Digital Logic Design: a rigorous approach (©)

Chapter 2: Induction and Recursion

Guy Even Moti Medina
School of Electrical Engineering Tel-Aviv Univ.

March 16, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1/ 13

http://www.eng.tau.ac.il/~guy/Even-Medina

Induction - an example

Definition

For every n € N:

2 /13

Proof by induction

Abstract formulation: denote by P the set of all natural numbers n
that satisfy a property we are interested in. Our goal is to prove
that every n satisfies this property, namely, that P = N.

The proof consists of three steps:

© Induction basis: prove that 0 € P.
@ Induction hypothesis: assume that n € P.
© Induction step: prove that if n€ P, then n+1 € P.

Let PCN. If (i) 0 € P and (ii) n € P implies that (n+1) € P,
for every n € N, then P = N.

3 /13

Complete Induction

Let PCN. If (i) 0 € P and (ii) n € P implies that (n+ 1) € P,
for every n € N, then P = N.

Theorem (Complete Induction)

Let P C N. Assume that (i) 0 € P and (ii) for every n € N,
{0,...,n} C P implies that (n+1) € P. Then, P =N.

4 /13

Induction - another example

A generalization of De Morgan's law to more than two sets. Here,
the statement is about sets, not numbers.

Let n > 2. For every n sets A1, ..., An,

U\(ALU---UA,) =AN---NA,. (2)

5 /13

Recursion

A method to define a function (or other structures) for large
arguments from small arguments.

Advantages: simple and suits induction.

A recursive definition of a function f : N — N has two parts:

@ the base cases - for small values of n

@ reduction rules - for large values of n

6 /13

Recursion: the factorial function

Definition

the factorial function f : NT — N7 is defined recursively by:
@ Basecase: f(1) =1.

@ Reduction rule: f(n+1)=f(n)-(n+1).

f(n):1-2--..n_
By induction on n. O

Notation: denote f(n) by n!

7 /13

Recursion: Fibonacci sequence

Definition

We define the function g : N — N recursively as follows.
@ Basecase: g(0) =0and g(1) = 1.
@ Reduction rule: g(n+2) = g(n+1) + g(n).

Following the reduction rule we obtain:

g(2) =g(1)+g(0)=1+0=
§B3)=5(2)+g(l)=1+1=
g(4)=5(B)+g(2)=2+1=
g(5) =g(4)+g(3) =3+2=5.

Self-reference does not lead to an infinite loop. Why? Self
references are to smaller arguments so the chain of self-references
eventually ends with a base case.

8 /13

Recursion: Fibonacci sequence (cont.)

Recall: g(0) =0, g(1) =1, and g(n+2) = g(n+ 1) + g(n).
Denote the golden ratio by ¢ = # @ ~ 1.62 is a solution of
x?=x+1.

VneN g(n) <" !

Proof: induction on n.

9 /13

Recursion: conclusions

a way to define a function, a structure, or even an algorithm.
bases cases for n < ng
reduction rules for n > ng

easy to formulate

e © ¢ ¢ ¢

easy to prove properties using induction.

10 / 13

One-to-one and Onto Functions

Let f : A — B denote a function from A to B.

@ The function f is one-to-one if a # a’ implies that
f(a) # f(a).

@ The function f is onto if, for every b € B, there exists an
a € A such that f(a) = b.

© The function f is a bijection if it is both onto and one-to-one.

11 / 13

Comparing Cardinalities

Lemma

Let A and B denote two finite sets. If there exists a one-to-one
function f : A — B, then |A| < |B|.

Lemma

Let A and B denote two finite sets. If there exists an onto function
f:A— B, then |A| > |B|.

12 /13

Pigeonhole Principle

@ If there exists a one-to-one function f : A — B, then
Al < B

@ The contrapositive statement: if |A| > |B|, then every
function f : A — B is not one-to-one.

We are now ready to formalize the Pigeonhole Principle, as follows.

The Pigeonhole Principle

Let f: A— {1,...,n}, and |A| > n, then f is not one-to-one, i.e.,
there are a1,ax € A; a1 # ap, such that f(a;1) = f(a2).

13 / 13

