality:
) 1 if{xX)=1i
N
0 otherwise.

Number of outputs of a decoder is exponential in the number of
inputs. Note also that exactly one bit of the output ¥ is set to one.
Such a representation of a number is often termed one-hot
encoding or l-out-of-k encoding.

12 / 47



Definition of Decoder

Definition

A decoder with input length n:
Input: x[n—1:0] € {0,1}".
Output: y[2" —1:0] € {0,1}*"

Functionality:
. 1 if(xX)=1i
PIE S
0 otherwise.

We denote a decoder with input length n by DECODER(n).

Consider a decoder DECODER(3). On input x = 101, the output y
equals 00100000.

13 / 47



Application of decoders

An example of how a decoder is used is in decoding of controller
instructions. Suppose that each instruction is coded by an 4-bit
string. Our goal is to determine what instruction is to be executed.
For this purpose, we feed the 4 bits to a DECODER(4). There are
16 outputs, exactly one of which will equal 1. This output will
activate a module that should be activated in this instruction.

14 / 47



Brute force design

@ simplest way: build a separate circuit for every output bit y/[i].

@ The circuit for y[i] is simply a product of n literals.

o Let v = biny(/), i.e., v[n—1:0] is the binary representation
of the index i.

o define the minterm p, to be p, = (€5 - £f ---£Y_,), where:

Evé{xj ifv; =1

! xj if vy =0.

o define y[(v)] = AND, (4§, ..., €% ;)

yli] =1 iff (x) =i.

15 / 47



analysis: brute force design

The brute force decoder circuit consists of:
@ n inverters used to compute INV(X), and
@ a separate AND(n)-tree for every output y|[i].
@ The delay of the brute force design is
tpd(INV) + tpq(AND(n)-tree) = O(logy n).
@ The cost of the brute force design is ©(n - 2"), since we have
an AND(n)-tree for each of the 2" outputs.

Wasteful because, if the binary representation of i and j differ in a
single bit, then the AND-trees of y[i] and y|[j] share all but a single
input. Hence the product of n — 1 bits is computed twice.

We present a systematic way to share hardware between different
outputs.

16 / 47



An asymptotically optimal decoder design

Base case DECODER(1):

The circuit DECODER(1) is simply one inverter where:

y[0] < INnv(x[0]) and y[1] < x[0].

Reduction rule DECODER(n):

We assume that we know how to design decoders with input
length less than n, and design a decoder with input length n.

17 / 47



aplk—1:0] = alk—1:0]

k

Decoder(k)

Ri2F—1:0]12"

R[r]

nk o ok
nl—k=1:00 pe | 22 o
E) Decoder(n — k) array of
zn—1:k
z[n ] Q" * —1:0) AND-gates .
ylg- 2"+ 7]

Figure: A recursive implementation of DECODER(n).

Claim (Correctness)

ylil=1 <= (x[n—1:0]) =1.




Cost analysis

We denote the cost and delay of DECODER(n) by ¢(n) and d(n),
respectively. The cost c(n) satisfies the following recurrence
equation:

c(n) = {C(INV) if n=1

c(k) 4+ c(n— k) +2"- c(AND) otherwise.

It follows that, up to constant factors

1. ifn=1
e(n) = {c(k) +c(n—k)+2" ifn>1. @)

Obviously, c(n) = Q(2") (regardless of the value of k).

c(n) = 0(2") if k = [n/2].

19 / 47



Cost analysis (cont.)

o(n) = c(INV) if n=1
"~ (k) +c(n—k) 42" otherwise.

c(n) = 0(2") if k = [n/2].

c(n) <2-2" by complete induction on n.
@ basis: check for n € {1,2,3}.

@ step:

c(n) = c([n/2]) + c(ln/2]) +2"
< ol+In/2] | ol+(n/2] | on

=2.2". (272l o= In/21 4 q/2)

20 / 47



Delay analysis.

The delay of DECODER(n) satisfies the following recurrence
equation:

d(n) = { (INV) if n=1

max{d(k),d(n — k)} + d(AND) otherwise.

Set k = n/2. It follows that d(n) = ©(log n).

21 / 47



Asymptotic Optimality

For every decoder G of input length n:

d(G) = Q(log n)
c(G) = Q2.

@ lower bound on delay : use log delay lower bound theorem.

©Q lower bound on cost? The proof is based on the following
observations:

o Computing each output bit requires at least one nontrivial

gate.
@ No two output bits are identical.

22 / 47



Encoders

@ An encoder implements the inverse Boolean function
implemented by a decoder.

@ the Boolean function implemented by a decoder is not
surjective.

@ the range of the Boolean function implemented by a decoder
is the set of binary vectors in which exactly one bit equals 1.

o It follows that an encoder implements a partial Boolean
function (i.e., a function that is not defined for every binary
string).

23 / 47



Hamming Distance and Weight

Definition

The Hamming distance between two binary strings u, v € {0,1}" is
defined by

dist(u, v) = [{i | uj # vi}|.

Definition

The Hamming weight of a binary string u € {0,1}" equals
dist(u,0"). Namely, the number of non-zero symbols in the string.

We denote the Hamming weight of a binary string & by wt(3),
namely,

wt(aln —1:0]) £ |{i : a[i] # 0}.

24 / 47



Concatenation of strings

Recall that the concatenation of the strings a and b is denoted by
aob.

Definition

The binary string obtained by i/ concatenations of the string a is
denoted by a'.

Consider the following examples of string concatenation:
@ If a=01and b =10, then ao b = 0110.
o Ifa=1andi=>5, then a’ = 11111.
o If a=01and i = 3, then a’ = 010101.
@ We denote the zeros string of length n by 0”.

25 / 47



Definition of Encoder function

We define the encoder partial function as follows.

Definition

The function ENCODER,, : {y € {0,1}?" : wt(y) = 1} — {0,1}" is
defined as follows: (ENCODER,(Y)) equals the index of the bit of
y[2" — 1 : 0] that equals one. Formally,

ENCODER,(0%" %71 0 1 0 0%) = bin, (k)

Examples:

© ENCODER(0001) = 00, ENCODER,(0010) = 01,
ENCODER2(0100) = 10, ENCODER,(1000) = 11.

26 / 47



Encoder circuit - definition

Definition

An encoder with input length 2" and output length n is a
combinational circuit that implements the Boolean function
ENCODER,,.

We denote an encoder with input length 2" and output length n by
ENCODER(n). An ENCODER(n) can be also specified as follows:

Input: y[2" —1:0] € {0,1}?".
Output: x[n—1:0] € {0,1}".
Functionality: If wt(y) = 1, let i denote the index such that
y[i] = 1. In this case X should satisfy (x) = i.

Formally:
X = ENCODER;(Y) .

27 / 47



Encoder - remarks

@ functionality is not specified for all inputs y.

o functionality is only specified for inputs whose Hamming
weight equals one.

@ Since an encoder is a combinational circuit, it implements a
Boolean function. This means that it outputs a digital value
even if wt(y) # 1. Thus, two encoders must agree only with
respect to inputs whose Hamming weight equals one.

o If y is output by a decoder, then wt(y) = 1, and hence an
encoder implements the inverse function of a decoder.

28 / 47



Brute Force Implementation

Recall that bin,(i)[j] denotes the jth bit in the binary
representation of /. Let A; denote the set

A= {ief0:2"—1]| bin,(I\[j] = 1}.

Ifwt(y) =1, then x[j] = \/,€Aj yli]-

29 / 47



Brute Force Implementation - cont

Ifwt(y) =1, then x[j] = \/,€Aj yli]-

Implementing an ENCODER(n):
@ For each output x;, use a separate OR-tree whose inputs are
Wi i€ A,
@ Each such OR-tree has at most 2" inputs.
@ the cost of each OR-tree is O(2").
@ total cost is O(n-2").
@ The delay of each OR-tree is O(log2") = O(n).

30 / 47



Can we do better?

@ We will prove that in every combinational circuit E that
implements an encoder, the cardinality of the graphical cone
of the first output X[0] is at least 2" /2.

@ So for every encoder E: c(E) = €(2") and d(E) = Q(n).
@ The brute force design is not that bad. Can we reduce the
cost?

o Let's try...

31 / 47



ENCODER/(n) - a recursive design

For n =1, is simply x[0] < y[1].
Reduction step:

yi[2"t —1:0] = y[2" — 1:2"1]
yr2"T—1:01 =yt —1:0].

Use two ENCODER/(n — 1) with inputs y; and yg. But,
wi(y) = 1= (wi(yi) = 0) V (wt(yr) = 0).

What does an encoder output when input all-zeros?

32 / 47



Augmenting functionality

Augment the definition of the ENCODER,, function so that its
domain also includes the all-zeros string 0%". We define

ENCODER,(0%") £ 0"

Note that ENCODER’(1) (i.e., x[0] < y[1]) also meets this new
condition, so the induction basis of the correctness proof holds.

33 / 47



Reduction step for ENCODER’(n)

y[2"1 —1:0] ygr[2" —1:0)
Syl —1:277 gyt —1:0]
271—1
2n—1
ENCODER’(n — 1) ENCODER/'(n — 1)
bn —2:0] yn-1 aln —2:0] yn—1

OR-tree(2"1) OR(n — 1)
/‘/ 1 #n -1
x[n — 1] zn —2:0]

34 / 47



Correctness

The circuit ENCODER/(n) implements the Boolean function

ENCODER,.
yr[2n1 —1:0] yr2" —1:0)
Syl -1 Syl —1:0)
ENCODER’(n — 1) ENCODER'(n — 1)
b[n—Q:O]Tnfl u[n—Q:O]Tn*l
||
OR-tree(2"~1) OR(n — 1)
i 5
z[n —1] an—2:0]

35 / 47



Cost Analysis

0 ifn=1
2 ¢(ENCODER/(n — 1))
+c(OR-tree(2™ 1))

+(n—1) - c(oR) if n> 1.

c(ENCODER/(n)) =

Let ¢(n) £ ¢(ENCODER’(n))/c(OR).

C(n):{o ifn=1 )

2-c(n—1)+@"t—-1+n-1) ifn>1

c(n) =0O(n-2").

So c(ENCODER'(n)) (asymptotically) equals the cost of the brute

force design...
36 / 47



Reducing The Cost

Ifwt(y[2" —1:0]) < 1, then

ENCODER,,_1(OR(YL, Yr))
= OR(ENCODER,_1(y1), ENCODER,_1(¥R))-

37 / 47



yL[Q"_l —1:0]
Sy 19
on~!

ENCODER'(n — 1)

bn—2:0/yn—-1

l2t =120
é y[Qn—l —1: 0]

P

ENCODER'(n — 1)

OR-tree(2" 1)

z[n —1]

an—2:0]yn-1
OR(n — 1) i 0
gt -
/‘/n—l .
x[n—2:0]
or(2" 1)
ot

OR-tree(2" 1)

ENCODER*(n — 1)

,‘/1

z[n — 1]



Correctness?

Yr Yr
P gn—1 T
OR(21L—1)
21171
OR-tree(2"1) ENCODER*(n — 1)
1 n—1
z[n — 1] z[n —2:0]

39 / 47



Functional Equivalence

Definition

Two combinational circuits are functionally equivalent if they
implement the same Boolean function.

Claim
Ifwt(y[2" —1:0]) <1, then

ENCODER;,_1(OR(Y], Yr)) = OR(ENCODER,,_1(y} ), ENCODER_1 (Y5

ENCODER/(n) and ENCODER*(n) are functionally equivalent.

ENCODER*(n) implements the ENCODER,, function.

40 / 47



Cost analysis

The cost of ENCODER*(n) satisfies the following recurrence
equation:

* _)o if n=1
c(ENCODER™(n)) = c¢(ENCODER*(n — 1)) + (2" — 1) - c¢(OR) otherwis
C(2¥) = ¢(ENCODER*(k))/c(OR). Then,

0 if k=0
c(2") =
) {C(2k_1) + (2K — 1) otherwise.

we conclude that C(2k) = ©(2%).

c(ENCODER*(n)) = ©(2") - c(OR).

41 / 47



Delay analysis

The delay of ENCODER*(n) satisfies the following recurrence
equation:

0 if n=1
d(ENCODER™(n)) = ¢ max{d(ORr-tree(2"1)),
d(ENCODER*(n — 1) + d(OR))} otherwise.

Since d(OR-tree(2" 1)) = (n — 1) - d(OR), it follows that

d(ENCODER"(n)) = n - d(OR).

42 / 47



Asymptotic Optimality

For every encoder E of input length n:

d(E) = Q(n)
c(E) = Q(2").

Wrong Proof:

Focus on the output x[0] and the Boolean function fy that
corresponds to x[0]. Tempting to claim that |cone(fy)| > 271,
and hence the lower bounds follow.

But, this is not a valid argument because the specification of fj is
a partial function (domain consists only of inputs whose Hamming
weight equals one)... must come up with a correct proof!

43 / 47



Asymptotic Optimality

For every encoder E of input length n:

d(E) = Q(n)

(9}
—
m
~— —

I
)
—~
N

S
~
\

Proof.
Consider the output x[0]. We claim that the graphical cone
satisfies:

|coneg (x[0])| > % 2"

Otherwise, there exists an even index i and an odd index j such
that {/,j} N coneg(x[0]) = 0. Now consider two inputs: e (a unit
vector with a one in position /) and €. The output x[0] is the
same for e;, 02" = flip;(e;) = flip;(e;) and e;. This implies that x[0]
errs for at least of the inputs ¢; or e;. O

'

44 ] 47



Parametric Specification

@ The specification of DECODER(n) and ENCODER(n) uses the
parameter n.

@ The parameter n specifies the length of the input in the case
of a decoder and the length of the output in an encoder.

@ DECODER(8) and DECODER(16) are completely different
circuits.

@ {DECODER(n)}>°; is a family of circuits, one for each input
length.

45 / 47



We discussed:
@ buses
@ decoders

@ encoders

46 / 47



Three main techniques were used in this chapter.
@ Divide & Conquer - a recursive design methodology.

@ Extend specification to make problem easier. Adding
restrictions to the specification made the task easier since we
were able to add assumptions in our recursive designs.

@ Evolution. Naive, correct, costly design. Improved while
preserving functionality to obtain a cheaper design.

47 / 47



