
Digital Logic Design: a rigorous approach c©
Chapter 2: Induction and Recursion

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 16, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1 / 13

http://www.eng.tau.ac.il/~guy/Even-Medina

Induction - an example

Definition

Sn
△

=

n∑

i=1

i .

Note: S0 = 0,S1 = 1,S2 = 1 + 2 = 3, . . .

Theorem

For every n ∈ N:

Sn =
n · (n + 1)

2
. (1)

2 / 13

Proof by induction

Abstract formulation: denote by P the set of all natural numbers n
that satisfy a property we are interested in. Our goal is to prove
that every n satisfies this property, namely, that P = N.
The proof consists of three steps:

1 Induction basis: prove that 0 ∈ P .

2 Induction hypothesis: assume that n ∈ P .

3 Induction step: prove that if n ∈ P , then n + 1 ∈ P .

Theorem

Let P ⊆ N. If (i) 0 ∈ P and (ii) n ∈ P implies that (n + 1) ∈ P,
for every n ∈ N, then P = N.

3 / 13

Complete Induction

Theorem

Let P ⊆ N. If (i) 0 ∈ P and (ii) n ∈ P implies that (n + 1) ∈ P,
for every n ∈ N, then P = N.

Theorem (Complete Induction)

Let P ⊆ N. Assume that (i) 0 ∈ P and (ii) for every n ∈ N,
{0, . . . , n} ⊆ P implies that (n + 1) ∈ P. Then, P = N.

4 / 13

Induction - another example

A generalization of De Morgan’s law to more than two sets. Here,
the statement is about sets, not numbers.

Theorem

Let n ≥ 2. For every n sets A1, . . . ,An,

U \ (A1 ∪ · · · ∪ An) = Ā1 ∩ · · · ∩ Ān. (2)

5 / 13

Recursion

A method to define a function (or other structures) for large
arguments from small arguments.
Advantages: simple and suits induction.
A recursive definition of a function f : N → N has two parts:

1 the base cases - for small values of n

2 reduction rules - for large values of n

6 / 13

Recursion: the factorial function

Definition

the factorial function f : N+ → N
+ is defined recursively by:

(i) Base case: f (1) = 1.

(ii) Reduction rule: f (n + 1) = f (n) · (n + 1).

Claim

f (n) = 1 · 2 · · · · n.

Proof.

By induction on n.

Notation: denote f (n) by n!

7 / 13

Recursion: Fibonacci sequence

Definition

We define the function g : N → N recursively as follows.

(i) Base case: g(0) = 0 and g(1) = 1.

(ii) Reduction rule: g(n + 2) = g(n + 1) + g(n).

Following the reduction rule we obtain:

g(2) = g(1) + g(0) = 1 + 0 = 1.

g(3) = g(2) + g(1) = 1 + 1 = 2.

g(4) = g(3) + g(2) = 2 + 1 = 3.

g(5) = g(4) + g(3) = 3 + 2 = 5.

Self-reference does not lead to an infinite loop. Why? Self
references are to smaller arguments so the chain of self-references
eventually ends with a base case.

8 / 13

Recursion: Fibonacci sequence (cont.)

Recall: g(0) = 0, g(1) = 1, and g(n + 2) = g(n + 1) + g(n).

Denote the golden ratio by ϕ
△

= 1+
√
5

2 . ϕ ≈ 1.62 is a solution of
x2 = x + 1.

Lemma

∀n ∈ N g(n) ≤ ϕn−1

Proof: induction on n.

9 / 13

Recursion: conclusions

a way to define a function, a structure, or even an algorithm.

bases cases for n ≤ n0

reduction rules for n > n0

easy to formulate

easy to prove properties using induction.

10 / 13

One-to-one and Onto Functions

Definition

Let f : A → B denote a function from A to B .

1 The function f is one-to-one if a 6= a′ implies that
f (a) 6= f (a′).

2 The function f is onto if, for every b ∈ B , there exists an
a ∈ A such that f (a) = b.

3 The function f is a bijection if it is both onto and one-to-one.

11 / 13

Comparing Cardinalities

Lemma

Let A and B denote two finite sets. If there exists a one-to-one
function f : A → B, then |A| ≤ |B |.

Lemma

Let A and B denote two finite sets. If there exists an onto function
f : A → B, then |A| ≥ |B |.

12 / 13

Pigeonhole Principle

If there exists a one-to-one function f : A → B , then
|A| ≤ |B |.

The contrapositive statement: if |A| > |B |, then every
function f : A → B is not one-to-one.

We are now ready to formalize the Pigeonhole Principle, as follows.

The Pigeonhole Principle

Let f : A → {1, . . . , n}, and |A| > n, then f is not one-to-one, i.e.,
there are a1, a2 ∈ A ; a1 6= a2, such that f (a1) = f (a2).

13 / 13

