Digital Logic Design: a rigorous approach (©)

Chapter 4: Directed Graphs

Guy Even Moti Medina
School of Electrical Engineering Tel-Aviv Univ.

March 19, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1/ 27

http://www.eng.tau.ac.il/~guy/Even-Medina

Directed Graphs

Definition (directed graph)

Let V denote a finite set and E C V x V. The pair (V,E) is
called a directed graph and is denoted by G = (V, E). An element
v € V is called a vertex or a node. An element (u,v) € E is called
an arc or a directed edge.

2 /27

Directed Graphs

€1

2 /27

paths

Definition (path)

A path or a walk of length ¢ in a directed graph G = (V,E) is a
sequence (vp, €y, V1, €1, ..., Vy—1, €—1, v¢) such that:

Q vieV, forevery 0 <</,
Q e € E, forevery 0 <i </ and
Q e = (vi,viy1), forevery 0 < i< /.

4

We denote an arc e = (u,v) by u —=+ v or simply u — v. A path
of length £ is often denoted by

€0 €1 €r—1
Vo ——> V1T —> Vo V1 — Vp.

3 /27

path terminology

@ A path is closed if the first and last vertices are equal.
© A path is open if the first and last vertices are distinct.

© An open path is simple if every vertex in the path appears
only once in the path.

© A closed path is simple if every interior vertex appears only
once in the path. (A vertex is an interior vertex if it is not the
first or last vertex.)

@ A self-loop is a closed path of length 1, e.g., v — v.

To simplify terminology, we refer to a closed path as a cycle, and
to a simple closed path as a simple cycle.

4 /27

directed acyclic graph (DAG)

Definition (DAG)
A directed acyclic graph (DAG) is directed graph that does not
contain any cycles.

Question
What do you think about the suggestion to turn all the streets into
one-way streets so that the resulting directed graph is acyclic?

4

5 / 27

directed graph terminology

We say that an arc u —= v enters v and emanates (or exits) from
u.

Definition (indegree/outdegree)

The in-degree and out-degree of a vertex v are denoted by
degi,(v) and deg,,.(v), respectively, and defined by:

deg;,(v) = |{e € E | e enters v}|,

deg,,.(v) = |{e € E | e emanates from v}|.

Definition (source/sink)

A vertex is a source if degj,(v) = 0. A vertex is a sink if
degoye(v) = 0.

In circuits, sources correspond to inputs and sinks correspond to
outputs.

6 / 27

DAG example

Is this a DAG? How many paths are there from vy to vg? What is
the in-degree of v57 What is the out-degree of v4? Which vertices
are sources? sinks?

7 /27

DAG properties

Every non-simple path contains a (simple) cycle.

Lemma

Let G denote a DAG over n vertices. The length of every path in
G is at most n — 1.

Lemma

Every DAG has at least one sink.

Every DAG has at least one source.

Proof?

8 /27

ordering is a permutation

Suppose we want to list the vertices. How can we specify the order
of the vertices in the list?

A bijection : V — {0,...,n— 1} defines an order. Let v; denote
the vertex such that 7(v) = i. Then 7 specifies the ordering
(Vo, 000 g Vn—l)-

@ Note that each vertex appears exactly once in this n-tuple.
Such an n-tuple is called a permutation of the vertices.

@ We are interested in permutations of the vertices that satisfy

a special condition...

9 /27

topological ordering

@ Order the vertices of a DAG so that if u precedes v, then
(v, u) is not an arc.

@ This means that no arc will “point to the left".

@ Our main application of topological ordering is for simulating
digital circuits.

10 / 27

topological ordering

Let G = (V, E) denote a DAG with |V| = n.

Definition (topological ordering)
A bijection 7 : V — {0,...,n — 1} is a topological ordering of the
vertices of a directed graph (V, E) if

(u,v) e E = 7(u) <m(v).

Note that by contraposition, 7(v) < m(u) implies that (u,v) & E.

11 / 27

Why order a DAG in topological ordering?

@ consider a DAG where vertices denote assembly steps and arcs
denote order.

@ example: how to assemble a couch? An arc (u, v) signifies
that the action represented by node v cannot begin before the
action represented by node u is completed: “put the skeleton
together” — “put pillows on the couch”.

@ Assembly must use a “legal” schedule of assembly steps:
cannot “put the pillows" before “skeleton is constructed”.

@ Such a schedule is a topological ordering of the assembly
instructions.

@ Suppose each assembly step can be performed only by a single
person. Does it help to have more than one worker? Will they
build the couch faster?

12 / 27

algorithm for topological ordering

Notation:

JAN
E, = {e| e enters v or emanates from v}.

Algorithm 1 TS(V, E) - An algorithm for sorting the vertices of a
DAG G = (V, E) in topological ordering.
© Base Case: If |[V| =1, then let v € V and return (7(v) = 0).
@ Reduction Rule:

@ Let v € V denote a sink.
@ return (TS(V \ {v}, E\ E,) extended by (n(v) = |V|—1))

13 / 27

algorithm correctness

Algorithm TS(V, E) computes a topological ordering of a DAG
G =(V,E).

14 / 27

example: longest paths in DAGs

15 / 27

longest paths

We denote the length of a path ' by |I].

Definition

A path I that ends in vertex v is a longest path ending in v if
[T'| < || for every path " that ends in v.

Note: there may be multiple longest paths ending in v (hence “a
longest path” rather than “the longest path”).

Definition
A path I is a longest path in G if || < |['|, for every path " in G.

Does a longest path always exist in a directed graph?

16 / 27

longest paths in DAGs

If a directed graph has a cycle, then there does not exist a longest
path. Indeed, one could walk around the cycle forever. However,
longest paths do exist in DAGs.

If G =(V,E) is a DAG, then there exists a longest path that ends
in v, for every v. In addition, there exists a longest path in G.

Proof: The length of every path in a DAG is at most |V| — 1. [Or,
every path is simple, hence, the number of paths is finite.]

17 / 27

computing longest paths: specification

Goal: compute, for every v in a DAG, a longest path that ends in
v. We begin with the simpler task of computing the length of a
longest path.

Specification

Algorithm longest-path is specified as follows.
input: A DAG G = (V,E).
output: A delay function d : V — N.

functionality: For every vertex v € V: d(v) equals the length of a
longest path that ends in v.

Application: Model circuits by DAGs. Assume all gates complete
their computation in one unit of time. The delay of the output of a
gate v equals d(v)

18 / 27

example: delay function

19 / 27

algorithm: longest path lengths

Algorithm 2 longest-path-lengths(V/, E) - An algorithm for comput-
ing the lengths of longest paths in a DAG. Returns a delay function
d(v).
Q topological sort: (vo,...,vp—1) < TS(V,E).
@ Forj=0to (n—1)do
@ If v; is a source then d(v;) < 0.
@ Else

d(vj)) =1+ max{d(v,-) | i <jand (vi,vj) € E}.

One could design a “single pass” algorithm; the two pass algorithm
is easier to prove.

20 / 27

algorithm correctness

Let

d(v) £ output of algorithm
5(v) £ the length of a longest path that ends in v

Algorithm correct: Vj : d(vj) = 0(vj).

Proof: Complete induction on j. Basis for sources easy.

21 / 27

algorithm correctness - cont.

We prove now that
Q 6(vj+1) > d(vj41), namely, there exists a path I that ends in
Vj+1 such that || > d(vjy1).
@ 6(vj+1) < d(vj41), namely, for every path I that ends in vji1
we have || < d(vj41).

22 /27

rooted trees

In the following definition we consider a directed acyclic graph
G = (V, E) with a single sink called the root.

Definition

A DAG G = (V,E) is a rooted tree if it satisfies the following
conditions:

@ There is a single sink in G.

© For every vertex in V that is not the sink, the out-degree
equals one.

The single sink in rooted tree G is called the root, and we denote
the root of G by r(G).

23 / 27

paths to the root

A DAG G = (V,E) is a rooted tree if it satisfies the following
conditions:

@ There is a single sink in G.

© For every vertex in V that is not a sink, the out-degree equals

Theorem

o

=}

@
\

In a rooted tree there is a unique path from every vertex to the
root.

24 /27

composition & decomposition of rooted trees

Figure: A decomposition of a rooted tree G into two rooted trees G; and
Gy.

25 / 27

Terminology

@ each the rooted tree G; = (V}, E;) is called a tree hanging
from r(G).

@ Leaf : a source node.

@ interior vertex : a vertex that is not a leaf.

@ parent : if u — v, then v is the parent of u.

@ Typically maximum in-degree= 2.

26 / 27

Applications

@ The rooted trees hanging from r(G) are ordered. Important in
parse trees.

@ Arcs are oriented from the leaves towards the root. Useful for
modeling circuits:

o leaves = inputs
@ root = output of the circuit.

27 / 27

