
Digital Logic Design: a rigorous approach c©
Chapter 6: Propositional Logic

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 19, 2020

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1 / 57

http://www.eng.tau.ac.il/~guy/Even-Medina

Building Blocks of Boolean Formulas

The building blocks of a Boolean formula are constants, variables,
and connectives.

1 A constant is either 0 or 1. As in the case of bits, we interpret
a 1 as “true” and a 0 as a “false”. The terms constant and bit
are synonyms; the term bit is used in Boolean functions and in
circuits while the term constants is used in Boolean formulas.

2 A variable is an element in a set of variables. We denote the
set of variables by U. The set U does not contain constants.
Variables are usually denoted by upper case letters.

3 Connectives are used to build longer formulas from shorter
ones. We denote the set of connectives by C.

2 / 57

Logical Connectives

We consider unary, binary, and higher arity connectives.

1 There is only one unary connective called negation. Negation
of a variable A is denoted by not(A), ¬A, or Ā.

2 There are several binary connectives, the most common are
and (denoted also by ∧ or ·) and or (denoted also by ∨ or
+). A binary connective is applied to two formulas. We later
show the relation between binary connectives and Boolean
functions B : {0, 1}2 → {0, 1}.

3 A connective has arity j if it is applied to j formulas. The arity
of negation is 1, the arity of and is 2, etc.

3 / 57

Example: parse tree

and

X Y0

¬or

Figure: A parse tree that corresponds to the Boolean formula
((X or 0) and (¬Y)). The rooted trees that are hanging from the root
of the parse tree (the and connective) are bordered by dashed rectangles.

4 / 57

Parse Trees

We use parse trees to define Boolean formulas.

Definition

A parse tree is a pair (G , π), where G = (V ,E) is a rooted tree
and π : V → {0, 1} ∪ U ∪ C is a labeling function that satisfies:

1 A leaf is labeled by a constant or a variable. Formally, if
v ∈ V is a leaf, then π(v) ∈ {0, 1} ∪ U.

2 An interior vertex v is labeled by a connective whose arity
equals the in-degree of v . Formally, if v ∈ V is an interior
vertex, then π(v) ∈ C is a connective with arity degin(v).

We usually use only unary and binary connectives. Thus, unless
stated otherwise, a parse tree has an in-degree of at most two.

5 / 57

Boolean formulas

We use strings that contain constants, variables, connectives,
and parenthesis to construct Boolean formulas.

We use parse trees to define Boolean formulas.

This definition is constructive (inorder traversal of the parse
tree).

6 / 57

Examples of Good and Bad Formulas

(A and B)

(A or B)

A or or B) not a Boolean formula!

((A and B) or (A and C) or 1).

If ϕ and ψ are Boolean formulas, then (ϕ or ψ) is a Boolean
formula.

If ϕ is a Boolean formula, then (¬ϕ) is a Boolean formula.

We will stick to parse trees, and now show how they are parsed to
generate valid Boolean formulas.

7 / 57

Algorithm 1 INORDER(G , π) - An algorithm for generating the
Boolean formula corresponding to a parse tree (G , π), where G =
(V ,E) is a rooted tree with in-degree at most 2 and π : V →
{0, 1} ∪ U ∪ C is a labeling function.

1 Base Case: If |V | = 1 then return π(v) (where v ∈ V is the
only node in V)

2 Reduction Rule:
1 If degin(r(G)) = 1, then

1 Let G1 = (V1,E1) denote the rooted tree hanging from r(G).
2 Let π1 denote the restriction of π to V1.
3 α← INORDER(G1, π1).
4 Return (¬α).

2 If degin(r(G)) = 2, then

1 Let G1 = (V1,E1) and G2 = (V2,E2) denote the rooted
subtrees hanging from r(G).

2 Let πi denote the restriction of π to Vi .
3 α← INORDER(G1, π1).
4 β ← INORDER(G2, π2).
5 Return (α π(r(G)) β).

Boolean Formula

Definition

Let (G , π) denote a parse tree and let Tv denote the subtree
hanging from v .

The output ϕ of INORDER(G , π) is a Boolean formula.

The output of INORDER(Tv , π) is a subformula of ϕ.

We say that Boolean formula ϕ is defined by the parse tree (G , π).

9 / 57

Notation

Consider all the parse trees over the set of variables U and the
set of connectives C.

The set of all Boolean formulas defined by these parse trees is
denoted by BF(U, C).

To simplify notation, we abbreviate BF(U, C) by BF when
the sets of variables and connectives are known.

10 / 57

Examples

Some of the connectives have several notations. The following
formulas are the same, i.e. string equality.

(A+ B) = (A ∨ B) = (A or B) ,

(A · B) = (A ∧ B) = (A and B) ,

(¬B) = (not(B)) = (B̄) ,

(A xor B) = (A⊕ B) ,

((A ∨ C) ∧ (¬B)) = ((A+ C) · (B̄)) .

We sometimes omit parentheses from formulas if their parse tree is
obvious. When parenthesis are omitted, one should use precedence
rules as in arithmetic, e.g., a · b + c · d = ((a · b) + (c · d)).

11 / 57

The Implication Connective

The implication connective is denoted by →.

X Y X → Y

0 0 1
1 0 0
0 1 1
1 1 1

→ 0 1

0 1 1
1 0 1

Table: The truth table representation and the multiplication table of the
implication connective.

Lemma

A → B is true iff A ≤ B.

12 / 57

more on the implication connective

The implication connective is not commutative, namely,
(0 → 1) 6= (1 → 0).

This connective is called implication since it models the
natural language templates “Y if X” and “if X then Y ”.

Note that X → Y is always 1 if X = 0.

13 / 57

Connectives nand nor

nand(A,B)
△

= not(and(A,B)) ,

nor(A,B)
△

= not(or(A,B)) .

14 / 57

Truth Tables

X Y X nand Y

0 0 1
1 0 1
0 1 1
1 1 0

X Y X nor Y

0 0 1
1 0 0
0 1 0
1 1 0

nand 0 1

0 1 1
1 1 0

nor 0 1

0 1 0
1 0 0

15 / 57

The Equivalence Connective

The equivalence connective is denoted by ↔.

(p ↔ q) abbreviates ((p → q) and (q → p)).

X Y X ↔ Y

0 0 1
1 0 0
0 1 0
1 1 1

↔ 0 1

0 1 0
1 0 1

(X ↔ Y) =

{

1 if X = Y

0 if X 6= Y .

16 / 57

Order Matters!

or

X Y0

→

not

Figure: The parse tree of the Boolean formula ((X or 0) → (¬Y)). The
root is labeled by an implication connective. The rooted trees hanging
from the root are encapsulated by dashed rectangles.

17 / 57

Recapping

Variables: X ,Y ,Z , . . .

Logical connectives:

unary: not
binary: and,or,nor,nand,→,↔

Parse Trees: rooted tree labeled by variables and connectives.

Boolean Formula: defined by inorder traversal of parse tree.

Attach Boolean operators to logical connectives.

18 / 57

Syntax vs. Semantics

Syntax - grammatic rules that govern the construction of
Boolean formulas (rules: parse trees + inorder traversal)

Semantics - functional interpretation of a formula

Syntax has a purpose: to provide well defined semantics!

19 / 57

Syntax vs. Semantics

Logical connectives have two roles:

Syntax: building block for Boolean formulas (“glue”).

Semantics: define a truth value based on a Boolean function.

To emphasize the semantic role: given a k-ary connective ∗, we
denote the semantics of ∗ by a Boolean function

B∗ : {0, 1}
k → {0, 1}

.

Example

Band(b1, b2) = b1 · b2.

Bnot(b) = 1− b.

20 / 57

Syntax vs. Semantics

Semantics of Variables and Constants

The function BX associated with a variable X is the identity
function BX (b) = b.

The function Bσ associated with a constant σ ∈ {0, 1} is the
constant function Bσ(b) = σ.

21 / 57

truth assignments

Let U denote the set of variables.

Definition

A truth assignment is a function τ : U → {0, 1}.

Our goal is to extend every assignment τ : U → {0, 1} to a
function

τ̂ : BF(U, C) → {0, 1}

Thus, a truth assignment to variables actually induces truth values
to every Boolean formula.

22 / 57

extending truth assignments to formulas

The extension τ̂ : BF → {0, 1} of an assignment τ : U → {0, 1} is
defined as follows.

Definition

Let p ∈ BF be a Boolean formula generated by a parse tree
(G , π). Then,

τ̂(p)
△

= EVAL(G , π, τ),

where EVAL is listed in the next slide.

EVAL is also an algorithm that also employs inorder traversal over
the parse tree!

23 / 57

Algorithm 2 EVAL(G , π, τ) - evaluate the truth value of the
Boolean formula generated by the parse tree (G , π), where (i) G =
(V ,E) is a rooted tree with in-degree at most 2, (ii) π : V →
{0, 1} ∪ U ∪ C, and (iii) τ : U → {0, 1} is an assignment.

1 Base Case: If |V | = 1 then
1 Let v ∈ V be the only node in V .
2 π(v) is a constant: If π(v) ∈ {0, 1} then return (π(v)).
3 π(v) is a variable: return (τ(π(v)).

2 Reduction Rule:
1 If degin(r(G)) = 1, then (in this case π(r(G)) = not)

1 Let G1 = (V1,E1) denote the rooted tree hanging from r(G).
2 Let π1 denote the restriction of π to V1.
3 σ ← EVAL(G1, π1, τ).
4 Return (not(σ)).

2 If degin(r(G)) = 2, then

1 Let G1 = (V1,E1) and G2 = (V2,E2) denote the rooted
subtrees hanging from r(G).

2 Let πi denote the restriction of π to Vi .
3 σ1 ← EVAL(G1, π1, τ).
4 σ2 ← EVAL(G2, π2, τ).
5 Return (B

π(r(G))(σ1, σ2)).

Evaluations vs. Representing a Function

Evaluation:

Fix a truth assignment τ : U → {0, 1}.

Extended τ to every Boolean formula p ∈ BF .

Formula as a function:

Fix a Boolean formula p.

Consider all possible truth assignments τ : U → {0, 1}.

25 / 57

satisfiability and logical equivalence

Definition

Let p denote a Boolean formula.

1 p is satisfiable if there exists an assignment τ such that
τ̂(p) = 1.

2 p is a tautology if τ̂(p) = 1 for every assignment τ .

Definition

Two formulas p and q are logically equivalent if τ̂(p) = τ̂(q) for
every assignment τ .

26 / 57

Examples

1 Show that ϕ
△

= (X ⊕ Y) is satisfiable.

2 Let ϕ
△

= (X ∨ ¬X). Show that ϕ is a tautology.

τ(X) not(τ(X)) τ̂(X ∨ ¬X)

0 1 1
1 0 1

27 / 57

more examples

Let ϕ
△

= (X ⊕ Y), and let ψ
△

= (X̄ · Y + X · Ȳ). Show that ϕ and
ψ are logically equivalent.
We show that τ̂(ϕ) = τ̂ (ψ) for every assignment τ . We do that by
enumerating all the 2|U| assignments.

τ (X) τ (Y) and(not(τ (X)), τ (Y)) and(τ (X),not(τ (Y))) τ̂(ϕ) τ̂(ψ)

0 0 0 0 0 0
1 0 0 1 1 1
0 1 1 0 1 1
1 1 0 0 0 0

Table: There are two variables, hence the enumeration consists of 22 = 4
assignments. The columns that correspond to τ̂ (ϕ) and τ̂ (ψ) are
identical, hence ϕ and ψ are equivalent.

28 / 57

Satisfiability and Tautologies

Lemma

Let ϕ ∈ BF , then

ϕ is satisfiable ⇔ (¬ϕ) is not a tautology .

Proof.

ϕ is satisfiable ⇔ ∃τ : τ̂(ϕ) = 1

⇔ ∃τ : not(τ̂ (ϕ)) = 0

⇔ ∃τ : τ̂(¬(ϕ)) = 0

⇔ (¬ϕ) is not a tautology .

29 / 57

Every Boolean String Represents an Assignment

Definition

Given a binary vector v = (v1, . . . , vn) ∈ {0, 1}n , the assignment

τv : {X1, . . . ,Xn} → {0, 1} is defined by τv (Xi)
△

= vi .

Example

Let n = 3.

v [1 : 3] = 011

τv (X1) = v [1] = 0

τv (X2) = v [2] = 1

τv (X3) = v [3] = 1

Question

Prove that v 7→ τv is a bijection from {0, 1}n to truth assignments

{τ | τ : {X1, . . . ,Xn} → {0, 1}} .
30 / 57

Every Boolean Formula Represents a Function

Assume that U = {X1, . . . ,Xn}.

Definition

A Boolean formula p over the variables U = {X1, . . . ,Xn} defines
the Boolean function Bp : {0, 1}n → {0, 1} by

Bp(v1, . . . vn)
△

= τ̂v (p).

Example

p = X1 ∨ X2

Bp(0, 0) = 0, Bp(0, 1) = 1, . . .

31 / 57

Every Boolean Formula Represents a Function (cont)

Assume that U = {X1, . . . ,Xn}.

Definition

A Boolean formula p over the variables U = {X1, . . . ,Xn} defines
the Boolean function Bp : {0, 1}n → {0, 1} by

Bp(v1, . . . vn)
△

= τ̂v (p).

The mapping p 7→ Bp is a function from BF(U, C) to set of
Boolean functions {0, 1}({0,1}

n). Is this mapping one-to-one? is it
onto?

32 / 57

Every Tautology Induces a Constant Function

Claim

A Boolean formula p is a tautology if and only if the Boolean
function Bp is identically one, i.e., Bp(v) = 1, for every
v ∈ {0, 1}n .

Proof.

p is a tautology ⇔ ∀ τ : τ̂(p) = 1

⇔ ∀ v ∈ {0, 1}n : τ̂v (p) = 1

⇔ ∀ v ∈ {0, 1}n : Bp(v) = 1 .

33 / 57

what about a satisfiable formula?

Claim

A Boolean formula p is a satisfiable if and only if the Boolean
function Bp is not identically zero, i.e., there exists a vector
v ∈ {0, 1}n such that Bp(v) = 1.

Proof.

p is a satisfiable ⇔ ∃ τ : τ̂(p) = 1

⇔ ∃ v ∈ {0, 1}n : τ̂v (p) = 1

⇔ ∃ v ∈ {0, 1}n : Bp(v) = 1 .

34 / 57

equivalent formulas

Claim

Two Boolean formulas p and q are logically equivalent if and only
if the Boolean functions Bp and Bq are identical, i.e.,
Bp(v) = Bq(v), for every v ∈ {0, 1}n .

Proof.

p and q are logically equivalent

⇔ ∀ τ : τ̂(p) = τ̂(q)

⇔ ∀ v ∈ {0, 1}n : τ̂v (p) = τ̂v (q)

⇔ ∀ v ∈ {0, 1}n : Bp(v) = Bq(v) .

35 / 57

Example: Composition of Boolean formulas

If ϕ = (α1 and α2), then

Bϕ(v) = τ̂v (ϕ)

= τ̂v (α1 and α2)

= Band(τ̂v (α1), τ̂v (α2))

= Band(Bα1(v),Bα2(v)).

Thus, we can express complicated Boolean functions by composing
long Boolean formulas.

36 / 57

Composition of Boolean formulas

Lemma

If ϕ = α1 ◦ α2 for a binary connective ◦, then

∀v ∈ {0, 1}n : Bϕ(v) = B◦(Bα1(v),Bα2(v)).

37 / 57

equivalence and tautology

Claim

Two Boolean formulas p and q are logically equivalent if and only
if the formula (p ↔ q) is a tautology.

38 / 57

substitution

Substitution is used to compose large formulas from smaller ones.
For simplicity, we deal with substitution in formulas over two
variables; the generalization to formulas over any number of
variables is straightforward.

1 ϕ ∈ BF({X1,X2}, C),

2 α1, α2 ∈ BF(U, C).

3 (Gϕ, πϕ) denotes the parse tree of ϕ.

Definition

Substitution of αi in ϕ yields the Boolean formula
ϕ(α1, α2) ∈ BF(U, C) that is generated by the parse tree (G , π)
defined as follows.
For every leaf of v ∈ Gϕ that is labeled by a variable Xi , replace
the leaf v by a new copy of (Gαi

, παi
).

39 / 57

example: substitution

X2

+

X1 0

·

X Y

not

not

Y0

·

+

X

Figure: ϕ, α1, α2, ϕ(α1, α2)

40 / 57

more on substitution

Substitution can be obtain by applying a simple
“find-and-replace”, where each instance of variable Xi is replaced
by a copy of the formula αi , for i ∈ {1, 2}.
One can easily generalize substitution to formulas
ϕ ∈ BF({X1, . . . ,Xk}, C) for any k > 2. In this case,
ϕ(α1, . . . , αk) is obtained by replacing every instance of Xi by αi .

41 / 57

truth values and substitution

Lemma

For every assignment τ : U → {0, 1},

τ̂(ϕ(α1, α2)) = Bϕ(τ̂(α1), τ̂ (α2)). (1)

42 / 57

substitution preserves logical equivalence

Let

ϕ ∈ BF({X1,X2}, C),
α1, α2 ∈ BF(U, C),
ϕ̃ ∈ BF({X1,X2}, C̃),
α̃1, α̃2 ∈ BF(U, C̃).

Corollary

If αi and α̃i are logically equivalent, and ϕ and ϕ̃ are logically
equivalent, then ϕ(α1, α2) and ϕ̃(α̃1, α̃2) are logically equivalent.

Example

ϕ = ¬(X1 · X2) ϕ̃ =X̄1 + X̄2

α1 = A → B α̃1 =Ā+ B

α2 = C ↔ D α̃2 =¬(C ⊕ D)

43 / 57

example: changing connectives

Let C = {and,xor}. We wish to find a formula
β̃ ∈ BF({X ,Y ,Z}, C) that is logically equivalent to the formula

β
△

= (X · Y) + Z .

Parse β: ϕ(α1, α2) with α1 = (X · Y) and α2 = Z .
Find ϕ̃ ∈ BF({X1,X2}, C) that is logically equivalent to

ϕ
△

= (X1 + X2).

ϕ̃
△

= X1 ⊕ X2 ⊕ (X1 · X2).

Apply substitution to define β̃
△

= ϕ̃(α1, α2), thus

β̃
△

= ϕ̃(α1, α2)

= α1 ⊕ α2 ⊕ (α1 · α2)

= (X · Y)⊕ Z ⊕ ((X · Y) · Z)

Indeed β̃ is logically equivalent to β.

44 / 57

Complete Sets of Connectives

Every Boolean formula can be interpreted as Boolean function. In
this section we deal with the following question: Which sets of
connectives enable us to express every Boolean function?

Definition

A Boolean function B : {0, 1}n → {0, 1} is expressible by
BF({X1, . . . ,Xn}, C) if there exists a formula
p ∈ BF({X1, . . . ,Xn}, C) such that B = Bp.

Definition

A set C of connectives is complete if every Boolean function
B : {0, 1}n → {0, 1} is expressible by BF({X1, . . . ,Xn}, C).

45 / 57

Completeness of {¬,and,or}

Theorem

The set C = {¬,and,or} is a complete set of connectives.

Proof Outline: Induction on n (the arity of Boolean function).

1 Induction basis for n = 1.

2 Induction step for B : {0, 1}n → {0, 1} define:

g(v1, . . . , vn−1)
△

= B(v1, . . . , vn−1, 0),

h(v1, . . . , vn−1)
△

= B(v1, . . . , vn−1, 1).

3 By induction hyp. ∃r , q ∈ BF({X1, . . . ,Xn−1}, C) :
Br = h and Bq = g

4 Prove that Bp = B for the formula p defined by

p
△

= (q · X̄n) + (r · Xn)

46 / 57

Theorem: changing connectives

Theorem

If the Boolean functions in {not,and,or} are expressible by
formulas in BF({X1,X2}, C̃), then C̃ is a complete set of
connectives.

Proof Outline:

1 Express β ∈ BF({X1, . . . ,Xn}, C) by a logically equivalent
formula β̃ ∈ BF({X1, . . . ,Xn}, C̃).

2 How? induction on the parse tree that generates β.

47 / 57

Important Tautologies

Theorem

The following Boolean formulas are tautologies.

1 law of excluded middle: X + X̄

2 double negation: X ↔ (¬¬X)

3 modus ponens: (((X → Y) · X) → Y)

4 contrapositive: (X → Y) ↔ (Ȳ → X̄)

5 material implication: (X → Y) ↔ (X̄ + Y).

6 distribution: X · (Y + Z) ↔ (X · Y + X · Z).

48 / 57

Substitution in Tautologies

Recall the lemma:

Lemma

For every assignment τ : U → {0, 1},

τ̂(ϕ(α1, α2)) = Bϕ(τ̂(α1), τ̂ (α2)). (2)

question

Let α1 and α2 be any Boolean formulas.

1 Consider the Boolean formula ϕ
△

= α1 + not(α1). Prove or
refute that ϕ is a tautology.

2 Consider the Boolean formula
ϕ

△

= (α1 → α2) ↔ (not(α1) + α2). Prove or refute that ϕ is
a tautology.

49 / 57

De Morgan’s Laws

Theorem (De Morgan’s Laws)

The following two Boolean formulas are tautologies:

1 (¬(X + Y)) ↔ (X̄ · Ȳ).

2 (¬(X · Y)) ↔ (X̄ + Ȳ).

50 / 57

De Morgan Dual

Given a Boolean Formula ϕ ∈ BF(U, {∨,∧,¬}), apply the
following “replacements”:

Xi 7→ ¬Xi

¬Xi 7→ Xi

∨ 7→ ∧

∧ 7→ ∨

What do you get?

Example

ϕ = (X1 + ¬X2) · (¬X2 + X3)

is replaced by

dual(ϕ) = (¬X1 · X2) + (X2 · ¬X3).

What is the relation between ϕ and dual(ϕ)?

51 / 57

De Morgan Dual

We define the De Morgan Dual using a recursive algorithm.

52 / 57

Algorithm 3 DM(ϕ) - An algorithm for computing the De Morgan
dual of a Boolean formula ϕ ∈ BF({X1, . . . ,Xn}, {¬,or,and}).

1 Base Cases:
1 If ϕ = 0, then return 1. If ϕ = 1, then return 0.
2 If ϕ = (¬0), then return 0. If ϕ = (¬1), then return 1.
3 If ϕ = Xi , then return (¬Xi).
4 If ϕ = (¬Xi), then return Xi .

2 Reduction Rules:
1 If ϕ = (¬ϕ1), then return (¬DM(ϕ1)).
2 If ϕ = (ϕ1 · ϕ2), then return (DM(ϕ1) + DM(ϕ2)).
3 If ϕ = (ϕ1 + ϕ2), then return (DM(ϕ1) · DM(ϕ2)).

Example

DM(X · (¬Y)).

De Morgan Dual

Exercise

Prove that DM(ϕ) ∈ BF .

The dual can be obtained by applying replacements to the labels in
the parse tree of ϕ or directly to the “characters” of the string ϕ.

Theorem

For every Boolean formula ϕ, DM(ϕ) is logically equivalent to
(¬ϕ).

Corollary

For every Boolean formula ϕ, DM(DM(ϕ)) is logically equivalent
to ϕ.

Nice trick, but is it of any use?!

54 / 57

Negation Normal Form

A formula is in negation normal form if negation is applied only
directly to variables or constants. (¬0 = 1, ¬1 = 0, so we can
easily eliminate negations of constants)

Definition

A Boolean formula ϕ ∈ BF({X1, . . . ,Xn}, {¬,or,and}) is in
negation normal form if the parse tree (G , π) of ϕ satisfies the
following condition. If a vertex v in G is labeled by negation (i.e.,
π(v) = ¬), then v is a parent of a leaf.

Example

¬(X1 + X2) and (¬X1 · ¬X2).

¬(X1 · ¬X2) and (¬X1 + X2).

55 / 57

Negation Normal Form

Definition

A Boolean formula ϕ ∈ BF({X1, . . . ,Xn}, {¬,or,and}) is in
negation normal form if the parse tree (G , π) of ϕ satisfies the
following condition. If a vertex v in G is labeled by negation (i.e.,
π(v) = ¬), then v is a parent of a leaf.

Lemma

If ϕ is in negation normal form, then so is DM(ϕ).

We present an algorithm NNF (ϕ) that transforms a Boolean
formula ϕ into a logically equivalent formula in negation normal
form.

56 / 57

Algorithm 4 NNF(ϕ) - An algorithm for comput-
ing the negation normal form of a Boolean formula
ϕ ∈ BF({X1, . . . ,Xn}, {¬,or,and}).

1 Base Cases: If ϕ ∈ {0, 1,Xi , (¬Xi),¬0,¬1}, then return ϕ.
2 Reduction Rules:

1 If ϕ = (¬ϕ1), then return DM(NNF(ϕ1)).
2 If ϕ = (ϕ1 · ϕ2), then return (NNF(ϕ1) · NNF(ϕ2)).
3 If ϕ = (ϕ1 + ϕ2), then return (NNF(ϕ1) + NNF(ϕ2)).

Theorem

Let ϕ ∈ BF({X1, . . . ,Xn}, {¬,or,and}). Then:
(i) NNF(ϕ) ∈ BF({X1, . . . ,Xn}, {¬,or,and}), (ii) NNF(ϕ) is
logically equivalent to ϕ and, (iii) NNF(ϕ) is in negation normal
form.

