Digital Logic Design: a rigorous approach (C) Chapter 17: Flip-Flops

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

January 4, 2016

Book Homepage: <http://www.eng.tau.ac.il/~guy/Even-Medina>

- **1** How is time measured in a synchronous circuit?
- 2 What is a "clock" in a microprocessor?
- ³ What is the frequency of a clock?
- 4 How are bits stored?
- **5** What is the functionality of a flip-flop?
- ⁶ What is a stable state? How many stable states does a flip-flop have?
- **2** How does a flip-flop move from one stable state to another?
- 8 How fast is this transition?

The clock

the clock is generated by rectifying and amplifying a signal generated by special non-digital devices (e.g., crystal oscillators).

Definition

A clock is a periodic logical signal that oscillates instantaneously between logical one and logical zero. There are two instantaneous transitions in every clock period: (i) in the beginning of the clock period, the clock transitions instantaneously from zero to one; and (ii) at some time in the interior of the clock period, the clock transitions instantaneously from one to zero.

Figure: (A) A symmetric clock (B) narrow pulses (C) wide pulses.

- A clock partitions time into discrete intervals.
- \bullet t_i the starting time of the *i*th clock period.
- $[t_i, t_{i+1})$ -clock cycle i.

Definition (edge-triggered flip-flop)

Inputs: $D(t)$ and a clock CLK.

Output: $Q(t)$.

- Parameters: Four parameters are used to specify the functionality of a flip-flop:
	- \circ Setup-time denoted by $t_{\rm{sur}}$
	- \bullet Hold-time denoted by t_{hold} ,
	- \bullet Contamination-delay denoted by t_{cont} , and
	- \bullet Propagation-delay denoted by t_{pd} .

Terminology Require $-t_{su} < t_{hold} < t_{cont} < t_{pd}$.

critical segment: $\left. C_i \stackrel{\scriptscriptstyle\triangle}{=} \left[t_i - t_{su}, t_i + t_{hold} \right] \right.$

instability segment: $A_i \stackrel{\scriptscriptstyle\triangle}{=} \left[t_i+t_{cont},t_i+t_{pd}\right]$

Functionality: If $D(t)$ is stable during the critical segment C_i , then $Q(t) = D(t_i)$ during the interval $(t_i + t_{pd}, t_{i+1} + t_{cont}).$

Critical and instability segments in a flip-flop

Figure: The critical segment $C_i = [t_i - t_{su}, t_i + t_{hold}]$ and instability segment $A_i = [t_i + t_{cont}, t_i + t_{pd}]$ corresponding the clock period starting at t_i .

Timing diagram of a Flip Flop

- \bullet The *x*-axis corresponds to time.
- A green interval means that the signal is stable during this interval.
- A red interval means that the signal may be instable.

Remarks about flip-flops

- **1** The assumption $-t_{su} < t_{hold} < t_{cont} < t_{pd}$ implies that the critical segment C_i and the instability segment A_i are disjoint.
- \bullet If $D(t)$ is stable during the critical segment C_i , then the value of $D(t)$ during the critical segment \mathcal{C}_i is well defined and equals $D(t_i)$.
- \bullet The flip-flop samples the input signal $D(t)$ during the critical segment C_i . Sampling is successful only if $D(t)$ is stable while it is sampled.
- \bullet If the input $D(t)$ is stable during the critical segments $\{ \mathcal{C}_i \}_i,$ then the output $Q(t)$ is stable in between the instability segments $\{A_i\}_i$.
- \bullet The stability of the input $D(t)$ during the critical segments depends on the clock period. We will later see that slowing down the clock (i.e., increasing the clock period) helps in achieving a stable signal $D(t)$ during the critical segments.

The special "arrow" that marks the clock input port.

The timing analysis fails if

$$
C_i\cap A_i\neq\emptyset.
$$

This could happen, if $t_{hold} > t_{cont}$ (in contradiction to the definition of a flip-flop).

Flip-flops play a crucial role in bounding the segments of time during which signals may be instable. Informally, uncertainty increases as the segments of stability become shorter. Flip-flops help bounding instability.

A chain of k inverters and a chain of k flip-flops

timing: chain of inverters vs. chain of FFs

Definition

A clock enabled flip-flop is defined as follows.

Inputs: Digital signals $D(t)$, $CE(t)$ and a clock CLK. Output: A digital signal $Q(t)$.

Functionality: If $D(t)$ and $CE(t)$ are stable during the critical segment C_i , then for every $t \in (t_i + t_{pd}, t_{i+1} + t_{cont})$

$$
Q(t) = \begin{cases} D(t_i) & \text{if } \text{CE}(t_i) = 1 \\ Q(t_i) & \text{if } \text{CE}(t_i) = 0. \end{cases}
$$

We refer to the input signal $CE(t)$ as the clock-enable signal. Note that the input $CE(t)$ indicates whether the flip-flop samples the input $D(t)$ or maintains its previous value.

Which design is a correct clock enabled FF?

- **•** memory devices: flip-flops and the clock signal.
- The flip-flop samples the value of the input at the "end" of a clock cycle and outputs the sampled value during the "next" clock cycle.
- Flip-flops play a crucial role in bounding the segments of time during which signals may be instable.
- Flip-flops and combinational circuits have opposite roles.
	- Combinational circuits compute interesting Boolean functions but increase uncertainty.
	- Flip-flops, on the other hand, output the same value that is fed as input but they provide certainty.