Digital Logic Design: a rigorous approach © Chapter 2: Induction and Recursion

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 16, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina

Definition

$$S_n \stackrel{\scriptscriptstyle riangle}{=} \sum_{i=1}^n i$$
.

Note:
$$S_0 = 0, S_1 = 1, S_2 = 1 + 2 = 3, \dots$$

Theorem

For every $n \in \mathbb{N}$:

$$S_n = \frac{n \cdot (n+1)}{2} \,. \tag{1}$$

Abstract formulation: denote by P the set of all natural numbers n that satisfy a property we are interested in. Our goal is to prove that every n satisfies this property, namely, that $P = \mathbb{N}$. The proof consists of three steps:

- **1** Induction basis: prove that $0 \in P$.
- 2 Induction hypothesis: assume that $n \in P$.
- Solution step: prove that if $n \in P$, then $n + 1 \in P$.

Theorem

Let $P \subseteq \mathbb{N}$. If (i) $0 \in P$ and (ii) $n \in P$ implies that $(n + 1) \in P$, for every $n \in \mathbb{N}$, then $P = \mathbb{N}$.

Theorem

Let $P \subseteq \mathbb{N}$. If (i) $0 \in P$ and (ii) $n \in P$ implies that $(n + 1) \in P$, for every $n \in \mathbb{N}$, then $P = \mathbb{N}$.

Theorem (Complete Induction)

Let $P \subseteq \mathbb{N}$. Assume that (i) $0 \in P$ and (ii) for every $n \in \mathbb{N}$, $\{0, \ldots, n\} \subseteq P$ implies that $(n + 1) \in P$. Then, $P = \mathbb{N}$.

A generalization of De Morgan's law to more than two sets. Here, the statement is about sets, not numbers.

Theorem Let $n \ge 2$. For every n sets A_1, \ldots, A_n , $U \setminus (A_1 \cup \cdots \cup A_n) = \overline{A}_1 \cap \cdots \cap \overline{A}_n$. (2)

A method to define a function (or other structures) for large arguments from small arguments.

Advantages: simple and suits induction.

- A recursive definition of a function $f : \mathbb{N} \to \mathbb{N}$ has two parts:
 - **(**) the base cases for small values of n
 - reduction rules for large values of n

Definition

the factorial function $f : \mathbb{N}^+ \to \mathbb{N}^+$ is defined recursively by:

- **(a)** Base case: f(1) = 1.
- **(**) Reduction rule: $f(n+1) = f(n) \cdot (n+1)$.

Claim

$$f(n)=1\cdot 2\cdot \cdots n.$$

Proof.

By induction on n.

Notation: denote f(n) by n!

Recursion: Fibonacci sequence

Definition

We define the function $g:\mathbb{N}\to\mathbb{N}$ recursively as follows.

(a) Base case:
$$g(0) = 0$$
 and $g(1) = 1$.

D Reduction rule:
$$g(n+2) = g(n+1) + g(n)$$
.

Following the reduction rule we obtain:

$$g(2) = g(1) + g(0) = 1 + 0 = 1.$$

$$g(3) = g(2) + g(1) = 1 + 1 = 2.$$

$$g(4) = g(3) + g(2) = 2 + 1 = 3.$$

$$g(5) = g(4) + g(3) = 3 + 2 = 5.$$

Self-reference does not lead to an infinite loop. Why? Self references are to smaller arguments so the chain of self-references eventually ends with a base case.

Recall:
$$g(0) = 0$$
, $g(1) = 1$, and $g(n+2) = g(n+1) + g(n)$.
Denote the golden ratio by $\varphi \stackrel{\triangle}{=} \frac{1+\sqrt{5}}{2}$. $\varphi \approx 1.62$ is a solution of $x^2 = x + 1$.

Lemma

 $\forall n \in \mathbb{N} \ g(n) \leq \varphi^{n-1}$

Proof: induction on n.

- a way to define a function, a structure, or even an algorithm.
- bases cases for $n \le n_0$
- reduction rules for $n > n_0$
- easy to formulate
- easy to prove properties using induction.

Definition

Let $f : A \to B$ denote a function from A to B.

- The function f is one-to-one if $a \neq a'$ implies that $f(a) \neq f(a')$.
- The function f is onto if, for every b ∈ B, there exists an a ∈ A such that f(a) = b.
- **③** The function f is a bijection if it is both onto and one-to-one.

Lemma

Let A and B denote two finite sets. If there exists a one-to-one function $f : A \rightarrow B$, then $|A| \leq |B|$.

Lemma

Let A and B denote two finite sets. If there exists an onto function $f : A \rightarrow B$, then $|A| \ge |B|$.

- If there exists a one-to-one function $f : A \rightarrow B$, then $|A| \le |B|$.
- The contrapositive statement: if |A| > |B|, then every function $f : A \rightarrow B$ is not one-to-one.

We are now ready to formalize the Pigeonhole Principle, as follows.

The Pigeonhole Principle

Let $f : A \to \{1, \ldots, n\}$, and |A| > n, then f is not one-to-one, i.e., there are $a_1, a_2 \in A$; $a_1 \neq a_2$, such that $f(a_1) = f(a_2)$.