Digital Logic Design: a rigorous approach © Chapter 3: Sequences and Series

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

March 16, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina

An infinite sequence is a function f whose domain is \mathbb{N} or \mathbb{N}^+ .

Instead of denoting a sequences by a function $f : \mathbb{N} \to \mathbb{R}$, one usually writes $\{f(0), f(1), \ldots\}$, $\{f(n)\}_{n=0}^{\infty}$ or $\{f_n\}_{n=0}^{\infty}$. Sometimes sequences are only defined for $n \ge 1$.

Example

- $\{g(n)\}_{n=0}^{\infty}$ the Fibonacci sequence
- $\{d_n\}_{n=0}^{\infty}$ where d_n is the *n*th digit of $\pi \approx 3.1415926$. Namely, $d(0) = 3, d(1) = 1, d(2) = 4, \dots$

```
A prefix of \mathbb{N} is a set \{i \in \mathbb{N} \mid i \leq n\}, for some n \in \mathbb{N}.
```

One could similarly consider prefixes of $\mathbb{N}^+.$

Definition

A finite sequence is a function f whose domain is a prefix of \mathbb{N} or \mathbb{N}^+ .

Equivalent representations:

- A sequence ${f(i)}_{i=0}^{n-1}$
- An *n*-tuple $(f(0), f(1), \ldots, f(n-1))$.

- arithmetic sequences
- geometric sequences
- the harmonic sequence

The simplest sequence is the sequence (0, 1, 2, 3...) defined by f(n) = n.

An arithmetic sequence is specified by two parameters:

- a_0 the first element in the sequence
- *d* the difference between successive elements.

Example

For the sequence $f(x)$	1) = n:
-------------------------	---------

•
$$a_0 = 0$$

The arithmetic sequence $\{a_n\}_{n=0}^{\infty}$ specified by the parameters a_0 and d is defined by

$$a_n \stackrel{\scriptscriptstyle riangle}{=} a_0 + n \cdot d.$$

Claim

 $\{a_n\}_{n=0}^{\infty}$ is an arithmetic sequence iff $\exists d \forall n : a_{n+1} - a_n = d$.

Equivalent definition by recursion:

Definition

- Base case: for n = 0, a_0 is given.
- The reduction rule: $a_{n+1} = a_n + d$.

1 The sequence of even numbers $\{e_n\}_{n=0}^{\infty}$ is defined by

$$e_n \stackrel{ riangle}{=} 2n$$
 .

The sequence $\{e_n\}_{n=0}^{\infty}$ is an arithmetic sequence since $e_{n+1} - e_n = 2$, thus the difference between consecutive elements is constant, as required.

2 The sequence of odd numbers $\{\omega_n\}_{n=0}^{\infty}$ is defined by

$$\omega_n \stackrel{\scriptscriptstyle riangle}{=} 2n+1$$
 .

The sequence $\{\omega_n\}_{n=0}^{\infty}$ is also an arithmetic sequence since $\omega(n+1) - \omega(n) = 2$.

If {a_n}[∞]_{n=0} is an arithmetic sequence with a difference d, then {b_n}[∞]_{n=0} defined by b_n = a_{2n} is also an arithmetic sequence. Indeed, b_{n+1} - b_n = a_{2n+2} - a_{2n} = 2d.

The simplest example of a geometric sequence is the sequence of powers of 2: (1, 2, 4, 8, ...). In general, a geometric sequence is specified by two parameters: b_0 - the first element and q - the ratio or quotient between successive elements.

Definition

The geometric sequence $\{b_n\}_{n=0}^{\infty}$ specified by the parameters b_0 and q is defined by

$$b_n \stackrel{\triangle}{=} b_0 \cdot q^n.$$

Claim

$$\{b_n\}_{n=0}^{\infty}$$
 is a geometric sequence iff $\exists q \forall n : b_{n+1}/b_n = q$.

Definition by recursion: The first element is simply b_0 . The recursion step is $b_{n+1} = q \cdot b_n$.

- The sequence of powers of 3 $\{3^n\}_{n=0}^{\infty}$ is a geometric sequence.
- If {b_n}[∞]_{n=0} is a geometric sequence with a quotient q, then {c_n}[∞]_{n=0} defined by c_n = b_{2n} is also a geometric sequence. Indeed, $\frac{c_{n+1}}{c_n} = \frac{b_{2n+2}}{b_{2n}} = \frac{b_{2n+2}}{b_{2n+1}} \cdot \frac{b_{2n+1}}{b_{2n}} = q^2.$
- If {b_n}[∞]_{n=0} is a geometric sequence with a quotient q and b_n > 0, then the sequence {a_n}[∞]_{n=0} defined by a_n [△]= log b_n is an arithmetic sequence. Indeed, log b_n = log(b₀ · aⁿ) = log(b₀) + n log q.
- If q = 1 then the sequence $b_n = a_0 \cdot q^n$ is constant.

The harmonic sequence $\{c_n\}_{n=1}^{\infty}$ is defined by $c_n \stackrel{\triangle}{=} \frac{1}{n}$, for $n \ge 1$.

Note that the first index in the harmonic sequence is n = 1. The harmonic sequence is simply the sequence $(1, \frac{1}{2}, \frac{1}{3}, ...)$.

The sum of elements in a sequence is called a series. We are interested in the sum of the first *n* elements of sequences. Given a sequence $\{a_i\}_i$ we are interested in sums

$$\sum_{i\leq n}a_i=a_0+a_1+\cdots+a_n$$

We generalize the formula

$$\sum_{i=0}^{n} i = \frac{1}{2} \cdot n(n+1).$$

Theorem

If
$$a_n \stackrel{\triangle}{=} a_0 + n \cdot d$$
 and $S_n \stackrel{\triangle}{=} \sum_{i=0}^n a_i$,
Then
 $S_n = a_0 \cdot (n+1) + d \cdot \frac{n \cdot (n+1)}{2}$.

Proof: by induction (standard) or by reduction.

Question

How fast does S_n grow?

geometric series

Theorem

Assume that $q \neq 1$. Let

$$b_n \stackrel{\scriptscriptstyle riangle}{=} b_0 \cdot q^n \text{ and } \qquad S_n \stackrel{\scriptscriptstyle riangle}{=} \sum_{i=0} b_i.$$

Then,

$$S_n = b_0 \cdot \frac{q^{n+1} - 1}{q - 1}.$$
 (1)

п

Example

•
$$\sum_{i=0}^{n-1} 2^i = 2^n - 1$$
 (i.e., $b_0 = 1, q = 2$).
• $\sum_{i=1}^n 2^{-i} = \frac{1}{2} \cdot \frac{1-2^{-n}}{1-1/2} = 1 - 2^{-n}$ (i.e., $b_0 = \frac{1}{2}, q = \frac{1}{2}$).

Theorem

Let

$$\mathcal{H}_n \stackrel{\scriptscriptstyle riangle}{=} \sum_{i=1}^n \frac{1}{i}.$$

Then, for every $k \in \mathbb{N}$

$$1 + \frac{k}{2} \le H_{2^k} \le 1 + k.$$
 (2)

The theorem is useful because it tells us that H_n grows logarithmically in *n*. In particular, H_n tends to infinity as *n* grows. Compare with $\int_1^n \frac{1}{x} dx$.