## Digital Logic Design: a rigorous approach © Chapter 4: Directed Graphs

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 19, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina

### Definition (directed graph)

Let V denote a finite set and  $E \subseteq V \times V$ . The pair (V, E) is called a directed graph and is denoted by G = (V, E). An element  $v \in V$  is called a vertex or a node. An element  $(u, v) \in E$  is called an arc or a directed edge.



# Directed Graphs



### Definition (path)

A path or a walk of length  $\ell$  in a directed graph G = (V, E) is a sequence  $(v_0, e_0, v_1, e_1, \dots, v_{\ell-1}, e_{\ell-1}, v_{\ell})$  such that:

$$\ \, {\bf 0} \ \, v_i \in V, \ \, {\rm for \ \, every} \ \, {\bf 0} \leq i \leq \ell,$$

2) 
$$e_i \in E$$
, for every  $0 \leq i < \ell$ , and

3) 
$$e_i = (v_i, v_{i+1})$$
, for every  $0 \le i < \ell$ .

We denote an arc e = (u, v) by  $u \xrightarrow{e} v$  or simply  $u \longrightarrow v$ . A path of length  $\ell$  is often denoted by

$$v_0 \stackrel{e_0}{\longrightarrow} v_1 \stackrel{e_1}{\longrightarrow} v_2 \cdots v_{\ell-1} \stackrel{e_{\ell-1}}{\longrightarrow} v_{\ell}.$$

## path terminology

- A path is closed if the first and last vertices are equal.
- A path is open if the first and last vertices are distinct.
- An open path is simple if every vertex in the path appears only once in the path.
- A closed path is simple if every interior vertex appears only once in the path. (A vertex is an interior vertex if it is not the first or last vertex.)
- S A self-loop is a closed path of length 1, e.g.,  $v \stackrel{e}{\longrightarrow} v$ .

To simplify terminology, we refer to a closed path as a cycle, and to a simple closed path as a simple cycle.

### Definition (DAG)

A directed acyclic graph (DAG) is directed graph that does not contain any cycles.

### Question

What do you think about the suggestion to turn all the streets into one-way streets so that the resulting directed graph is acyclic?

We say that an arc  $u \xrightarrow{e} v$  enters v and emanates (or exits) from u.

### Definition (indegree/outdegree)

The in-degree and out-degree of a vertex v are denoted by  $deg_{in}(v)$  and  $deg_{out}(v)$ , respectively, and defined by:

$$deg_{in}(v) \stackrel{ riangle}{=} |\{e \in E \mid e \text{ enters } v\}|,$$
  
 $deg_{out}(v) \stackrel{ riangle}{=} |\{e \in E \mid e \text{ emanates from } v\}$ 

### Definition (source/sink)

A vertex is a source if  $deg_{in}(v) = 0$ . A vertex is a sink if  $deg_{out}(v) = 0$ .

In circuits, sources correspond to inputs and sinks correspond to outputs.



Is this a DAG? How many paths are there from  $v_0$  to  $v_6$ ? What is the in-degree of  $v_5$ ? What is the out-degree of  $v_4$ ? Which vertices are sources? sinks?

### Lemma

Every non-simple path contains a (simple) cycle.

#### Lemma

Let G denote a DAG over n vertices. The length of every path in G is at most n - 1.

#### Lemma

Every DAG has at least one sink.

### Corollary

Every DAG has at least one source.

Proof?

### Question

Suppose we want to list the vertices. How can we specify the order of the vertices in the list?

#### Answer

A bijection  $\pi: V \to \{0, \ldots, n-1\}$  defines an order. Let  $v_i$  denote the vertex such that  $\pi(v) = i$ . Then  $\pi$  specifies the ordering  $(v_0, \ldots, v_{n-1})$ .

- Note that each vertex appears exactly once in this *n*-tuple. Such an *n*-tuple is called a permutation of the vertices.
- We are interested in permutations of the vertices that satisfy a special condition...

- Order the vertices of a DAG so that if *u* precedes *v*, then (v, u) is not an arc.
- This means that no arc will "point to the left".
- Our main application of topological ordering is for simulating digital circuits.

Let G = (V, E) denote a DAG with |V| = n.

Definition (topological ordering)

A bijection  $\pi: V \to \{0, \dots, n-1\}$  is a topological ordering of the vertices of a directed graph (V, E) if

$$(u,v)\in E \Rightarrow \pi(u)<\pi(v).$$

Note that by contraposition,  $\pi(v) \leq \pi(u)$  implies that  $(u, v) \notin E$ .

## Why order a DAG in topological ordering?

- consider a DAG where vertices denote assembly steps and arcs denote order.
- example: how to assemble a couch? An arc (u, v) signifies that the action represented by node v cannot begin before the action represented by node u is completed: "put the skeleton together" → "put pillows on the couch".
- Assembly must use a "legal" schedule of assembly steps: cannot "put the pillows" before "skeleton is constructed".
- Such a schedule is a topological ordering of the assembly instructions.
- Suppose each assembly step can be performed only by a single person. Does it help to have more than one worker? Will they build the couch faster?

Notation:

$$E_v \stackrel{\scriptscriptstyle riangle}{=} \{ e \mid e \text{ enters } v \text{ or emanates from } v \}.$$

**Algorithm 1** TS(V, E) - An algorithm for sorting the vertices of a DAG G = (V, E) in topological ordering.

- **3** Base Case: If |V| = 1, then let  $v \in V$  and return  $(\pi(v) = 0)$ .
- Reduction Rule:
  - Let  $v \in V$  denote a sink.
  - ② return (TS(V \ {v}, E \ E<sub>v</sub>) extended by  $(\pi(v) = |V| 1)$ )

### Theorem

Algorithm TS(V, E) computes a topological ordering of a DAG G = (V, E).

# example: longest paths in DAGs



We denote the length of a path  $\Gamma$  by  $|\Gamma|$ .

### Definition

A path  $\Gamma$  that ends in vertex v is a longest path ending in v if  $|\Gamma'| \leq |\Gamma|$  for every path  $\Gamma'$  that ends in v.

Note: there may be multiple longest paths ending in v (hence "a longest path" rather than "the longest path").

Definition

A path  $\Gamma$  is a longest path in G if  $|\Gamma'| \leq |\Gamma|$ , for every path  $\Gamma'$  in G.

### Question

Does a longest path always exist in a directed graph?

If a directed graph has a cycle, then there does not exist a longest path. Indeed, one could walk around the cycle forever. However, longest paths do exist in DAGs.

#### Lemma

If G = (V, E) is a DAG, then there exists a longest path that ends in v, for every v. In addition, there exists a longest path in G.

Proof: The length of every path in a DAG is at most |V| - 1. [Or, every path is simple, hence, the number of paths is finite.]

### computing longest paths: specification

Goal: compute, for every v in a DAG, a longest path that ends in v. We begin with the simpler task of computing the length of a longest path.

Specification

Algorithm longest-path is specified as follows.

input: A DAG G = (V, E).

output: A delay function  $d: V \to \mathbb{N}$ .

functionality: For every vertex  $v \in V$ : d(v) equals the length of a longest path that ends in v.

Application: Model circuits by DAGs. Assume all gates complete their computation in one unit of time. The delay of the output of a gate v equals d(v)

## example: delay function



**Algorithm 2** longest-path-lengths (V, E) - An algorithm for computing the lengths of longest paths in a DAG. Returns a delay function d(v).

One could design a "single pass" algorithm; the two pass algorithm is easier to prove.

### Let

 $d(v) \triangleq$  output of algorithm  $\delta(v) \triangleq$  the length of a longest path that ends in v

### Theorem

Algorithm correct:  $\forall j : d(v_j) = \delta(v_j)$ .

Proof: Complete induction on *j*. Basis for sources easy.

We prove now that

- $\delta(v_{j+1}) \ge d(v_{j+1})$ , namely, there exists a path  $\Gamma$  that ends in  $v_{j+1}$  such that  $|\Gamma| \ge d(v_{j+1})$ .
- ②  $\delta(v_{j+1}) \leq d(v_{j+1})$ , namely, for every path  $\Gamma$  that ends in  $v_{j+1}$  we have  $|\Gamma| \leq d(v_{j+1})$ .

In the following definition we consider a directed acyclic graph G = (V, E) with a single sink called the root.

### Definition

A DAG G = (V, E) is a rooted tree if it satisfies the following conditions:

- There is a single sink in G.
- For every vertex in V that is not the sink, the out-degree equals one.

The single sink in rooted tree G is called the root, and we denote the root of G by r(G).

### Definition

A DAG G = (V, E) is a rooted tree if it satisfies the following conditions:

• There is a single sink in G.

For every vertex in V that is not a sink, the out-degree equals one.

#### Theorem

In a rooted tree there is a unique path from every vertex to the root.

## composition & decomposition of rooted trees



Figure: A decomposition of a rooted tree G into two rooted trees  $G_1$  and  $G_2$ .

- each the rooted tree  $G_i = (V_i, E_i)$  is called a tree hanging from r(G).
- Leaf : a source node.
- interior vertex : a vertex that is not a leaf.
- parent : if  $u \longrightarrow v$ , then v is the parent of u.
- Typically maximum in-degree= 2.

- The rooted trees hanging from r(G) are ordered. Important in parse trees.
- Arcs are oriented from the leaves towards the root. Useful for modeling circuits:
  - leaves = inputs
  - root = output of the circuit.