Digital Logic Design: a rigorous approach © Chapter 6: Propositional Logic

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 19, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina The building blocks of a Boolean formula are constants, variables, and connectives.

- A constant is either 0 or 1. As in the case of bits, we interpret a 1 as "true" and a 0 as a "false". The terms constant and bit are synonyms; the term bit is used in Boolean functions and in circuits while the term constants is used in Boolean formulas.
- A variable is an element in a set of variables. We denote the set of variables by U. The set U does not contain constants. Variables are usually denoted by upper case letters.
- Connectives are used to build longer formulas from shorter ones. We denote the set of connectives by C.

We consider unary, binary, and higher arity connectives.

- There is only one unary connective called negation. Negation of a variable A is denoted by NOT(A), $\neg A$, or \overline{A} .
- There are several binary connectives, the most common are AND (denoted also by ∧ or ·) and OR (denoted also by ∨ or +). A binary connective is applied to two formulas. We later show the relation between binary connectives and Boolean functions B : {0,1}² → {0,1}.
- A connective has arity j if it is applied to j formulas. The arity of negation is 1, the arity of AND is 2, etc.

Example: parse tree

Figure: A parse tree that corresponds to the Boolean formula $((X \text{ OR } 0) \text{ AND } (\neg Y))$. The rooted trees that are hanging from the root of the parse tree (the AND connective) are bordered by dashed rectangles.

We use parse trees to define Boolean formulas.

Definition

A parse tree is a pair (G, π) , where G = (V, E) is a rooted tree and $\pi : V \to \{0, 1\} \cup U \cup C$ is a labeling function that satisfies:

- A leaf is labeled by a constant or a variable. Formally, if v ∈ V is a leaf, then π(v) ∈ {0,1} ∪ U.
- ② An interior vertex v is labeled by a connective whose arity equals the in-degree of v. Formally, if $v \in V$ is an interior vertex, then $\pi(v) \in C$ is a connective with arity $deg_{in}(v)$.

We usually use only unary and binary connectives. Thus, unless stated otherwise, a parse tree has an in-degree of at most two.

- We use strings that contain constants, variables, connectives, and parenthesis to construct Boolean formulas.
- We use parse trees to define Boolean formulas.
- This definition is constructive (inorder traversal of the parse tree).

Examples of Good and Bad Formulas

- (*A* AND *B*)
- (A OR B)
- A OR OR B) not a Boolean formula!
- ((A AND B) or (A AND C) or 1).
- If φ and ψ are Boolean formulas, then (φ $_{\rm OR}$ $\psi)$ is a Boolean formula.
- If φ is a Boolean formula, then $(\neg \varphi)$ is a Boolean formula.

We will stick to parse trees, and now show how they are parsed to generate valid Boolean formulas.

Algorithm 1 INORDER (G, π) - An algorithm for generating the Boolean formula corresponding to a parse tree (G, π) , where G = (V, E) is a rooted tree with in-degree at most 2 and $\pi : V \rightarrow \{0,1\} \cup U \cup C$ is a labeling function.

- Base Case: If |V| = 1 then return $\pi(v)$ (where $v \in V$ is the only node in V)
- Reduction Rule:
 - If $deg_{in}(r(G)) = 1$, then
 - Let $G_1 = (V_1, E_1)$ denote the rooted tree hanging from r(G).
 - **2** Let π_1 denote the restriction of π to V_1 .
 - $a \leftarrow \mathsf{INORDER}(G_1, \pi_1).$
 - **(a)** Return $(\neg \alpha)$.
 - 2 If $deg_{in}(r(G)) = 2$, then
 - Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ denote the rooted subtrees hanging from r(G).
 - **2** Let π_i denote the restriction of π to V_i .
 - $a \leftarrow \mathsf{INORDER}(G_1, \pi_1).$
 - (a) $\beta \leftarrow \text{INORDER}(G_2, \pi_2).$
 - **3** Return ($\alpha \pi(r(G)) \beta$).

Definition

Let (G, π) denote a parse tree and let T_v denote the subtree hanging from v.

- The output φ of INORDER (G, π) is a Boolean formula.
- The output of INORDER(T_v, π) is a subformula of φ .

We say that Boolean formula φ is defined by the parse tree (G, π) .

- Consider all the parse trees over the set of variables *U* and the set of connectives *C*.
- The set of all Boolean formulas defined by these parse trees is denoted by BF(U,C).
- To simplify notation, we abbreviate $\mathcal{BF}(U, \mathcal{C})$ by \mathcal{BF} when the sets of variables and connectives are known.

Some of the connectives have several notations. The following formulas are the same, i.e. string equality.

$$(A + B) = (A \lor B) = (A \text{ or } B),$$

$$(A \cdot B) = (A \land B) = (A \text{ and } B),$$

$$(\neg B) = (\text{Not}(B)) = (\bar{B}),$$

$$(A \text{ xor } B) = (A \oplus B),$$

$$((A \lor C) \land (\neg B)) = ((A + C) \cdot (\bar{B})).$$

We sometimes omit parentheses from formulas if their parse tree is obvious. When parenthesis are omitted, one should use precedence rules as in arithmetic, e.g., $a \cdot b + c \cdot d = ((a \cdot b) + (c \cdot d))$.

The implication connective is denoted by \rightarrow .

Table: The truth table representation and the multiplication table of the implication connective.

Lemma

 $A \rightarrow B$ is true iff $A \leq B$.

- The implication connective is not commutative, namely, $(0 \rightarrow 1) \neq (1 \rightarrow 0).$
- This connective is called implication since it models the natural language templates "Y if X" and "if X then Y".
- Note that $X \to Y$ is always 1 if X = 0.

$\operatorname{NAND}(A,B) \stackrel{\triangle}{=} \operatorname{NOT}(\operatorname{AND}(A,B)),$ $\operatorname{NOR}(A,B) \stackrel{\triangle}{=} \operatorname{NOT}(\operatorname{OR}(A,B)).$

The Equivalence Connective

The equivalence connective is denoted by \leftrightarrow .

$$\begin{array}{c|c} (p \leftrightarrow q) \text{ abbreviates } ((p \to q) \text{ AND } (q \to p)).\\ \hline X & Y & X \leftrightarrow Y\\ \hline 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0\\ 1 & 1 & 1 \end{array} \xrightarrow{\begin{array}{c|c} \leftrightarrow & 0 & 1\\ \hline 0 & 1 & 0\\ 1 & 0 & 1 \end{array}} \xrightarrow{\begin{array}{c|c} \leftrightarrow & 0 & 1\\ \hline 0 & 1 & 0\\ 1 & 0 & 1 \end{array}} \\ (X \leftrightarrow Y) = \begin{cases} 1 & \text{if } X = Y\\ 0 & \text{if } X \neq Y. \end{cases}$$

Order Matters!

Figure: The parse tree of the Boolean formula $((X \text{ OR } 0) \rightarrow (\neg Y))$. The root is labeled by an implication connective. The rooted trees hanging from the root are encapsulated by dashed rectangles.

- Variables: X, Y, Z, ...
- Logical connectives:
 - unary: NOT
 - binary: AND, OR, NOR, NAND, \rightarrow , \leftrightarrow
- Parse Trees: rooted tree labeled by variables and connectives.
- Boolean Formula: defined by inorder traversal of parse tree.
- Attach Boolean operators to logical connectives.

- Syntax grammatic rules that govern the construction of Boolean formulas (rules: parse trees + inorder traversal)
- Semantics functional interpretation of a formula

Syntax has a purpose: to provide well defined semantics!

Logical connectives have two roles:

- Syntax: building block for Boolean formulas ("glue").
- Semantics: define a truth value based on a Boolean function.

To emphasize the semantic role: given a k-ary connective *, we denote the semantics of * by a Boolean function

$$B_*: \{0,1\}^k \to \{0,1\}$$

Example

• $B_{AND}(b_1, b_2) = b_1 \cdot b_2$.

•
$$B_{\rm NOT}(b) = 1 - b$$
.

Semantics of Variables and Constants

- The function B_X associated with a variable X is the identity function $B_X(b) = b$.
- The function B_{σ} associated with a constant $\sigma \in \{0,1\}$ is the constant function $B_{\sigma}(b) = \sigma$.

Let U denote the set of variables.

Definition

A truth assignment is a function $\tau : U \to \{0, 1\}$.

Our goal is to extend every assignment $\tau: U \to \{0,1\}$ to a function

$\hat{\tau}:\mathcal{BF}(U,\mathcal{C}) \rightarrow \{0,1\}$

Thus, a truth assignment to variables actually induces truth values to every Boolean formula.

extending truth assignments to formulas

The extension $\hat{\tau} : \mathcal{BF} \to \{0,1\}$ of an assignment $\tau : U \to \{0,1\}$ is defined as follows.

Definition

Let $p \in \mathcal{BF}$ be a Boolean formula generated by a parse tree $(G,\pi).$ Then,

$$\hat{\tau}(\boldsymbol{p}) \stackrel{\scriptscriptstyle \Delta}{=} \mathsf{EVAL}(\boldsymbol{G}, \pi, \tau),$$

where EVAL is listed in the next slide.

EVAL is also an algorithm that also employs inorder traversal over the parse tree!

Algorithm 2 EVAL (G, π, τ) - evaluate the truth value of the Boolean formula generated by the parse tree (G, π) , where (i) G = (V, E) is a rooted tree with in-degree at most 2, (ii) $\pi : V \rightarrow \{0,1\} \cup U \cup C$, and (iii) $\tau : U \rightarrow \{0,1\}$ is an assignment.

- Base Case: If |V| = 1 then
 - Let $v \in V$ be the only node in V.
 - **2** $\pi(v)$ is a constant: If $\pi(v) \in \{0,1\}$ then return $(\pi(v))$.
 - **③** $\pi(v)$ is a variable: return $(\tau(\pi(v)))$.
- Q Reduction Rule:
 - If $deg_{in}(r(G)) = 1$, then (in this case $\pi(r(G)) = NOT$)
 - Let $G_1 = (V_1, E_1)$ denote the rooted tree hanging from r(G).
 - **2** Let π_1 denote the restriction of π to V_1 .
 - $\ \odot \ \ \sigma \leftarrow \mathsf{EVAL}(G_1, \pi_1, \tau).$
 - Return (NOT(σ)).
 - **2** If $deg_{in}(r(G)) = 2$, then
 - Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ denote the rooted subtrees hanging from r(G).
 - **2** Let π_i denote the restriction of π to V_i .

 - **S** Return $(B_{\pi(r(G))}(\sigma_1, \sigma_2))$.

Evaluation:

- Fix a truth assignment $\tau : U \rightarrow \{0, 1\}$.
- Extended τ to every Boolean formula $p \in \mathcal{BF}$.

Formula as a function:

- Fix a Boolean formula *p*.
- Consider all possible truth assignments $\tau: U \to \{0, 1\}$.

Definition

Let p denote a Boolean formula.

- p is satisfiable if there exists an assignment τ such that $\hat{\tau}(p) = 1$.
- **2** p is a tautology if $\hat{\tau}(p) = 1$ for every assignment τ .

Definition

Two formulas p and q are logically equivalent if $\hat{\tau}(p) = \hat{\tau}(q)$ for every assignment τ .

Let $\varphi \triangleq (X \oplus Y)$, and let $\psi \triangleq (\overline{X} \cdot Y + X \cdot \overline{Y})$. Show that φ and ψ are logically equivalent. We show that $\hat{\tau}(\varphi) = \hat{\tau}(\psi)$ for every assignment τ . We do that by enumerating all the $2^{|U|}$ assignments.

$\tau(X)$	$\tau(Y)$	AND(NOT($\tau(X)$), $\tau(Y)$)	$AND(\tau(X), NOT(\tau(Y)))$	$\hat{\tau}(\varphi)$	$\hat{\tau}(\psi)$
0	0	0	0	0	0
1	0	0	1	1	1
0	1	1	0	1	1
1	1	0	0	0	0

Table: There are two variables, hence the enumeration consists of $2^2 = 4$ assignments. The columns that correspond to $\hat{\tau}(\varphi)$ and $\hat{\tau}(\psi)$ are identical, hence φ and ψ are equivalent.

Satisfiability and Tautologies

Lemma

Let $\varphi \in \mathcal{BF}$, then

 φ is satisfiable $\Leftrightarrow (\neg \varphi)$ is not a tautology.

Proof.

$$\begin{array}{ll} \varphi \text{ is satisfiable } \Leftrightarrow & \exists \tau : \hat{\tau}(\varphi) = 1 \\ \Leftrightarrow & \exists \tau : \operatorname{NOT}(\hat{\tau}(\varphi)) = 0 \\ \Leftrightarrow & \exists \tau : \hat{\tau}(\neg(\varphi)) = 0 \\ \Leftrightarrow & (\neg\varphi) \text{ is not a tautology .} \end{array}$$

Every Boolean String Represents an Assignment

Definition

Given a binary vector $v = (v_1, \ldots, v_n) \in \{0, 1\}^n$, the assignment $\tau_v : \{X_1, \ldots, X_n\} \to \{0, 1\}$ is defined by $\tau_v(X_i) \stackrel{\triangle}{=} v_i$.

Example

Let n = 3.

$$v[1:3] = 011$$

$$\tau_v(X_1) = v[1] = 0$$

$$\tau_v(X_2) = v[2] = 1$$

$$\tau_v(X_3) = v[3] = 1$$

Question

Prove that $v \mapsto \tau_v$ is a bijection from $\{0,1\}^n$ to truth assignments

$$\{\tau \mid \tau: \{X_1, \ldots, X_n\} \rightarrow \{0, 1\}\} \ .$$

Every Boolean Formula Represents a Function

Assume that
$$U = \{X_1, \ldots, X_n\}$$
.

Definition

A Boolean formula p over the variables $U = \{X_1, \ldots, X_n\}$ defines the Boolean function $B_p : \{0, 1\}^n \to \{0, 1\}$ by

$$B_p(v_1,\ldots,v_n)\stackrel{\scriptscriptstyle riangle}{=} \hat{\tau}_v(p).$$

Example

$$p = X_1 \lor X_2$$

 $B_p(0,0) = 0, \ B_p(0,1) = 1, \dots$

Assume that
$$U = \{X_1, \ldots, X_n\}$$
.

Definition

A Boolean formula p over the variables $U = \{X_1, \ldots, X_n\}$ defines the Boolean function $B_p : \{0, 1\}^n \to \{0, 1\}$ by

$$B_p(v_1,\ldots,v_n)\stackrel{\scriptscriptstyle riangle}{=} \hat{\tau}_v(p).$$

The mapping $p \mapsto B_p$ is a function from $\mathcal{BF}(U, \mathcal{C})$ to set of Boolean functions $\{0, 1\}^{(\{0,1\}^n)}$. Is this mapping one-to-one? is it onto?

Claim

A Boolean formula p is a tautology if and only if the Boolean function B_p is identically one, i.e., $B_p(v) = 1$, for every $v \in \{0,1\}^n$.

Proof.

$$\begin{array}{ll} p \text{ is a tautology} & \Leftrightarrow & \forall \ \tau : \hat{\tau}(p) = 1 \\ & \Leftrightarrow & \forall \ v \in \{0,1\}^n : \hat{\tau}_v(p) = 1 \\ & \Leftrightarrow & \forall \ v \in \{0,1\}^n : B_p(v) = 1 \ . \end{array}$$

Claim

A Boolean formula p is a satisfiable if and only if the Boolean function B_p is not identically zero, i.e., there exists a vector $v \in \{0,1\}^n$ such that $B_p(v) = 1$.

Proof.

$$\begin{array}{ll} p \text{ is a satisfiable} & \Leftrightarrow & \exists \ \tau : \hat{\tau}(p) = 1 \\ & \Leftrightarrow & \exists \ v \in \{0,1\}^n : \hat{\tau}_v(p) = 1 \\ & \Leftrightarrow & \exists \ v \in \{0,1\}^n : B_p(v) = 1 \ . \end{array}$$

Claim

Two Boolean formulas p and q are logically equivalent if and only if the Boolean functions B_p and B_q are identical, i.e., $B_p(v) = B_q(v)$, for every $v \in \{0,1\}^n$.

Proof.

p and q are logically equivalent

$$\begin{array}{ll} \Leftrightarrow & \forall \ \tau : \hat{\tau}(p) = \hat{\tau}(q) \\ \Leftrightarrow & \forall \ v \in \{0,1\}^n : \hat{\tau}_v(p) = \hat{\tau}_v(q) \\ \Leftrightarrow & \forall \ v \in \{0,1\}^n : B_p(v) = B_q(v) \ . \end{array}$$

If
$$\varphi = (\alpha_1 \text{ AND } \alpha_2)$$
, then

$$B_{\varphi}(v) = \hat{\tau}_v(\varphi)$$

$$= \hat{\tau}_v(\alpha_1 \text{ AND } \alpha_2)$$

$$= B_{\text{AND}}(\hat{\tau}_v(\alpha_1), \hat{\tau}_v(\alpha_2))$$

$$= B_{\text{AND}}(B_{\alpha_1}(v), B_{\alpha_2}(v)).$$

Thus, we can express complicated Boolean functions by composing long Boolean formulas.

Lemma

If $\varphi = \alpha_1 \circ \alpha_2$ for a binary connective \circ , then $\forall v \in \{0,1\}^n : \quad B_{\varphi}(v) = B_{\circ}(B_{\alpha_1}(v), B_{\alpha_2}(v)).$

Claim

Two Boolean formulas p and q are logically equivalent if and only if the formula $(p \leftrightarrow q)$ is a tautology.

Substitution is used to compose large formulas from smaller ones. For simplicity, we deal with substitution in formulas over two variables; the generalization to formulas over any number of variables is straightforward.

- $a_1, \alpha_2 \in \mathcal{BF}(U, \mathcal{C}).$
- **(** $G_{\varphi}, \pi_{\varphi}$ **)** denotes the parse tree of φ .

Definition

Substitution of α_i in φ yields the Boolean formula $\varphi(\alpha_1, \alpha_2) \in \mathcal{BF}(U, \mathcal{C})$ that is generated by the parse tree (G, π) defined as follows. For every leaf of $v \in G_{\varphi}$ that is labeled by a variable X_i , replace the leaf v by a new copy of $(G_{\alpha_i}, \pi_{\alpha_i})$.

example: substitution

Figure: φ , α_1 , α_2 , $\varphi(\alpha_1, \alpha_2)$

Substitution can be obtain by applying a simple "find-and-replace", where each instance of variable X_i is replaced by a copy of the formula α_i , for $i \in \{1, 2\}$. One can easily generalize substitution to formulas $\varphi \in \mathcal{BF}(\{X_1, \ldots, X_k\}, \mathcal{C})$ for any k > 2. In this case, $\varphi(\alpha_1, \ldots, \alpha_k)$ is obtained by replacing every instance of X_i by α_i .

Lemma

For every assignment $au: U o \{0,1\}$,

$$\hat{\tau}(\varphi(\alpha_1, \alpha_2)) = B_{\varphi}(\hat{\tau}(\alpha_1), \hat{\tau}(\alpha_2)).$$

(1)

substitution preserves logical equivalence

Let

•
$$\varphi \in \mathcal{BF}(\{X_1, X_2\}, \mathcal{C}),$$

• $\alpha_1, \alpha_2 \in \mathcal{BF}(U, \mathcal{C}),$
• $\tilde{\varphi} \in \mathcal{BF}(\{X_1, X_2\}, \tilde{\mathcal{C}}),$
• $\tilde{\alpha}_1, \tilde{\alpha}_2 \in \mathcal{BF}(U, \tilde{\mathcal{C}}).$

Corollary

If α_i and $\tilde{\alpha_i}$ are logically equivalent, and φ and $\tilde{\varphi}$ are logically equivalent, then $\varphi(\alpha_1, \alpha_2)$ and $\tilde{\varphi}(\tilde{\alpha}_1, \tilde{\alpha}_2)$ are logically equivalent.

Example

$$\varphi = \neg (X_1 \cdot X_2) \qquad \qquad \tilde{\varphi} = \bar{X}_1 + \bar{X}_2$$

$$\alpha_1 = A \to B \qquad \qquad \tilde{\alpha}_1 = \bar{A} + B$$

$$\alpha_2 = C \leftrightarrow D \qquad \qquad \tilde{\alpha}_2 = \neg (C \oplus L)$$

В $\oplus D$)

example: changing connectives

Let $C = \{AND, XOR\}$. We wish to find a formula $\tilde{\beta} \in \mathcal{BF}(\{X, Y, Z\}, C)$ that is logically equivalent to the formula

$$\beta \stackrel{\scriptscriptstyle \Delta}{=} (X \cdot Y) + Z.$$

Parse β : $\varphi(\alpha_1, \alpha_2)$ with $\alpha_1 = (X \cdot Y)$ and $\alpha_2 = Z$. Find $\tilde{\varphi} \in \mathcal{BF}(\{X_1, X_2\}, \mathcal{C})$ that is logically equivalent to $\varphi \triangleq (X_1 + X_2)$. $\tilde{\varphi} \triangleq X_1 \oplus X_2 \oplus (X_1 \cdot X_2)$.

Apply substitution to define $\tilde{\beta} \stackrel{\scriptscriptstyle riangle}{=} \tilde{\varphi}(\alpha_1, \alpha_2)$, thus

$$egin{aligned} & ilde{eta} \stackrel{\sim}{=} ilde{arphi}(lpha_1, lpha_2) \ &= lpha_1 \oplus lpha_2 \oplus (lpha_1 \cdot lpha_2) \ &= (X \cdot Y) \oplus Z \oplus ((X \cdot Y) \cdot Z) \end{aligned}$$

Indeed $\tilde{\beta}$ is logically equivalent to β .

Every Boolean formula can be interpreted as Boolean function. In this section we deal with the following question: Which sets of connectives enable us to express every Boolean function?

Definition

A Boolean function $B : \{0,1\}^n \to \{0,1\}$ is expressible by $\mathcal{BF}(\{X_1,\ldots,X_n\},\mathcal{C})$ if there exists a formula $p \in \mathcal{BF}(\{X_1,\ldots,X_n\},\mathcal{C})$ such that $B = B_p$.

Definition

A set C of connectives is complete if every Boolean function $B: \{0,1\}^n \to \{0,1\}$ is expressible by $\mathcal{BF}(\{X_1,\ldots,X_n\},C)$.

Completeness of $\{\neg, AND, OR\}$

Theorem

The set $C = \{\neg, AND, OR\}$ is a complete set of connectives.

Proof Outline: Induction on n (the arity of Boolean function).

- Induction basis for n = 1.
- **2** Induction step for $B : \{0,1\}^n \to \{0,1\}$ define:

$$g(v_1,\ldots,v_{n-1}) \stackrel{\triangle}{=} B(v_1,\ldots,v_{n-1},0),$$

$$h(v_1,\ldots,v_{n-1}) \stackrel{\triangle}{=} B(v_1,\ldots,v_{n-1},1).$$

- Solution By induction hyp. $\exists r, q \in \mathcal{BF}(\{X_1, \dots, X_{n-1}\}, \mathcal{C}) : B_r = h \text{ and } B_q = g$
- Prove that $B_p = B$ for the formula p defined by

$$p\stackrel{\scriptscriptstyle \triangle}{=} (q\cdot \bar{X_n}) + (r\cdot X_n)$$

Theorem

If the Boolean functions in {NOT, AND, OR} are expressible by formulas in $\mathcal{BF}(\{X_1, X_2\}, \tilde{\mathcal{C}})$, then $\tilde{\mathcal{C}}$ is a complete set of connectives.

Proof Outline:

- Express β ∈ BF({X₁,...,X_n},C) by a logically equivalent formula β̃ ∈ BF({X₁,...,X_n},C̃).
- **2** How? induction on the parse tree that generates β .

Theorem

The following Boolean formulas are tautologies.

- **1** Iaw of excluded middle: $X + \overline{X}$
- **2** double negation: $X \leftrightarrow (\neg \neg X)$
- 3 modus ponens: $(((X \rightarrow Y) \cdot X) \rightarrow Y)$
- contrapositive: $(X \to Y) \leftrightarrow (\bar{Y} \to \bar{X})$
- Something implication: $(X \to Y) \leftrightarrow (\bar{X} + Y)$.
- **o** distribution: $X \cdot (Y + Z) \leftrightarrow (X \cdot Y + X \cdot Z)$.

Recall the lemma:

Lemma

For every assignment $au : U o \{0,1\}$,

$$\hat{\tau}(\varphi(\alpha_1, \alpha_2)) = B_{\varphi}(\hat{\tau}(\alpha_1), \hat{\tau}(\alpha_2)).$$
(2)

question

Let α_1 and α_2 be any Boolean formulas.

- Consider the Boolean formula $\varphi \stackrel{\Delta}{=} \alpha_1 + \text{NOT}(\alpha_1)$. Prove or refute that φ is a tautology.
- Consider the Boolean formula $\varphi \stackrel{\scriptscriptstyle \Delta}{=} (\alpha_1 \to \alpha_2) \leftrightarrow (\text{NOT}(\alpha_1) + \alpha_2)$. Prove or refute that φ is a tautology.

Theorem (De Morgan's Laws)

The following two Boolean formulas are tautologies:

$$(\neg (X + Y)) \leftrightarrow (\bar{X} \cdot \bar{Y}).$$

$$(\neg (X \cdot Y)) \leftrightarrow (\bar{X} + \bar{Y}).$$

De Morgan Dual

Given a Boolean Formula $\varphi \in \mathcal{BF}(U, \{\vee, \wedge, \neg\})$, apply the following "replacements":

- $X_i \mapsto \neg X_i$
- $\neg X_i \mapsto X_i$
- $\bullet \ \lor \mapsto \land$
- $\bullet \ \land \mapsto \lor$

What do you get?

Example

$$\varphi = (X_1 + \neg X_2) \cdot (\neg X_2 + X_3)$$

is replaced by

$$\mathsf{dual}(\varphi) = (\neg X_1 \cdot X_2) + (X_2 \cdot \neg X_3).$$

What is the relation between φ and dual(φ)?

We define the De Morgan Dual using a recursive algorithm.

Algorithm 3 DM(φ) - An algorithm for computing the De Morgan dual of a Boolean formula $\varphi \in \mathcal{BF}(\{X_1, \ldots, X_n\}, \{\neg, \text{OR}, \text{AND}\}).$

Base Cases:

() If
$$\varphi = 0$$
, then return 1. If $\varphi = 1$, then return 0.

2 If
$$\varphi = (\neg 0)$$
, then return 0. If $\varphi = (\neg 1)$, then return 1.

③ If
$$\varphi = X_i$$
, then return $(\neg X_i)$.

• If
$$\varphi = (\neg X_i)$$
, then return X_i .

Reduction Rules:

• If
$$\varphi = (\neg \varphi_1)$$
, then return $(\neg \mathsf{DM}(\varphi_1))$.

2 If
$$\varphi = (\varphi_1 \cdot \varphi_2)$$
, then return $(\mathsf{DM}(\varphi_1) + \mathsf{DM}(\varphi_2))$.

So If
$$\varphi = (\varphi_1 + \varphi_2)$$
, then return $(\mathsf{DM}(\varphi_1) \cdot \mathsf{DM}(\varphi_2))$.

Example

 $\mathsf{DM}(X \cdot (\neg Y)).$

Exercise

Prove that $\mathsf{DM}(\varphi) \in \mathcal{BF}$.

The dual can be obtained by applying replacements to the labels in the parse tree of φ or directly to the "characters" of the string φ .

Theorem

For every Boolean formula φ , $DM(\varphi)$ is logically equivalent to $(\neg \varphi)$.

Corollary

For every Boolean formula φ , $DM(DM(\varphi))$ is logically equivalent to φ .

Nice trick, but is it of any use?!

A formula is in negation normal form if negation is applied only directly to variables or constants. ($\neg 0 = 1$, $\neg 1 = 0$, so we can easily eliminate negations of constants)

Definition

A Boolean formula $\varphi \in \mathcal{BF}(\{X_1, \ldots, X_n\}, \{\neg, \text{OR}, \text{AND}\})$ is in negation normal form if the parse tree (G, π) of φ satisfies the following condition. If a vertex v in G is labeled by negation (i.e., $\pi(v) = \neg$), then v is a parent of a leaf.

Example

•
$$\neg (X_1 + X_2)$$
 and $(\neg X_1 \cdot \neg X_2)$.

•
$$\neg(X_1\cdot \neg X_2)$$
 and $(\neg X_1+X_2)$.

Definition

A Boolean formula $\varphi \in \mathcal{BF}(\{X_1, \ldots, X_n\}, \{\neg, \text{OR}, \text{AND}\})$ is in negation normal form if the parse tree (G, π) of φ satisfies the following condition. If a vertex v in G is labeled by negation (i.e., $\pi(v) = \neg$), then v is a parent of a leaf.

Lemma

If φ is in negation normal form, then so is $DM(\varphi)$.

We present an algorithm $NNF(\varphi)$ that transforms a Boolean formula φ into a logically equivalent formula in negation normal form.

Algorithm 4 NNF(φ) - An algorithm for computing the negation normal form of a Boolean formula $\varphi \in \mathcal{BF}(\{X_1, \ldots, X_n\}, \{\neg, \operatorname{OR}, \operatorname{AND}\}).$

3 Base Cases: If $\varphi \in \{0, 1, X_i, (\neg X_i), \neg 0, \neg 1\}$, then return φ .

Q Reduction Rules:

• If $\varphi = (\neg \varphi_1)$, then return DM(NNF(φ_1)). • If $\varphi = (\varphi_1 \cdot \varphi_2)$, then return (NNF(φ_1) · NNF(φ_2)).

3 If $\varphi = (\varphi_1 + \varphi_2)$, then return $(NNF(\varphi_1) + NNF(\varphi_2))$.

Theorem

Let $\varphi \in \mathcal{BF}(\{X_1, \ldots, X_n\}, \{\neg, \text{OR, AND}\})$. Then: (i) $NNF(\varphi) \in \mathcal{BF}(\{X_1, \ldots, X_n\}, \{\neg, \text{OR, AND}\})$, (ii) $NNF(\varphi)$ is logically equivalent to φ and, (iii) $NNF(\varphi)$ is in negation normal form.