Digital Logic Design: a rigorous approach © Chapter 14: Selectors

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 14, 2020

Book Homepage:

http://www.eng.tau.ac.il/~guy/Even-Medina

Multiplexer (MUX)

Definition

A MUX-gate is a combinational gate that has three inputs D[0], D[1], S and one output Y. The functionality is defined by

$$Y = \begin{cases} D[0] & \text{if } S = 0 \\ D[1] & \text{if } S = 1. \end{cases}$$

Note that we could have used the shorter expression Y=D[S] to define the functionality of a MUX-gate.

n-bit selector

Definition

An (n:1)-MUX is a combinational circuit defined as follows:

Input: data input D[n-1:0] and select input S[k-1:0]

where $k = \lceil \log_2 n \rceil$.

Output: $Y \in \{0, 1\}$.

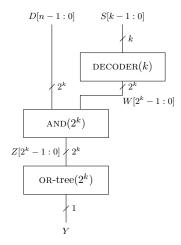
Functionality:

$$Y = D[\langle \vec{S} \rangle].$$

To simplify the discussion, we will assume in this chapter that n is a power of 2, namely, $n = 2^k$.

Example

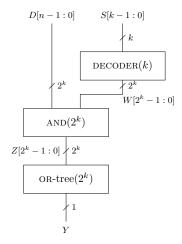
Let n = 4 and D[3:0] = 0101. If S[1:0] = 00, then


$$Y = D[0] = 1$$
. If $S[1:0] = 01$, then $Y = D[1] = 0$.

Implementation

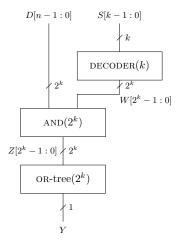
We describe two implementations of (n:1)-MUX.

- translate the number $\langle \vec{S} \rangle$ to 1-out-of-n representation (using a decoder).
- tree based.


decoder based (n:1)-MUX

Claim

The (n:1)-MUX design is correct.


decoder based (n:1)-MUX - cost

Claim

The cost of the (n:1)-MUX design is $\Theta(n)$.

decoder based (n:1)-MUX - delay

Claim

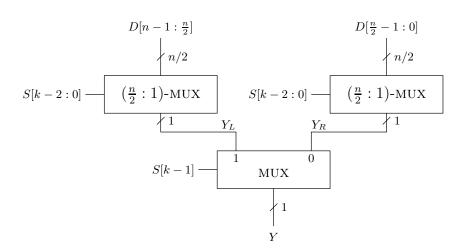
The delay of the (n:1)-MUX design is $\Theta(\log n)$.

(n:1)-MUX - lower bounds

Claim

The cone of the Boolean function implemented by a (n:1)-MUX circuit contains at least n elements.

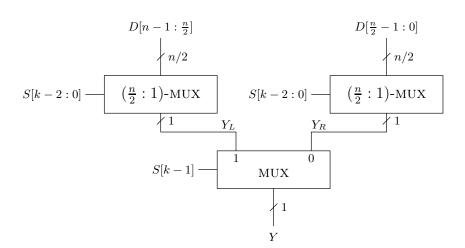
Consider combinational circuits with gates of constant fan-in.


Corollary

The cost of the (n:1)-MUX design is asymptotically optimal.

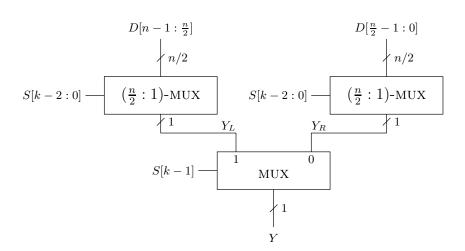
Corollary

The delay of the (n:1)-MUX design is asymptotically optimal.


tree based (n:1)-MUX

Claim

The (n:1)-MUX design is correct.


tree based (n:1)-MUX - cost

Claim

The cost of the (n:1)-MUX design is $\Theta(n)$.

tree based (n:1)-MUX - delay

Claim

The delay of the (n:1)-MUX design is $\Theta(\log n)$.

Comparison

- Both implementations are asymptotically optimal with respect to cost and delay.
- The cost/delay table suggests that the tree-like implementation is cheaper and faster.
- Fast and cheap implementations of MUX-gates in CMOS technology (called "pass transistors") do not restore the signals well. This means that long paths consisting only of such MUX-gates are not allowed (must interleave with invertors to restore the signals).
- What about physical layout? Which design has a smaller "drawing"? (beyond the scope of this course)
- Conclusion: our simplified model cannot be used to deduce conclusively which multiplexer design is better.