
Digital Logic Design: a rigorous approach c©
Chapter 4: Directed Graphs

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 19, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1 / 27

http://www.eng.tau.ac.il/~guy/Even-Medina

Directed Graphs

Definition (directed graph)

Let V denote a finite set and E ⊆ V × V . The pair (V ,E) is
called a directed graph and is denoted by G = (V ,E). An element
v ∈ V is called a vertex or a node. An element (u, v) ∈ E is called
an arc or a directed edge.

e10

v0

v1

v3
v2

v4

e3

e2

e0

v5

e5

e6

e7

e8

e9

e1

e4

v7 v6

2 / 27

Directed Graphs

v0

v1

v2

e3

e2

e0

e8

e1

e4

2 / 27

paths

Definition (path)

A path or a walk of length ℓ in a directed graph G = (V ,E) is a
sequence (v0, e0, v1, e1, . . . , vℓ−1, eℓ−1, vℓ) such that:

1 vi ∈ V , for every 0 ≤ i ≤ ℓ,

2 ei ∈ E , for every 0 ≤ i < ℓ, and

3 ei = (vi , vi+1), for every 0 ≤ i < ℓ.

We denote an arc e = (u, v) by u
e
−→ v or simply u −→ v . A path

of length ℓ is often denoted by

v0
e0−→ v1

e1−→ v2 · · · vℓ−1
eℓ−1
−→ vℓ.

3 / 27

path terminology

1 A path is closed if the first and last vertices are equal.

2 A path is open if the first and last vertices are distinct.

3 An open path is simple if every vertex in the path appears
only once in the path.

4 A closed path is simple if every interior vertex appears only
once in the path. (A vertex is an interior vertex if it is not the
first or last vertex.)

5 A self-loop is a closed path of length 1, e.g., v
e
−→ v .

To simplify terminology, we refer to a closed path as a cycle, and
to a simple closed path as a simple cycle.

4 / 27

directed acyclic graph (DAG)

Definition (DAG)

A directed acyclic graph (DAG) is directed graph that does not
contain any cycles.

Question

What do you think about the suggestion to turn all the streets into
one-way streets so that the resulting directed graph is acyclic?

5 / 27

directed graph terminology

We say that an arc u
e
−→ v enters v and emanates (or exits) from

u.

Definition (indegree/outdegree)

The in-degree and out-degree of a vertex v are denoted by
degin(v) and degout(v), respectively, and defined by:

degin(v)
△

= |{e ∈ E | e enters v}|,

degout(v)
△

= |{e ∈ E | e emanates from v}|.

Definition (source/sink)

A vertex is a source if degin(v) = 0. A vertex is a sink if
degout(v) = 0.

In circuits, sources correspond to inputs and sinks correspond to
outputs.

6 / 27

DAG example

e12

v0

e1

v2

v6
v4

v9

v7

e7

e6

e8

e2

e3

e5

e4

e9

e0

v1

v3
v5

v10

v8

e10

e11

e13

Is this a DAG? How many paths are there from v0 to v6? What is
the in-degree of v5? What is the out-degree of v4? Which vertices
are sources? sinks?

7 / 27

DAG properties

Lemma

Every non-simple path contains a (simple) cycle.

Lemma

Let G denote a DAG over n vertices. The length of every path in
G is at most n − 1.

Lemma

Every DAG has at least one sink.

Corollary

Every DAG has at least one source.

Proof?

8 / 27

ordering is a permutation

Question

Suppose we want to list the vertices. How can we specify the order
of the vertices in the list?

Answer

A bijection π : V → {0, . . . , n − 1} defines an order. Let vi denote
the vertex such that π(v) = i . Then π specifies the ordering
(v0, . . . , vn−1).

Note that each vertex appears exactly once in this n-tuple.
Such an n-tuple is called a permutation of the vertices.

We are interested in permutations of the vertices that satisfy
a special condition...

9 / 27

topological ordering

Order the vertices of a DAG so that if u precedes v , then
(v , u) is not an arc.

This means that no arc will “point to the left”.

Our main application of topological ordering is for simulating
digital circuits.

10 / 27

topological ordering

Let G = (V ,E) denote a DAG with |V | = n.

Definition (topological ordering)

A bijection π : V → {0, . . . , n − 1} is a topological ordering of the
vertices of a directed graph (V ,E) if

(u, v) ∈ E ⇒ π(u) < π(v).

Note that by contraposition, π(v) ≤ π(u) implies that (u, v) 6∈ E .

11 / 27

Why order a DAG in topological ordering?

consider a DAG where vertices denote assembly steps and arcs
denote order.

example: how to assemble a couch? An arc (u, v) signifies
that the action represented by node v cannot begin before the
action represented by node u is completed: “put the skeleton
together” → “put pillows on the couch”.

Assembly must use a “legal” schedule of assembly steps:
cannot “put the pillows” before “skeleton is constructed”.

Such a schedule is a topological ordering of the assembly
instructions.

Suppose each assembly step can be performed only by a single
person. Does it help to have more than one worker? Will they
build the couch faster?

12 / 27

algorithm for topological ordering

Notation:

Ev
△

= {e | e enters v or emanates from v}.

Algorithm 1 TS(V ,E) - An algorithm for sorting the vertices of a
DAG G = (V ,E) in topological ordering.

1 Base Case: If |V | = 1, then let v ∈ V and return (π(v) = 0).
2 Reduction Rule:

1 Let v ∈ V denote a sink.
2 return (TS(V \ {v},E \ Ev) extended by (π(v) = |V | − 1))

13 / 27

algorithm correctness

Theorem

Algorithm TS(V ,E) computes a topological ordering of a DAG
G = (V ,E).

14 / 27

example: longest paths in DAGs

e12

v0

e1

v2

v6
v4

v9

v7

e7

e6

e8

e2

e3

e5

e4

e9

e0

v1

v3
v5

v10

v8

e10

e11

e13

15 / 27

longest paths

We denote the length of a path Γ by |Γ|.

Definition

A path Γ that ends in vertex v is a longest path ending in v if
|Γ′| ≤ |Γ| for every path Γ′ that ends in v .

Note: there may be multiple longest paths ending in v (hence “a
longest path” rather than “the longest path”).

Definition

A path Γ is a longest path in G if |Γ′| ≤ |Γ|, for every path Γ′ in G .

Question

Does a longest path always exist in a directed graph?

16 / 27

longest paths in DAGs

If a directed graph has a cycle, then there does not exist a longest
path. Indeed, one could walk around the cycle forever. However,
longest paths do exist in DAGs.

Lemma

If G = (V ,E) is a DAG, then there exists a longest path that ends
in v , for every v . In addition, there exists a longest path in G .

Proof: The length of every path in a DAG is at most |V | − 1. [Or,
every path is simple, hence, the number of paths is finite.]

17 / 27

computing longest paths: specification

Goal: compute, for every v in a DAG, a longest path that ends in
v . We begin with the simpler task of computing the length of a
longest path.

Specification

Algorithm longest-path is specified as follows.

input: A DAG G = (V ,E).

output: A delay function d : V → N.

functionality: For every vertex v ∈ V : d(v) equals the length of a
longest path that ends in v .

Application: Model circuits by DAGs. Assume all gates complete
their computation in one unit of time. The delay of the output of a
gate v equals d(v)

18 / 27

example: delay function

e12

v0

e1

v2

v6
v4

v9

v7

e7

e6

e8

e2

e3

e5

e4

e9

e0

v1

v3
v5

v10

v8

e10

e11

e13

19 / 27

algorithm: longest path lengths

Algorithm 2 longest-path-lengths(V ,E) - An algorithm for comput-
ing the lengths of longest paths in a DAG. Returns a delay function
d(v).

1 topological sort: (v0, . . . , vn−1)← TS(V ,E).
2 For j = 0 to (n − 1) do

1 If vj is a source then d(vj)← 0.
2 Else

d(vj) = 1 + max
{

d(vi) | i < j and (vi , vj) ∈ E
}

.

One could design a “single pass” algorithm; the two pass algorithm
is easier to prove.

20 / 27

algorithm correctness

Let

d(v) , output of algorithm

δ(v) , the length of a longest path that ends in v

Theorem

Algorithm correct: ∀j : d(vj) = δ(vj).

Proof: Complete induction on j . Basis for sources easy.

21 / 27

algorithm correctness - cont.

We prove now that

1 δ(vj+1) ≥ d(vj+1), namely, there exists a path Γ that ends in
vj+1 such that |Γ| ≥ d(vj+1).

2 δ(vj+1) ≤ d(vj+1), namely, for every path Γ that ends in vj+1

we have |Γ| ≤ d(vj+1).

22 / 27

rooted trees

In the following definition we consider a directed acyclic graph
G = (V ,E) with a single sink called the root.

Definition

A DAG G = (V ,E) is a rooted tree if it satisfies the following
conditions:

1 There is a single sink in G .

2 For every vertex in V that is not the sink, the out-degree
equals one.

The single sink in rooted tree G is called the root, and we denote
the root of G by r(G).

23 / 27

paths to the root

Definition

A DAG G = (V ,E) is a rooted tree if it satisfies the following
conditions:

1 There is a single sink in G .

2 For every vertex in V that is not a sink, the out-degree equals
one.

Theorem

In a rooted tree there is a unique path from every vertex to the
root.

24 / 27

composition & decomposition of rooted trees

G1 G2

r(G1) r(G2)

r(G)r

r1 r2

Figure: A decomposition of a rooted tree G into two rooted trees G1 and
G2.

25 / 27

Terminology

each the rooted tree Gi = (Vi ,Ei) is called a tree hanging
from r(G).

Leaf : a source node.

interior vertex : a vertex that is not a leaf.

parent : if u −→ v , then v is the parent of u.

Typically maximum in-degree= 2.

26 / 27

Applications

The rooted trees hanging from r(G) are ordered. Important in
parse trees.

Arcs are oriented from the leaves towards the root. Useful for
modeling circuits:

leaves = inputs
root = output of the circuit.

27 / 27

