Digital Logic Design: a rigorous approach (C) Chapter 4: Directed Graphs

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 19, 2020

Book Homepage: <http://www.eng.tau.ac.il/~guy/Even-Medina>

Definition (directed graph)

Let *V* denote a finite set and $E \subseteq V \times V$. The pair (V, E) is called a directed graph and is denoted by $G = (V, E)$. An element *v* ∈ *V* is called a vertex or a node. An element (u, v) ∈ *E* is called an arc or a directed edge.

Directed Graphs

Definition (path)

A path or a walk of length ℓ in a directed graph $G = (V, E)$ is a sequence $(v_0, e_0, v_1, e_1, \ldots, v_{\ell-1}, e_{\ell-1}, v_{\ell})$ such that:

•
$$
v_i \in V
$$
, for every $0 \leq i \leq \ell$,

$$
e_i \in E, \text{ for every } 0 \leq i < \ell, \text{ and}
$$

$$
e_i=(v_i,v_{i+1}), \text{ for every } 0\leq i < \ell.
$$

We denote an arc $e = (u,v)$ by $u \stackrel{e}{\longrightarrow} v$ or simply $u \longrightarrow v$. A path of length ℓ is often denoted by

$$
v_0 \stackrel{e_0}{\longrightarrow} v_1 \stackrel{e_1}{\longrightarrow} v_2 \cdots v_{\ell-1} \stackrel{e_{\ell-1}}{\longrightarrow} v_{\ell}.
$$

path terminology

- ¹ A path is closed if the first and last vertices are equal.
- 2 A path is open if the first and last vertices are distinct.
- **3** An open path is simple if every vertex in the path appears only once in the path.
- 4 A closed path is simple if every interior vertex appears only once in the path. (A vertex is an interior vertex if it is not the first or last vertex.)
- 5 A self-loop is a closed path of length 1, e.g., *v* → *v*.

To simplify terminology, we refer to a closed path as a cycle, and to a simple closed path as a simple cycle.

Definition (DAG)

A directed acyclic graph (DAG) is directed graph that does not contain any cycles.

Question

What do you think about the suggestion to turn all the streets into one-way streets so that the resulting directed graph is acyclic?

We say that an arc *u → v* enters *v* and emanates (or exits) from *u*.

Definition (indegree/outdegree)

The in-degree and out-degree of a vertex *v* are denoted by $deg_{in}(v)$ and $deg_{out}(v)$, respectively, and defined by:

$$
deg_{in}(v) \stackrel{\triangle}{=} |\{e \in E \mid e \text{ enters } v\}|,
$$

$$
deg_{out}(v) \stackrel{\triangle}{=} |\{e \in E \mid e \text{ emanates from } v\}|.
$$

Definition (source/sink)

A vertex is a source if $deg_{in}(v) = 0$. A vertex is a sink if $deg_{out}(v) = 0$.

In circuits, sources correspond to inputs and sinks correspond to outputs.

Is this a DAG? How many paths are there from v_0 to v_6 ? What is the in-degree of v_5 ? What is the out-degree of v_4 ? Which vertices are sources? sinks?

Lemma

Every non-simple path contains a (simple) cycle.

Lemma

Let G denote a DAG over n vertices. The length of every path in G is at most $n - 1$.

Lemma

Every DAG has at least one sink.

Corollary

Every DAG has at least one source.

Proof?

Question

Suppose we want to list the vertices. How can we specify the order of the vertices in the list?

Answer

A bijection $\pi : V \to \{0, \ldots, n-1\}$ defines an order. Let v_i denote the vertex such that $\pi(v) = i$. Then π specifies the ordering (v_0, \ldots, v_{n-1}) .

- Note that each vertex appears exactly once in this *n*-tuple. Such an *n*-tuple is called a permutation of the vertices.
- We are interested in permutations of the vertices that satisfy a special condition...
- Order the vertices of a DAG so that if *u* precedes *v*, then (v, u) is not an arc.
- This means that no arc will "point to the left".
- Our main application of topological ordering is for simulating digital circuits.

Let $G = (V, E)$ denote a DAG with $|V| = n$.

Definition (topological ordering)

A bijection $\pi : V \to \{0, \ldots, n-1\}$ is a topological ordering of the vertices of a directed graph (V, E) if

 $(u, v) \in E \Rightarrow \pi(u) < \pi(v)$.

Note that by contraposition, $\pi(v) \leq \pi(u)$ implies that $(u, v) \notin E$.

Why order a DAG in topological ordering?

- **•** consider a DAG where vertices denote assembly steps and arcs denote order.
- example: how to assemble a couch? An arc (*u*, *v*) signifies that the action represented by node *v* cannot begin before the action represented by node *u* is completed: "put the skeleton together" \rightarrow "put pillows on the couch".
- Assembly must use a "legal" schedule of assembly steps: cannot "put the pillows" before "skeleton is constructed".
- Such a schedule is a topological ordering of the assembly instructions.
- Suppose each assembly step can be performed only by a single person. Does it help to have more than one worker? Will they build the couch faster?

Notation:

$$
E_v \stackrel{\triangle}{=} \{e \mid e \text{ enters } v \text{ or emanates from } v\}.
$$

Algorithm 1 TS(V, E) - An algorithm for sorting the vertices of a DAG $G = (V, E)$ in topological ordering.

- **1** Base Case: If $|V| = 1$, then let $v \in V$ and return $(\pi(v) = 0)$.
- Reduction Rule:
	- ¹ Let *v* ∈ *V* denote a sink.
	- \bigcirc return (TS(*V* \{*v*}, *E* \ *E_v*) extended by (π(*v*) = |*V*| − 1))

Theorem

Algorithm TS(*V* , *E*) *computes a topological ordering of a DAG* $G = (V, E)$.

example: longest paths in DAGs

We denote the length of a path Γ by $|\Gamma|$.

Definition

A path Γ that ends in vertex *v* is a longest path ending in *v* if |Γ ′ | ≤ |Γ| for every path Γ′ that ends in *v*.

Note: there may be multiple longest paths ending in *v* (hence "a longest path" rather than "the longest path").

Definition

A path Γ is a longest path in *G* if $|\Gamma'| \leq |\Gamma|$, for every path Γ' in *G*.

Question

Does a longest path always exist in a directed graph?

If a directed graph has a cycle, then there does not exist a longest path. Indeed, one could walk around the cycle forever. However, longest paths do exist in DAGs.

Lemma

If G = (*V* , *E*) *is a DAG, then there exists a longest path that ends in v, for every v. In addition, there exists a longest path in G.*

Proof: The length of every path in a DAG is at most $|V| - 1$. [Or, every path is simple, hence, the number of paths is finite.]

computing longest paths: specification

Goal: compute, for every *v* in a DAG, a longest path that ends in *v*. We begin with the simpler task of computing the length of a longest path.

Specification

Algorithm longest-path is specified as follows.

input: A DAG $G = (V, E)$.

output: A delay function $d: V \to \mathbb{N}$.

functionality: For every vertex $v \in V$: $d(v)$ equals the length of a longest path that ends in *v*.

Application: Model circuits by DAGs. Assume all gates complete their computation in one unit of time. The delay of the output of a gate *v* equals *d*(*v*)

example: delay function

Algorithm 2 longest-path-lengths(V, E) - An algorithm for computing the lengths of longest paths in a DAG. Returns a delay function *d*(*v*).

\n- \n**①** topological sort:
$$
(v_0, \ldots, v_{n-1}) \leftarrow \mathcal{TS}(V, E)
$$
.\n
\n- \n**②** For $j = 0$ to $(n-1)$ do\n
	\n- \n**①** If v_j is a source then $d(v_j) \leftarrow 0$.\n
	\n- \n**②** Else\n
	$$
	d(v_j) = 1 + \max\left\{d(v_j) \mid i < j \text{ and } (v_i, v_j) \in E\right\}.
	$$
	\n
	\n

One could design a "single pass" algorithm; the two pass algorithm is easier to prove.

Let

 $d(v) \triangleq$ output of algorithm $\delta(v) \triangleq$ the length of a longest path that ends in *v*

Theorem

Algorithm correct: $\forall j : d(v_i) = \delta(v_i)$.

Proof: Complete induction on *j*. Basis for sources easy.

We prove now that

- \bigcirc $\delta(v_{i+1}) \geq d(v_{i+1})$, namely, there exists a path Γ that ends in *v*_{j+1} such that $|\Gamma| \ge d(v_{i+1})$.
- 2 $\delta(v_{i+1}) \leq d(v_{i+1})$, namely, for every path Γ that ends in v_{i+1} we have $|\Gamma| \leq d(v_{i+1})$.

In the following definition we consider a directed acyclic graph $G = (V, E)$ with a single sink called the root.

Definition

A DAG $G = (V, E)$ is a rooted tree if it satisfies the following conditions:

- **1** There is a single sink in G.
- ² For every vertex in *V* that is not the sink, the out-degree equals one.

The single sink in rooted tree *G* is called the root, and we denote the root of G by $r(G)$.

Definition

A DAG $G = (V, E)$ is a rooted tree if it satisfies the following conditions:

1 There is a single sink in G.

² For every vertex in *V* that is not a sink, the out-degree equals one.

Theorem

In a rooted tree there is a unique path from every vertex to the root.

composition & decomposition of rooted trees

Figure: A decomposition of a rooted tree *G* into two rooted trees *G*¹ and *G*2.

- each the rooted tree $G_{i}=(V_{i},E_{i})$ is called a tree hanging from $r(G)$.
- Leaf : a source node.
- interior vertex : a vertex that is not a leaf.
- parent : if $u \rightarrow v$, then *v* is the parent of *u*.
- Typically maximum in-degree = 2.
- The rooted trees hanging from *r*(*G*) are ordered. Important in parse trees.
- Arcs are oriented from the leaves towards the root. Useful for modeling circuits:
	- \bullet leaves = inputs
	- \bullet root = output of the circuit.