Digital Logic Design: a rigorous approach (C) Chapter 6: Propositional Logic

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 19, 2020

Book Homepage: <http://www.eng.tau.ac.il/~guy/Even-Medina> The building blocks of a Boolean formula are constants, variables, and connectives.

- A constant is either 0 or 1. As in the case of bits, we interpret a 1 as "true" and a 0 as a "false". The terms constant and bit are synonyms; the term bit is used in Boolean functions and in circuits while the term constants is used in Boolean formulas.
- 2 A variable is an element in a set of variables. We denote the set of variables by U . The set U does not contain constants. Variables are usually denoted by upper case letters.
- ³ Connectives are used to build longer formulas from shorter ones. We denote the set of connectives by C .

We consider unary, binary, and higher arity connectives.

- **1** There is only one unary connective called negation. Negation of a variable A is denoted by $NOT(A)$, $\neg A$, or \overline{A} .
- 2 There are several binary connectives, the most common are AND (denoted also by \land or \cdot) and OR (denoted also by \lor or $+$). A binary connective is applied to two formulas. We later show the relation between binary connectives and Boolean functions $B: \{0,1\}^2 \rightarrow \{0,1\}.$
- \bullet A connective has arity *j* if it is applied to *j* formulas. The arity of negation is 1, the arity of AND is 2, etc.

Example: parse tree

Figure: A parse tree that corresponds to the Boolean formula $((X \nO R 0)$ AND $(\neg Y))$. The rooted trees that are hanging from the root of the parse tree (the AND connective) are bordered by dashed rectangles. We use parse trees to define Boolean formulas.

Definition

A parse tree is a pair (G, π) , where $G = (V, E)$ is a rooted tree and $\pi: V \to \{0,1\} \cup U \cup C$ is a labeling function that satisfies:

- **4** A leaf is labeled by a constant or a variable. Formally, if $v \in V$ is a leaf, then $\pi(v) \in \{0,1\} \cup U$.
- 2 An interior vertex v is labeled by a connective whose arity equals the in-degree of v. Formally, if $v \in V$ is an interior vertex, then $\pi(v) \in \mathcal{C}$ is a connective with arity $deg_{in}(v)$.

We usually use only unary and binary connectives. Thus, unless stated otherwise, a parse tree has an in-degree of at most two.

- We use strings that contain constants, variables, connectives, and parenthesis to construct Boolean formulas.
- We use parse trees to define Boolean formulas.
- This definition is constructive (inorder traversal of the parse tree).

Examples of Good and Bad Formulas

- \bullet $(A \text{ AND } B)$
- \bullet (A or B)
- \bullet A OR OR B) not a Boolean formula!
- \bullet ((A AND B) OR (A AND C) OR 1).
- If φ and ψ are Boolean formulas, then $(\varphi \text{ OR } \psi)$ is a Boolean formula.
- If φ is a Boolean formula, then $(\neg \varphi)$ is a Boolean formula.

We will stick to parse trees, and now show how they are parsed to generate valid Boolean formulas.

Algorithm 1 INORDER(G, π) - An algorithm for generating the Boolean formula corresponding to a parse tree (G, π) , where $G =$ (V, E) is a rooted tree with in-degree at most 2 and $\pi : V \rightarrow$ $\{0,1\} \cup U \cup C$ is a labeling function.

1 Base Case: If $|V| = 1$ then return $\pi(v)$ (where $v \in V$ is the only node in V)

2 Reduction Rule:

- **1** If deg_{in} $(r(G)) = 1$, then
	- **1** Let $G_1 = (V_1, E_1)$ denote the rooted tree hanging from $r(G)$.
	- 2 Let π_1 denote the restriction of π to V_1 .
	- $\bullet \ \alpha \leftarrow \text{INORDER}(G_1, \pi_1).$
	- **4** Return $(\neg \alpha)$.
- **2** If $deg_{in}(r(G)) = 2$, then
	- **1** Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ denote the rooted subtrees hanging from $r(G)$.
	- 2 Let π_i denote the restriction of π to V_i .
	- $\bullet \ \alpha \leftarrow \text{INORDER}(G_1, \pi_1).$
	- θ β \leftarrow INORDER(G_2 , π_2).
	- **6** Return $(\alpha \pi(r(G)) \beta)$.

Definition

Let (G, π) denote a parse tree and let T_v denote the subtree hanging from v.

- The output φ of INORDER(G, π) is a Boolean formula.
- The output of INORDER(T_v, π) is a subformula of φ .

We say that Boolean formula φ is defined by the parse tree (G, π) .

- \bullet Consider all the parse trees over the set of variables U and the set of connectives C.
- The set of all Boolean formulas defined by these parse trees is denoted by $\mathcal{BF}(U, \mathcal{C})$.
- \bullet To simplify notation, we abbreviate $\mathcal{BF}(U, \mathcal{C})$ by \mathcal{BF} when the sets of variables and connectives are known.

Some of the connectives have several notations. The following formulas are the same, i.e. string equality.

$$
(A + B) = (A \lor B) = (A \text{ OR } B),
$$

\n
$$
(A \cdot B) = (A \land B) = (A \text{ AND } B),
$$

\n
$$
(\neg B) = (\text{NOT}(B)) = (\bar{B}),
$$

\n
$$
(A \text{ XOR } B) = (A \oplus B),
$$

\n
$$
((A \lor C) \land (\neg B)) = ((A + C) \cdot (\bar{B})).
$$

We sometimes omit parentheses from formulas if their parse tree is obvious. When parenthesis are omitted, one should use precedence rules as in arithmetic, e.g., $a \cdot b + c \cdot d = ((a \cdot b) + (c \cdot d))$.

The implication connective is denoted by \rightarrow .

$$
\begin{array}{c|cc}\nX & Y & X \rightarrow Y \\
\hline\n0 & 0 & 1 & \rightarrow & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1\n\end{array}
$$

Table: The truth table representation and the multiplication table of the implication connective.

Lemma

 $A \rightarrow B$ is true iff $A \leq B$.

- The implication connective is not commutative, namely, $(0 \rightarrow 1) \neq (1 \rightarrow 0).$
- This connective is called implication since it models the natural language templates "Y if X" and "if X then Y".
- Note that $X \rightarrow Y$ is always 1 if $X = 0$.

$\text{NAND}(A, B) \triangleq \text{NOT}(\text{AND}(A, B)),$ $text{non}(A, B) \triangleq \text{non}(on(A, B))$.

The equivalence connective is denoted by \leftrightarrow .

$$
(p \leftrightarrow q) \text{ abbreviates } ((p \to q) \text{ AND } (q \to p)).
$$
\n
$$
\begin{array}{c|c|c|c}\nX & Y & X \leftrightarrow Y \\
\hline\n0 & 0 & 1 & & \leftrightarrow & 0 & 1 \\
1 & 0 & 0 & & 0 & 1 & 0 \\
0 & 1 & 0 & & 1 & 0 & 1 \\
1 & 1 & & & & & \\
\end{array}
$$

$$
(X \leftrightarrow Y) = \begin{cases} 1 & \text{if } X = Y \\ 0 & \text{if } X \neq Y. \end{cases}
$$

Figure: The parse tree of the Boolean formula $((X \text{ OR } 0) \rightarrow (\neg Y))$. The root is labeled by an implication connective. The rooted trees hanging from the root are encapsulated by dashed rectangles.

- \bullet Variables: X, Y, Z, \ldots
- Logical connectives:
	- unary: NOT
	- \bullet binary: AND, OR, NOR, NAND, \rightarrow , \leftrightarrow
- **•** Parse Trees: rooted tree labeled by variables and connectives.
- Boolean Formula: defined by inorder traversal of parse tree.
- Attach Boolean operators to logical connectives.
- Syntax grammatic rules that govern the construction of Boolean formulas (rules: parse trees $+$ inorder traversal)
- Semantics functional interpretation of a formula

Syntax has a purpose: to provide well defined semantics!

Logical connectives have two roles:

- Syntax: building block for Boolean formulas ("glue").
- Semantics: define a truth value based on a Boolean function.

To emphasize the semantic role: given a k -ary connective $*$, we denote the semantics of ∗ by a Boolean function

$$
B_*: \{0,1\}^k \to \{0,1\}
$$

Example

.

 $B_{\text{AND}}(b_1, b_2) = b_1 \cdot b_2$.

•
$$
B_{\text{NOT}}(b) = 1 - b
$$
.

Semantics of Variables and Constants

- The function B_X associated with a variable X is the identity function $B_X(b) = b$.
- The function B_{σ} associated with a constant $\sigma \in \{0,1\}$ is the constant function $B_{\sigma}(b) = \sigma$.

Let II denote the set of variables

Definition A truth assignment is a function $\tau : U \to \{0,1\}.$

Our goal is to extend every assignment $\tau : U \rightarrow \{0, 1\}$ to a function

$$
\hat{\tau}:\mathcal{BF}(U,\mathcal{C})\rightarrow\{0,1\}
$$

Thus, a truth assignment to variables actually induces truth values to every Boolean formula.

extending truth assignments to formulas

The extension $\hat{\tau} : \mathcal{BF} \to \{0, 1\}$ of an assignment $\tau : U \to \{0, 1\}$ is defined as follows.

Definition

Let $p \in \mathcal{BF}$ be a Boolean formula generated by a parse tree (G, π) . Then,

$$
\hat{\tau}(p) \stackrel{\triangle}{=} \mathsf{EVAL}(G, \pi, \tau),
$$

where EVAL is listed in the next slide.

EVAL is also an algorithm that also employs inorder traversal over the parse tree!

Algorithm 2 EVAL(G, π, τ) - evaluate the truth value of the Boolean formula generated by the parse tree (G, π) , where (i) $G =$ (V, E) is a rooted tree with in-degree at most 2, (ii) π : $V \rightarrow$ $\{0,1\} \cup U \cup C$, and (iii) $\tau : U \rightarrow \{0,1\}$ is an assignment.

- **1** Base Case: If $|V| = 1$ then
	- **1** Let $v \in V$ be the only node in V.
	- $\bullet \ \pi(v)$ is a constant: If $\pi(v) \in \{0,1\}$ then return $(\pi(v))$.
	- \bullet $\pi(v)$ is a variable: return $(\tau(\pi(v))$.
- 2 Reduction Rule:
	- **1** If deg_{in} $(r(G)) = 1$, then (in this case $\pi(r(G)) = \text{NOT}$)
		- **1** Let $G_1 = (V_1, E_1)$ denote the rooted tree hanging from $r(G)$.
		- 2 Let π_1 denote the restriction of π to V_1 .
		- **3** $\sigma \leftarrow$ EVAL(G_1, π_1, τ).
		- **4** Return ($NOT(\sigma)$).
	- **2** If $deg_{in}(r(G)) = 2$, then
		- **1** Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ denote the rooted subtrees hanging from $r(G)$.
		- 2 Let π_i denote the restriction of π to V_i .
		- **3** $\sigma_1 \leftarrow$ EVAL(G_1, π_1, τ).
		- $\bullet \quad \sigma_2 \leftarrow \text{EVAL}(G_2, \pi_2, \tau).$
		- **6** Return $(B_{\pi(r(G))}(\sigma_1, \sigma_2))$.

Evaluation:

- Fix a truth assignment $\tau : U \rightarrow \{0,1\}$.
- **•** Extended τ to every Boolean formula $p \in \mathcal{BF}$.

Formula as a function:

- **•** Fix a Boolean formula p.
- Consider all possible truth assignments $\tau : U \rightarrow \{0,1\}.$

Definition

Let p denote a Boolean formula.

- **1** p is satisfiable if there exists an assignment τ such that $\hat{\tau}(p) = 1.$
- 2 p is a tautology if $\hat{\tau}(p) = 1$ for every assignment τ .

Definition

Two formulas p and q are logically equivalent if $\hat{\tau}(p) = \hat{\tau}(q)$ for every assignment τ .

\n- **6** Show that
$$
\varphi \triangleq (X \oplus Y)
$$
 is satisfiable.
\n- **7** Let $\varphi \triangleq (X \vee \neg X)$. Show that φ is a tautology.
\n- **8** Let $\varphi \triangleq (X \vee \neg X)$. Show that φ is a tautology.
\n- **9** $\frac{\tau(X)}{0} = \frac{\text{NOT}(\tau(X))}{1} = \frac{\hat{\tau}(X \vee \neg X)}{1} = \frac{1}{1}$
\n

Let $\varphi \stackrel{\scriptscriptstyle\triangle}{=} (X \oplus Y)$, and let $\psi \stackrel{\scriptscriptstyle\triangle}{=} (\bar{X} \cdot Y + X \cdot \bar{Y})$. Show that φ and ψ are logically equivalent. We show that $\hat{\tau}(\varphi) = \hat{\tau}(\psi)$ for every assignment τ . We do that by enumerating all the $2^{|U|}$ assignments.

Table: There are two variables, hence the enumeration consists of $2^2 = 4$ assignments. The columns that correspond to $\hat{\tau}(\varphi)$ and $\hat{\tau}(\psi)$ are identical, hence φ and ψ are equivalent.

Satisfiability and Tautologies

Lemma

Let $\varphi \in \mathcal{BF}$, then

 φ is satisfiable \Leftrightarrow $(\neg \varphi)$ is not a tautology.

Proof.

$$
\varphi \text{ is satisfiable } \Leftrightarrow \exists \tau : \hat{\tau}(\varphi) = 1
$$

$$
\Leftrightarrow \exists \tau : \text{NOT}(\hat{\tau}(\varphi)) = 0
$$

$$
\Leftrightarrow \exists \tau : \hat{\tau}(\neg(\varphi)) = 0
$$

$$
\Leftrightarrow (\neg \varphi) \text{ is not a tautology }.
$$

 \Box

Every Boolean String Represents an Assignment

Definition

Given a binary vector $v = (v_1, \ldots, v_n) \in \{0,1\}^n$, the assignment $\tau_{\mathsf{v}}: \{X_1,\ldots,X_n\} \to \{0,1\}$ is defined by $\tau_{\mathsf{v}}(X_i) \stackrel{\scriptscriptstyle\triangle}{=} \mathsf{v}_i.$

Example

Let $n = 3$.

$$
v[1:3] = 011
$$

\n
$$
\tau_v(X_1) = v[1] = 0
$$

\n
$$
\tau_v(X_2) = v[2] = 1
$$

\n
$$
\tau_v(X_3) = v[3] = 1
$$

Question

Prove that $v \mapsto \tau_v$ is a bijection from $\{0,1\}^n$ to truth assignments

$$
\{\tau \mid \tau : \{X_1, \ldots, X_n\} \to \{0,1\}\}\ .
$$

Every Boolean Formula Represents a Function

Assume that
$$
U = \{X_1, \ldots, X_n\}
$$
.

Definition

A Boolean formula p over the variables $U = \{X_1, \ldots, X_n\}$ defines the Boolean function $B_p: \{0,1\}^n \rightarrow \{0,1\}$ by

$$
B_p(v_1,\ldots v_n)\stackrel{\triangle}{=}\hat{\tau}_v(p).
$$

Example

$$
\rho=X_1\vee X_2\\ B_\rho(0,0)=0,\;\;B_\rho(0,1)=1,\ldots
$$

Assume that
$$
U = \{X_1, \ldots, X_n\}
$$
.

Definition

A Boolean formula p over the variables $U = \{X_1, \ldots, X_n\}$ defines the Boolean function $B_p: \{0,1\}^n \rightarrow \{0,1\}$ by

$$
B_p(v_1,\ldots v_n)\stackrel{\triangle}{=}\hat{\tau}_v(p).
$$

The mapping $p \mapsto B_p$ is a function from $\mathcal{BF}(U, \mathcal{C})$ to set of Boolean functions $\{0,1\}^{(\{0,1\}^n)}$. Is this mapping one-to-one? is it onto?

A Boolean formula p is a tautology if and only if the Boolean function B_p is identically one, i.e., $B_p(v) = 1$, for every $v \in \{0,1\}^n$.

Proof.

$$
\rho \text{ is a tautology } \Leftrightarrow \forall \tau : \hat{\tau}(p) = 1
$$

$$
\Leftrightarrow \forall v \in \{0, 1\}^n : \hat{\tau}_v(p) = 1
$$

$$
\Leftrightarrow \forall v \in \{0, 1\}^n : B_\rho(v) = 1.
$$

П

A Boolean formula p is a satisfiable if and only if the Boolean function B_p is not identically zero, i.e., there exists a vector $v \in \{0,1\}^n$ such that $B_p(v) = 1$.

Proof.

$$
\begin{array}{rcl}\n\rho \text{ is a satisfiable} & \Leftrightarrow & \exists \ \tau : \hat{\tau}(p) = 1 \\
& \Leftrightarrow & \exists \ \nu \in \{0, 1\}^n : \hat{\tau}_v(p) = 1 \\
& \Leftrightarrow & \exists \ \nu \in \{0, 1\}^n : B_p(v) = 1 \,.\n\end{array}
$$

Two Boolean formulas p and q are logically equivalent if and only if the Boolean functions B_p and B_q are identical, i.e., $B_p(v) = B_q(v)$, for every $v \in \{0,1\}^n$.

Proof.

 p and q are logically equivalent

$$
\Leftrightarrow \forall \tau : \hat{\tau}(p) = \hat{\tau}(q)
$$

\n
$$
\Leftrightarrow \forall v \in \{0,1\}^n : \hat{\tau}_v(p) = \hat{\tau}_v(q)
$$

\n
$$
\Leftrightarrow \forall v \in \{0,1\}^n : B_p(v) = B_q(v).
$$

M

If $\varphi = (\alpha_1 \text{ AND } \alpha_2)$, then $B_{\varphi}(v) = \hat{\tau}_v(\varphi)$ $=\hat{\tau}_{\nu}(\alpha_1 \text{ AND } \alpha_2)$ $= B_{\text{AND}}(\hat{\tau}_v(\alpha_1), \hat{\tau}_v(\alpha_2))$ $= B_{\mathrm{AND}}(B_{\alpha_1}(v),B_{\alpha_2}(v)).$

Thus, we can express complicated Boolean functions by composing long Boolean formulas.

Lemma

If $\varphi = \alpha_1 \circ \alpha_2$ for a binary connective \circ , then $\forall v \in \{0,1\}^n: \quad B_{\varphi}(v) = B_{\circ}(B_{\alpha_1}(v), B_{\alpha_2}(v)).$

Two Boolean formulas p and q are logically equivalent if and only if the formula $(p \leftrightarrow q)$ is a tautology.

Substitution is used to compose large formulas from smaller ones. For simplicity, we deal with substitution in formulas over two variables; the generalization to formulas over any number of variables is straightforward.

- $\mathbf{0} \varphi \in \mathcal{BF}(\{X_1, X_2\}, \mathcal{C}),$
- 2 $\alpha_1, \alpha_2 \in \mathcal{BF}(U, \mathcal{C})$.
- **3** ($G_{\varphi}, \pi_{\varphi}$) denotes the parse tree of φ .

Definition

Substitution of α_i in φ yields the Boolean formula $\varphi(\alpha_1, \alpha_2) \in \mathcal{BF}(U, \mathcal{C})$ that is generated by the parse tree (G, π) defined as follows. For every leaf of $\mathsf{v}\in\mathsf{G}_\varphi$ that is labeled by a variable X_i , replace

the leaf $\mathsf{\nu}$ by a new copy of $(\mathsf{G}_{\alpha_{i}},\pi_{\alpha_{i}}).$

example: substitution

Figure: φ , α_1 , α_2 , $\varphi(\alpha_1, \alpha_2)$

Substitution can be obtain by applying a simple "find-and-replace", where each instance of variable X_i is replaced by a copy of the formula α_i , for $i \in \{1,2\}$. One can easily generalize substitution to formulas $\varphi \in \mathcal{BF}(\{X_1,\ldots,X_k\},\mathcal{C})$ for any $k > 2$. In this case, $\varphi(\alpha_1,\ldots,\alpha_k)$ is obtained by replacing every instance of X_i by $\alpha_i.$

Lemma

For every assignment $\tau : U \to \{0,1\}$,

$$
\hat{\tau}(\varphi(\alpha_1, \alpha_2)) = B_{\varphi}(\hat{\tau}(\alpha_1), \hat{\tau}(\alpha_2)). \tag{1}
$$

substitution preserves logical equivalence

Let

 $\circ \varphi \in \mathcal{BF}(\{X_1, X_2\}, \mathcal{C}),$ $\bullet \ \alpha_1, \alpha_2 \in \mathcal{BF}(U, \mathcal{C}),$ $\Phi \tilde{\varphi} \in \mathcal{BF}(\{X_1, X_2\}, \tilde{\mathcal{C}}),$ \bullet $\tilde{\alpha}_1, \tilde{\alpha}_2 \in \mathcal{BF}(U, \tilde{\mathcal{C}}).$

Corollary

If α_i and $\tilde{\alpha}_i$ are logically equivalent, and φ and $\tilde{\varphi}$ are logically equivalent, then $\varphi(\alpha_1, \alpha_2)$ and $\tilde{\varphi}(\tilde{\alpha}_1, \tilde{\alpha}_2)$ are logically equivalent.

Example

$$
\varphi = \neg(X_1 \cdot X_2) \qquad \qquad \tilde{\varphi} = \bar{X}_1 + \bar{X}_2 \n\alpha_1 = A \rightarrow B \qquad \qquad \tilde{\alpha}_1 = \bar{A} + B \n\alpha_2 = C \leftrightarrow D \qquad \qquad \tilde{\alpha}_2 = \neg(C \oplus D)
$$

example: changing connectives

Let $C = \{AND, XOR\}$. We wish to find a formula $\tilde{\beta} \in \mathcal{BF}(\{X, Y, Z\}, \mathcal{C})$ that is logically equivalent to the formula

$$
\beta \stackrel{\triangle}{=} (X \cdot Y) + Z.
$$

Parse β : $\varphi(\alpha_1, \alpha_2)$ with $\alpha_1 = (X \cdot Y)$ and $\alpha_2 = Z$. Find $\tilde{\varphi} \in \mathcal{BF}(\{X_1, X_2\}, \mathcal{C})$ that is logically equivalent to $\varphi \stackrel{\triangle}{=} (X_1 + X_2).$ $\tilde{\varphi} \stackrel{\triangle}{=} X_1 \oplus X_2 \oplus (X_1 \cdot X_2).$

Apply substitution to define $\tilde{\beta}\triangleq\tilde{\varphi}(\alpha_{1},\alpha_{2}),$ thus

$$
\begin{aligned} \tilde{\beta} & \stackrel{\triangle}{=} \tilde{\varphi}(\alpha_1, \alpha_2) \\ & = \alpha_1 \oplus \alpha_2 \oplus (\alpha_1 \cdot \alpha_2) \\ & = (X \cdot Y) \oplus Z \oplus ((X \cdot Y) \cdot Z) \end{aligned}
$$

Indeed $\hat{\beta}$ is logically equivalent to β .

Every Boolean formula can be interpreted as Boolean function. In this section we deal with the following question: Which sets of connectives enable us to express every Boolean function?

Definition

A Boolean function $B: \{0,1\}^n \rightarrow \{0,1\}$ is expressible by $\mathcal{BF}(\{X_1,\ldots,X_n\},\mathcal{C})$ if there exists a formula $p \in \mathcal{BF}(\{X_1,\ldots,X_n\},\mathcal{C})$ such that $B=B_p$.

Definition

A set $\mathcal C$ of connectives is complete if every Boolean function $B: \{0,1\}^n \rightarrow \{0,1\}$ is expressible by $\mathcal{BF}(\{X_1,\ldots,X_n\},\mathcal{C})$.

Completeness of $\{\neg, \text{AND}, \text{OR}\}\$

Theorem

The set $C = \{\neg, \text{AND}, \text{OR}\}\$ is a complete set of connectives.

Proof Outline: Induction on n (the arity of Boolean function).

- **1** Induction basis for $n = 1$.
- 2 Induction step for $B: \{0,1\}^n \rightarrow \{0,1\}$ define:

$$
g(v_1,\ldots,v_{n-1})\stackrel{\triangle}{=}B(v_1,\ldots,v_{n-1},0),
$$

$$
h(v_1,\ldots,v_{n-1})\stackrel{\triangle}{=}B(v_1,\ldots,v_{n-1},1).
$$

- **3** By induction hyp. $\exists r, q \in \mathcal{BF}(\{X_1, \ldots, X_{n-1}\}, \mathcal{C})$: $B_r = h$ and $B_q = g$
- \bullet Prove that $B_p = B$ for the formula p defined by

$$
p \stackrel{\triangle}{=} (q \cdot \bar{X}_n) + (r \cdot X_n)
$$

Theorem

If the Boolean functions in $\{NOT, AND, OR\}$ are expressible by formulas in $\mathcal{BF}(\{X_1, X_2\}, \tilde{\mathcal{C}})$, then $\tilde{\mathcal{C}}$ is a complete set of connectives.

Proof Outline:

- **1** Express $\beta \in \mathcal{BF}(\{X_1,\ldots,X_n\},\mathcal{C})$ by a logically equivalent formula $\tilde{\beta} \in \mathcal{BF}(\{X_1,\ldots,X_n\}, \tilde{\mathcal{C}}).$
- **2** How? induction on the parse tree that generates β .

Theorem

The following Boolean formulas are tautologies.

- \bullet law of excluded middle: $X + \overline{X}$
- **2** double negation: $X \leftrightarrow (\neg\neg X)$
- **3** modus ponens: $(((X \rightarrow Y) \cdot X) \rightarrow Y)$
- **4** contrapositive: $(X \to Y) \leftrightarrow (\bar{Y} \to \bar{X})$
- **•** material implication: $(X \to Y) \leftrightarrow (\bar{X} + Y)$.
- \bullet distribution: $X \cdot (Y + Z) \leftrightarrow (X \cdot Y + X \cdot Z)$.

Recall the lemma:

Lemma

For every assignment $\tau : U \rightarrow \{0, 1\}$,

$$
\hat{\tau}(\varphi(\alpha_1,\alpha_2)) = B_{\varphi}(\hat{\tau}(\alpha_1),\hat{\tau}(\alpha_2)). \tag{2}
$$

question

Let α_1 and α_2 be any Boolean formulas.

- \bullet Consider the Boolean formula $\varphi \stackrel{\scriptscriptstyle\triangle}{=} \alpha_1 + \text{\rm NOT}(\alpha_1).$ Prove or refute that φ is a tautology.
- **2** Consider the Boolean formula $\varphi \stackrel{\scriptscriptstyle\triangle}{=} (\alpha_1 \to \alpha_2) \leftrightarrow (\text{\rm NOT}(\alpha_1) + \alpha_2).$ Prove or refute that φ is a tautology.

Theorem (De Morgan's Laws)

The following two Boolean formulas are tautologies:

$$
\begin{array}{l}\n\mathbf{O} \ (\neg(X + Y)) \leftrightarrow (\bar{X} \cdot \bar{Y}). \\
\mathbf{O} \ (\neg(X \cdot Y)) \leftrightarrow (\bar{X} + \bar{Y}).\n\end{array}
$$

De Morgan Dual

Given a Boolean Formula $\varphi \in \mathcal{BF}(U, \{ \vee, \wedge, \neg \})$, apply the following "replacements":

- $X_i \mapsto \neg X_i$
- $\neg X_i \mapsto X_i$
- $\bullet \vee \mapsto \wedge$
- ∧ 7→ ∨

What do you get?

Example

$$
\varphi=(X_1+\neg X_2)\cdot(\neg X_2+X_3)
$$

is replaced by

$$
dual(\varphi) = (\neg X_1 \cdot X_2) + (X_2 \cdot \neg X_3).
$$

What is the relation between φ and dual(φ)?

We define the De Morgan Dual using a recursive algorithm.

Algorithm 3 DM(φ) - An algorithm for computing the De Morgan dual of a Boolean formula $\varphi \in \mathcal{BF}(\{X_1,\ldots,X_n\}, \{\neg, \text{OR}, \text{AND}\}).$

1 Base Cases:

• If
$$
\varphi = 0
$$
, then return 1. If $\varphi = 1$, then return 0.

• If
$$
\varphi = (\neg 0)
$$
, then return 0. If $\varphi = (\neg 1)$, then return 1.

• If
$$
\varphi = X_i
$$
, then return $(\neg X_i)$.

• If
$$
\varphi = (\neg X_i)
$$
, then return X_i .

2 Reduction Rules:

$$
\text{•} \ \ \text{If} \ \varphi = (\neg \varphi_1), \ \text{then return } (\neg \text{DM}(\varphi_1)).
$$

• If
$$
\varphi = (\varphi_1 \cdot \varphi_2)
$$
, then return $(DM(\varphi_1) + DM(\varphi_2))$.

• If
$$
\varphi = (\varphi_1 + \varphi_2)
$$
, then return $(DM(\varphi_1) \cdot DM(\varphi_2))$.

Example

 $DM(X \cdot (\neg Y))$.

Exercise

Prove that $DM(\varphi) \in \mathcal{BF}$.

The dual can be obtained by applying replacements to the labels in the parse tree of φ or directly to the "characters" of the string φ .

Theorem

For every Boolean formula φ , DM(φ) is logically equivalent to $(\neg \varphi)$.

Corollary

For every Boolean formula φ , $DM(DM(\varphi))$ is logically equivalent to φ .

Nice trick, but is it of any use?!

A formula is in negation normal form if negation is applied only directly to variables or constants. (\neg 0 = 1, \neg 1 = 0, so we can easily eliminate negations of constants)

Definition

A Boolean formula $\varphi \in \mathcal{BF}(\{X_1,\ldots,X_n\}, \{\neg, \text{OR}, \text{AND}\})$ is in negation normal form if the parse tree (G, π) of φ satisfies the following condition. If a vertex v in G is labeled by negation (i.e., $\pi(v) = \neg$), then v is a parent of a leaf.

Example

$$
\bullet \neg (X_1 + X_2) \text{ and } (\neg X_1 \cdot \neg X_2).
$$

$$
\bullet \neg(X_1 \cdot \neg X_2) \text{ and } (\neg X_1 + X_2).
$$

Definition

A Boolean formula $\varphi \in \mathcal{BF}(\{X_1,\ldots,X_n\}, \{\neg, \text{OR}, \text{AND}\})$ is in negation normal form if the parse tree (G, π) of φ satisfies the following condition. If a vertex v in G is labeled by negation (i.e., $\pi(v) = \neg$), then v is a parent of a leaf.

Lemma

If φ is in negation normal form, then so is $DM(\varphi)$.

We present an algorithm $NNF(\varphi)$ that transforms a Boolean formula φ into a logically equivalent formula in negation normal form.

Algorithm 4 NNF(φ) - An algorithm for computing the negation normal form of a Boolean formula $\varphi \in \mathcal{BF}(\{X_1,\ldots,X_n\},\{\neg, \text{OR}, \text{AND}\}).$ ${\bf D}$ Base Cases: If $\varphi \in \{0,1,X_i, (\neg X_i),\neg 0,\neg 1\}$, then return $\varphi.$

2 Reduction Rules:

\n- ① If
$$
\varphi = (\neg \varphi_1)
$$
, then return $DM(NNF(\varphi_1))$.
\n- ② If $\varphi = (\varphi_1 \cdot \varphi_2)$, then return $(NNF(\varphi_1) \cdot NNF(\varphi_2))$.
\n- ③ If $\varphi = (\varphi_1 + \varphi_2)$, then return $(NNF(\varphi_1) + NNF(\varphi_2))$.
\n

Theorem

Let $\varphi \in \mathcal{BF}(\{X_1,\ldots,X_n\},\{\neg, \text{OR}, \text{AND}\})$. Then: (i) $NNF(\varphi) \in \mathcal{BF}(\{X_1,\ldots,X_n\}, \{\neg, \text{OR}, \text{AND}\})$, (ii) $NNF(\varphi)$ is logically equivalent to φ and, (iii) NNF(φ) is in negation normal form.