Digital Logic Design: a rigorous approach (<)

Chapters 17-20: Flip-Flops, Synchronous Circuits, and Finite
State Machines

Guy Even Moti Medina
School of Electrical Engineering Tel-Aviv Univ.

December 21, 2021

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1/ 75

http://www.eng.tau.ac.il/~guy/Even-Medina

Preliminary questions

@ How is time measured in a synchronous circuit?
@ What is a “clock” in a microprocessor?

© What is the frequency of a clock?

@ What is memory? How are bits stored?

2/75

The clock

the clock is generated by rectifying and amplifying a signal
generated by special non-digital devices (e.g., crystal oscillators).

Definition

A clock is a periodic logical signal that oscillates instantaneously
between logical one and logical zero. There are two instantaneous
transitions in every clock period: (i) in the beginning of the clock
period, the clock transitions instantaneously from zero to one; and
(ii) at some time in the interior of the clock period, the clock
transitions instantaneously from one to zero.

logical level .
clock fall clock rise

clock period

pulse width
———————————— < v v

time

3 /75

Clock cycles

A clock partitions time into discrete intervals.
t; - the starting time of the ith clock cycle.
[ti, tit1) -clock cycle /.

Clock period = tiy; — t;.

We assume that the clock period equals 1.

tiy1 =t +1.

4/ 75

Flip-Flop

A flip-flop is defined as follows.

Inputs: Digital signals D(t) and a clock CLK.

Output: A digital signal Q(t).

Functionality:

Q(t+1) = D(t).

t [Dl | Q]
0 1 ?
1 0 1
2 0 0
3 1 0
4 1 1

5 /75

Clock enabled flip-flops

Definition
A clock enabled flip-flop is defined as follows.
Inputs: Digital signals D(t), CE(t) and a clock CLK.
Output: A digital signal Q(t).

Functionality:

D(t) if ce(t)=1
Q(t) if ce(t) =0.

Q(t—l—l)—{

v

We refer to the input signal CE(t) as the clock-enable signal. Note
that the input CE(t) indicates whether the flip-flop samples the
input D(t) or maintains its previous value.

6 /75

Which design is a correct clock enabled FF?

CE(t) —e

CLK —&|

CE(t) —e
AND - FF

CLK —#|

7/75

The Zero Delay Model

©00

Transitions of all signals are instantaneous.
Combinational gates: t,q = tcons = 0.

Flip-flops satisfy:
Q(t+1) = D(t).

Simplified model for specifying and simulating the
functionality of circuits with flip-flops.

For a signal X, let X; denote its value during the ith clock
cycle.

8 /75

o]
O
<
©
B
c
o
S
o
o,
wn
E
o
S
e
X
L

Zi
0

Yi
0

A;
0

XOR

L]

FF

CLK —®

9/75

Sequential Adder

A sequential adder is defined as follows.

Inputs: A, B and a clock signal CLK, where A;, B; € {0, 1}.
Output: S, where S; € {0,1}.

Functionality: Then, for every i > 0,
(A[i : 0]) + (B[i : 0]) = (S[i : 0]) (mod 2/*+1).

10 / 75

Sequential Adder Implementation

11/ 75

Sequential Adder: Correctness

ZA 2J+ZB = Zs 2+ coue(i) - 271,

Proof

The proof is by induction on .
The induction basis for i = 0 follows from the functionality of the

full-adder:

Ao + Bo + Cin(0) = 2+ Cout(0) + So -

This requires that Cj,(0) = 0! Namely, that the FF is initialized to
zero. (We will discuss how to partly mitigate the issue of
initialization later.) O

12 /75

Sequential Adder: Implementation - correctness (cont.)

We now prove the induction step for i > 0.

i i i—1 i—1
SA Y+ B Y =(A+B)2+> AP+ BV
Jj=0 Jj=0 Jj=0 Jj=0
i—1
=(Ai+B)-2+> 52+ Coul(i—1)-2
Jj=0
i—1
= (Gal(i)+ A +B) 20+ 8- 2
j=0

i—1
= (Si+2 Com(i)) 20 +Y 52
Jj=0

=552 + Courli) - 271,
Jj=0

13 / 75

Relation between RCA(n) and Sequential Adder

© FA; is “simulated” by the FA (in Seq. Adder) in the i'th clock
cycle.

@ We can view RCA(n) as an “unrolling” of the Seq. Adder.

Bln—1] Aln—1] Bn—2] An—2]

c

FAp 1

S

FAp—2
c s
|

C[n]Sn—1] Cln—1] Sn-2]

— clo]

14 / 75

Comparison with Combinational Lower Bounds

@ Addition and XOR, have functional cone of size n.
@ Every combinational circuit has cost Q(n) and delay Q(log n).

© But sequential versions have cost O(1)! How can that be?

15 / 75

A term register is used to define a memory device that stores a bit
or more. There are two main types of register depending on how
their contents are loaded.

© Parallel Load Register
@ Shift Register (also called a serial load register)

16 / 75

Parallel Load Register - specification

An n-bit parallel load register is specified as follows.
Inputs: e D[n—1:0](t),
e CE(t), and
@ a clock CLK.
Output: Q[n —1:0](t).

Functionality:

D[n—1:0](t) if ce(t)=

Qn—1:0](t+1) = {Q[n —1:0](t) if cE(t)

1

0.

An n-bit parallel load register is simply built from n clock enabled
flip-flops.

17 / 75

Parallel Load Register - design

CLK —&

CE —&

CLK —&|
CE —e

CLK —&

CE —&

Figure: A 4-bit parallel load register

Q2]

Q[3: 0]
D[]
i
CLK —& CE-FF
CE —e
1i
Q1]

CLK —&
CE —&|

18 / 75

Parallel Load Register - simulation

D[3] D[2] D[1] DIo]
1 1 1 1
CLK —&>
o
1
Q[o]
i | D[3:0]|cE|Q[3:0]
0 1010 1 0000
1 0101 1 1010
2 1100 0 0101
3 1100 1 0101
4 0011 1 1100

19 / 75

Shift Register - definition

A shift register of n bits is defined as follows.
Inputs: D[0](t) and a clock CLK.
Output: Q[n — 1](¢t).
Functionality: Q[n — 1](t + n) = D[0](t).

20 / 75

Shift Register - design

D[3]] D[2] D[1]]

1 i 1 i 1 i 1
CLK —&| FEy CLK —& FEy CLK —& . CLK —& i

" | H |

Q3 Q2] Q1]

Figure: A 4-bit shift register. Functionality: Q[3](t + 4) = D|[0](t)

Q0]

21/ 75

Shift Registers - simulation

CLK —&

CLK —&

CLK —&~

CLK —&

Qp) Qn]
i TD[O] [Q3 0]

0 1 | 0000

1/ 1 | ooo1

2| 1 | oo11

3| o | o111

4| 1 | 1110

22 /75

ROM - definition/design

Definition

A rROM(2") that implements a Boolean function
M :[0..2" — 1] — {0,1} is defined as follows.

Inputs: Address[n — 1 : 0](t).
Output: Doyt(t).

Functionality :

Dout = M[{Address)] .
M[2" —1:0]
{
Address[n—1: 0}+n (2” . 1) — MUX

J(l

Dout

23 / 75

Read-Only Memory (ROM)

@ The contents stored in each memory cell are preset and fixed.

@ ROMs are used to store information that should not be
changed.

@ For example, the ROM stores the program that is executed
when the computer is turned on.

e Modern computers use non-volatile memory as ROM (such
memory does allow write operations - and writing is often
limited by “permissions”)

24 /75

Random Access Memory (RAM)

© Hardware module that implements an array of memory cells,
where each memory cell stores a single bit.

@ In each cycle, a single memory cell is accessed.

© Two operations are supported: read and write.

e read operation: the contents of the accessed memory is output.
e write operation: a new value is stored in the accessed memory
cell.

The number of memory cells is denoted by 2".

Each cell has a distinct address between 0 and 2" — 1.

© 00

The cell to be accessed is specified by an n-bit string called
Address.

@ The array of memory cells is denoted by M[2" —1:0]. Let
M[i](t) denote the value stored in the ith entry of the array
M during clock cycle t.

25 / 75

RAM - definition

A rRAM(2") is specified as follows.
Inputs: Address[n —1:0](t) € {0,1}",Din(t) € {0, 1},
R/W(t) € {0,1} and a clock CLK.
Output: Dout(t) € {0,1}.
Functionality :
@ data: array M[2" —1: 0] of bits.
@ initialize: Vi : M[i] « 0.
© Fort =0 to co do

@ Doyui(t) = M[(Address)|(t).
@ For all i # (Address): M[i](t + 1) + M[i](t).
(3]

Din(t) if R/W(t) =0
M[(Address)](t) else.

M[(Address)|(t + 1) + {

26 / 75

RAM - schematic

Di, Addressin —1:0]

r

CLK —= RAM(2™)
R/W—e
Dout

Figure: A schematic of a RAM(2").

27 / 75

RAM -design

Address[n —1: 0]

n

DECODER(n)

o
sel[2" —1:0]

Di, |sel2™ —1] Din stil[l] Diyn slel[()]
ntt e e
]Wzn,lfR/W * R M, YLR/W My TLR/TV
1 1 1
D" — 1] bl Dlo]
on
D[2" —1:0]

Address[n —1: U]"/ﬂ; (2" : 1) — MUx

Dout

28 / 75

Memory Cell - specification

Definition
A single bit memory cell is defined as follows.
Inputs: Din(t), R/W(t), sel(t), and a clock CLK.
Output: Doyt(t).
Functionality:

Assume that Dy is initialized zero, i.e., Doyt(0) = 0. The
functionality is defined according to the following cases.

Di, if sel(t) =1 R/W(t) =0
Doue(t +1) (t) i se(t? and R/W(t)
Dout(t) otherwise.

29 / 75

Memory Cell - design

Din
CLK—ep

sel ANOT(R/W) —e{ CE
Dout

Figure: An implementation of a memory cell.

30 / 75

Summary of Part 1

Clock signal & clock cycles.

Flip-Flops and clock-enabled FF's

Examples:
@ Sequential XOR
@ Sequential Adder
© Comparison with combinational lower bounds.

Registers: parallel load and shift registers.
ROM and RAM.

31/ 75

Preliminary questions

@ What is a synchronous circuit?

@ How can we initialize a synchronous circuit?

32 /75

Synchronous Circuits

Building blocks: combinational gates, wires, and flip-flops.

The graph G of a synchronous circuit is directed but may
contain cycles (e.g., sequential adder).

A flip-flop has two inputs D and CLK that play quite different
roles. We must make sure that we know the input port of
each incoming edge.

Definition based on a reduction to a combinational circuit...

33 /75

Synchronous Circuits

A synchronous circuit is a circuit C composed of combinational
gates, wires, and flip-flops that satisfies the following conditions:

@ There is an input gate that feeds the clock signal CLK.

@ The set of ports that are fed by the clock CLK equals the set
of clock-inputs of the flip-flops.

© Let C’ denote a circuit obtained from C by stripping the
flip-flops away. Then, the circuit C’ is a combinational circuit.

34 /75

Stripping Flip-Flops Away

@ Delete the input gate that feeds the clock cLK and all the
wires carrying the clock signal.

@ Remove all the flip-flops.
© Add an output gate for each D port.
@ Add an input gate for each @ port.

35 / 75

Example - stripping FFs away

LAAAJ AND3

OR

AND3

O—o

’—’7

OO

OR

Figure: A synchronous circuit C and the combinational circuit C’
obtained from C by stripping away the flip-flops.

36 / 75

It is easy to check if a given circuit C is a synchronous circuit.

@ Check if there is a clock signal that is connected to all the
clock terminals of the flip-flops and only to them.

@ Strip the flip-flops away to obtain the circuit C’. Check if C’
is a combinational circuit.

37 /75

Cycles (closed paths) in a synchronous circuit

Every closed path in a synchronous circuit traverses at least one
flip-flop.

38 / 75

Logical Simulation of Synchronous Circuits

Assumptions:

o Initialization (magical?): For every flip-flop FF;, let
So(FF;i) € {0,1} denote the value output by FF; in clock cycle
t=0.

e Input sequence: For every input gate X let IN:(X) € {0,1}
the input fed by X in clock cycle t.

Initialization serves a crucial role in the induction basis!

39 / 75

Simulation Algorithm

Algorithm 1 SIM(C, S, {IN; Z_:_ol) - An algorithm for simulating
a synchronous circuit C with respect to an initialization Sy and a
sequence of inputs {/Nt}z—:_ol.

@ Construct the combinational circuit C’ obtained from C by
stripping away the flip-flops.
Q@ Fort=0to T —1 do:

@ Simulate the combinational circuit C’ with input values
corresponding to S; and IN;. Namely, every input gate in C
feeds a value according to IN;, and every Q-port of a flip-flop
feeds a value according to S;. For every sink z in C/, let z
denote the value fed to z according to this simulation.

@ For every Q-port S of a flip-flop, define S;1 < NS;, where
NS denotes the D-port of the flip-flop.

40 / 75

The Canonic Form of a Synchronous Circuit

*comb. circuit OUT

- A
IN—e o
*comb. circuit
o—o 0
S Q D NS
CLK

Figure: A synchronous circuit in canonic form.

41/ 75

Initialization

@ We require that the output of every flip-flop be defined during
the first clock cycle. Impossible?

© How can we even define the “first” clock cycle?
@ What is the state of a flip-flop after power on?
© How can anything be set or determined after power on?

@ Deus ex machina: introduce a reset signal:

reset(t)é 1 ife=0,
10 otherwise.

@ How is a reset signal generated? How could a reset signal
differ from the the output of a flip-flop?

@ No solution to this problem within the digital abstraction. All
we can try to do is reduce the probability of such an event.

@ In practice, a special circuit, called a reset controller, generates
a proper reset signal with very high probability. Oddly enough,
a reset controller is usually constructed by cascading flip-flops!

42 /75

Using the reset

IN——e@

S

* comb. circuit

A

—e OUT

* comb. circuit

J

\j

T

NS

2:1-
MUX

0 *—Q

'}

sel ! _I

| initial state CLK

reset

Restart “time”: If reset(t) = 1, then set t < 0.

43/ 75

Functionality: the canonic form

We denote the logical value of a signal X during the i'th clock
cycle by X;.

Claim

For every i > 0:

initial state if i =0

’:{/vs,-1 ifi>1
NS; = 5(IN;, S;)
OUT; = A(IN;, S:)

44] 75

Sequential Adder with Reset

Cin A B
reset ; ; Full-Adder
c S
CLK —& Q FF
D
Cout

S

Note: Mux controlled by reset implemented by an AND-gate.

45 / 75

Sequential Adder with Reset

What happens if [{t | reset(t) = 1}| > 17 If reset(t) = 1, then we
forget about the past, we treat clock cycle t as the first clock cycle.
Formally, we define the last initialization r(i) as follows:

r(i) £ max{t < i: reset(t) = 1}.

Namely, r(i) specifies the last time reset(t) = 1 not after cycle i.
If reset; = 0, for every j < i, then r(i) is not defined, and
functionality is unspecified. If r(i) is well defined, then the
functionality is that, for every / > 0,

(Ali = r()]) + (Bli : r(i)]) = (S[i : r()]) (mod 2/—r()F),

46 / 75

Finite State Machines

The functionality of a synchronous circuit in the canonic form is so
important that it justifies a term called finite state machines.
Definition

A finite state machine (FSM) is a 6-tuple A = (Q, X, A, 0, A, qo),
where

@ @ is a set of states.

Y is the alphabet of the input.

A is the alphabet of the output.

0: QXX — Q@ is a transition function.
A QX X — Ais an output function.

go € @ is an initial state.

47 / 75

What does an FSM do?

An FSM is an abstract machine that operates as follows. The
input is a sequence {x; 7;01 of symbols over the alphabet . The
output is a sequence {y; ,f':_(} of symbols over the alphabet A. An
FSM transitions through the sequence of states {g;}/_,. The state
g; is defined recursively as follows:

i1 = 0(qi, xi)

The output y; is defined as follows:

Yi = Mai, x3)-

48 / 75

FSM - terminology

Other terms for a finite state machine are a finite automaton with
outputs and transducer. In the literature, an FSM according to our
definition is often called a Mealy Machine. Another type of
machine, called Moore Machine, is an FSM in which the domain of
output function A is Q (namely, the output is only a function of
the state and does not depend on the input).

49 / 75

State Diagrams

FSMs are often depicted using state diagrams.

Definition

The state diagram corresponding to an FSM A is a directed graph
G = (Q, E) with edge labels (x,y) € ¥ x A. The edge set E is
defined by

E={(q,0(9,x)): g€ Q and x € X}.

Each edge (q,0(q, x)) is labeled (x, A(qg, x)).

The vertex gg corresponding to the initial state of an FSM is
usually marked in an FSM by a double circle.

We remark that a state diagram is in fact a multi-graph, namely,
one allows more than one directed edge between two vertices.
Such edges are often called parallel edges. Note that the
out-degree of every vertex in a state diagram equals |X|.

50 / 75

Example: A two-state FSM

Consider the FSM A = (Q, X, A, 4, A, qo) depicted in the next
figure, where

Q ={qo0,q1},
¥ =A={0,1}.
(1,0) (0,1)
(0,1)
(1,1)

51 / 75

Synthesis and Analysis

Two tasks are often associated with synchronous circuits. These
tasks are defined as follows.

@ Analysis: given a synchronous circuit C, describe its
functionality by an FSM.

@ Synthesis: given an FSM A, design a synchronous circuit C
that implements A.

52 / 75

Analysis: Sync Circuit — FSM

The task of analyzing a synchronous circuit C is carried out as
follows.

@ Define the FSM A = (Q, X, A, 4, A, qo) as follows.

© The set of states is Q = {0,1}*, where k denotes the number
of flip-flops in C.

@ Define the initial state gg to be the initial outputs of the

flip-flops.

Y = {0,1}¢, where ¢ denotes the number of input gates in C.

A = {0,1}", where r denotes the number of output gates in C.

Define the transition function § : {0, 1}* x {0,1}* — {0,1}*

to be the function implemented by the combinational “part” of

C for the inputs of the flip-flops.

@ Define the output function \ : {0,1}% x {0,1}* — {0,1}" to
be the function implemented by the combinational “part” of C
for the output gates.

900

53 / 75

A Counter

Definition

A counter(n) is defined as follows.
Inputs: a clock CLK.
Output: N € {0,1}".

Functionality:

vVt : (Ny) = t(mod 2")

No input?! Input is “implied”: it is the (missing) reset signal!

54 / 75

Counter Implementation

incrementer(n)

D
CLK —&{> FF(n)
Q

Figure: A synchronous circuit that implements a counter.

55 / 75

Counter Analysis

Figure: An FSM of a counter(2). The output always equals binary
representation of the state from which the edge emanates.

56 / 75

A Counter with input

A counter(n) is defined as follows.
Inputs: X € {0,1} and a clock CLK.
Output: N € {0,1}".
Functionality:

YVt o (Ng) = Et:X,-(mod 2™
i=0

57 / 75

Implementation of Counter with Input

58 / 75

Analysis of Counter with Input for n = 2

(0,9) (0,n)

59 / 75

Sequential Adder: Analysis

((reset =1,A+ B =2),0)
(A+B<1),A® B) ((reset =0,A+ B >1),1® A® B)

N

(A+ B =2,0)

((reset =0,A+ B =0),1)
((reset =1,A+ B <1),A& B)

Figure: an FSM of a sequential adder (each transition is labeled by a
pair: the condition that the input satisfies and the value of the output).

60 / 75

Revisiting Shift Registerers

Recall the definition of a shift register of n bits, that is:
Inputs: D[0](t) and a clock CLK.
Output: Q[n — 1](¢).
Functionality: Q[n — 1](t + n) = D[0](t).

61/ 75

Implementation of Shift Register

CLK —#

D[2] D1] Do)
1 { 1 f 1
CLK —e| FFy CLK —#| FFy CLK —e| Fig
' ' 3
Q2] Q] Q[o]

Figure: A 4-bit shift register.

62 / 75

Analysis of Shift Register for n = 2

63 / 75

Revisiting RAM

A rRAM(2") is specified as follows.
Inputs: Address[n —1:0](t) € {0,1}",Din(t) € {0, 1},
R/W(t) € {0,1} and a clock CLK.
Output: Dout(t) € {0,1}.
Functionality : The functionality of a RAM is specified by the
following program:
@ data: array M[2" — 1 : 0] of bits.
@ initialize: Vi: M[i] « 0.
© Fort =0 to oo do
@ Doui(t) = M[(Address)](t).
@ For all i # (Address): M[i](t + 1) < M[i](¢).
(3]
Din(t) if R/W(t) =0
M[({Address)](t) else.

M[({Address)](t + 1) + {

64 / 75

1, Address = 1,0)

R/
(R/W =1,0) (R/W = 1, Address = 0,1)

((R/W =0, Address = 0, D, = 1),0)
00) [
((R/W =0, Address = 0, Di,, = 0),1)

((R/W =0, Address = 1, Dy, = 0),1)

((R/W =0, Address = 1, D, = 1),0)

((R/W =0, Address = 0, D;;, = 1),0)

10 11

|

((R/W =0, Address = 0, Dy, = 0),1)

(R/W = 1, Address = 0,0) (R/W =1,1)
(R/W =1, Address = 1,1)

Figure: A (partial) FSM of a RAM(2) (the “legend” of the edge
labels:((D, address, R/ W), Dout)).

65 / 75

Effect of Adding Initialization to a Synchronous Circuit

C is a synchronous circuit without an initialization signal (but
we assume FFs output a specific value in t = 0).

Introduce an initialization signal reset that initializes the
outputs of all flip-flops (namely, it cause the outputs of the
flip-flops to equal a value that encodes the initial state).
How? add a MUX after every FF that selects @ or initial-state
based on reset.

Denote the new synchronous circuit by C.

Let A and A denote the FSMs that model the functionality of
C and C, respectively.

What is the relation between A and A?

66 / 75

Adding the initialization signal to an FSM - cont

Theorem

Let A= (Q,X,A,d,\ qo) denote the FSM that models the
functionality of the synchronous circuit C. Let

A= (Q, XA, 8, N, q}) denote the FSM that models the
synchronous circuit C. Then,
Q=Q
! A
qO = qo,
Y 2% x{0,1},
A2 A
d(q,0), if reset =0,
0(qo,0), ifreset=1,

Mg, o), if reset =0,
Aqo, o), if reset = 1.

[I>

§'(q, (o, reset))

(1>

N(q, (o, reset))

67 / 75

Synthesis: FSM — Sync Circuit

Given an FSM A = (Q, X, A, 4, A, qo), the task of designing a
synchronous circuit C that implements A is carried out as follows.
@ Encode Q,X and A by binary strings. Formally, let f, g, h

denote one-to-one functions, where
f:Q— {0,1}*
g X —{0,1}*
h:A — {0,1}".
@ Design a combinational circuit Cs that implements the
(partial) Boolean function B : {0,1}* x {0,1}* — {0,1}*
defined by

Bs(f(x),8(y)) = F(3(x,y)), for every (x,y) € Q@ x ¥.

© Design a combinational circuit Cy that implements the
(partial) Boolean function By : {0,1}* x {0,1} — {0,1}"

Bx(f(x),8(y)) = h(A(x,)), for every (x,y) € Q x L.

68 / 75

Synthesis - cont

o How many flip-flops are required? f: @ — {0,1}* is
one-to-one. So

k > log, Q|

@ It is not clear that minimizing k is a always a good idea.
Certain encodings lead to more complicated Boolean functions
Bs and Bi.

@ The question of selecting a “good” encoding is a very
complicated task, and there is no simple solution to this
problem.

69 / 75

Example: A two-state FSM

Consider the FSM A = (Q, X, A, 4, A, qo) depicted in the next
figure, where

Q =1{qo0, a1},
¥ =A={0,1}.
(1,0) (0,1)
(0,1)
(1,1)

Figure: A two-state FSM.

70 / 75

Two-State FSMs: Synthesis

Given an FSM A = (Q, X, A, 4, \, qo), the synchronous circuit C
that is obtained by executing the synthesis procedure is as follows.
We encode @, X and A by binary strings Formally, let f, g, h
denote one-to-one functions, where

f:Q—{0,1}
g:r—X
h:A— A,
where
f(qo) =0,f(q1) =1,
and

Vx € {0,1} : g(x) = h(x) = x.

71/ 75

Two-State FSMs: Synthesis - Cj

We design a combinational circuit Cs that implements the Boolean
function Bs : {0,1}% — {0,1} defined by

Bs(f(x), &(y)) = F(3(x,y)), for every (x,y) € @ x ¥.

Table: The truth table of Bs.

It follows that Bs(f(x),g(y)) = NoT(g(y))-

72 /75

Two-State FSMs: Synthesis - C),

We design a combinational circuit Cy that implements the Boolean
function B, : {0,1}? — {0,1} defined by

BA(F(x), 8(y)) = h(A(x,y)), for every (x,y) € @ x T.

f(x) | gly) || h(A(x,¥))
0 | 0 1
1| o0 1
0 | 1 0
1 1 1

Table: The truth table of B,.

It follows that By(f(x),g(y)) = f(x) V g(y).

73 / 75

Two-State FSMs: Synthesis - the Synch. circuit C

The synchronous circuit in canonic form constructed from a
flip-flops and two combinational circuits is depicted in Figure ?7?.

Cy
IN—@
Cs
S Q FF D NS

CLK

Figure: Synthesis of A.

74] 75

Summary of Part 2

Definition of synchronous circuits.

Simulation algorithm.

Synchronous circuits in canonic form.

Initialization & reset signal.

Functionality: finite-state machines & state diagrams.

Analysis and synthesis of synchronous circuits.

FSM's are not a useful model for synchronous circuit with
many FF's because |States| = 2/FF'sl,

75 / 75

