Digital Logic Design: a rigorous approach © Chapter 18: Memory Modules

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

January 2, 2014

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina

- Transitions of all signals are instantaneous.
- **2** Combinational gates: $t_{pd} = t_{cont} = 0$.
- Flip-flops satisfy:

$$t_{su} = t_{i+1} - t_i,$$

$$t_{hold} = t_{cont} = t_{pd} = 0.$$

Simplified model for specifying and simulating the functionality of circuits with flip-flops.

The clock period, in the delay model, equals 1.

2
$$t_{i+1} - t_i = 1$$
, for every *i*.

- the duration of the *i*th clock cycle is the interval [t_i, t_{i+1}) = [i, i + 1).
- All transitions are instantaneous, so we may assume that each signal is stable during each clock cycle.
- Let X_i denote the digital value of the signal X during the i'th clock cycle.

The Zero Delay Model - functionality of a FF

The functionality of a flip-flop is specified as follows:

$$Q(t)=D(t-1).$$

Since each signal is stable during each clock cycle, we could also write $Q_i = D_{i-1}$.

- eaning:
 - The critical segment C_i equals $[t_{i-1}, t_i)$.
 - The value of D(t) is stable during the critical segment $[t_{i-1}, t_i)$.
 - This value, denoted by D_{i-1} , is sampled by the flip-flop during the clock cycle (i-1).
 - In the next clock cycle $[t_i, t_{i+1})$, the flip-flop's output Q(t) equals the value of the input sampled during the previous cycle.

Example: Sequential XOR

i	A_i	Y_i	Zi
0	0	0	0
1	0	0	0
2	1	1	0
3	0	1	1
4	0	1	1
5	1	0	1
6	0	0	0
7	1	1	0
8	0	1	1

A term register is used to define a memory device that stores a bit or more. There are two main types of register depending on how their contents are loaded.

- Parallel Load Register
- Shift Register (also called a serial load register)

Definition

An n-bit parallel load register is specified as follows.

Inputs: • D[n-1:0](t), • CE(t), and • a clock CLK.

Output:
$$Q[n-1:0](t)$$
.

Functionality:

$$Q[n-1:0](t+1) = egin{cases} D[n-1:0](t) & ext{if CE}(t) = 1 \ Q[n-1:0](t) & ext{if CE}(t) = 0. \end{cases}$$

An *n*-bit parallel load register is simply built from n clock enabled flip-flops.

Parallel Load Register - design

Figure: A 4-bit parallel load register

Parallel Load Register - simulation

i	D[3:0]	CE	<i>Q</i> [3 : 0]
0	1010	1	0000
1	0101	1	1010
2	1100	0	0101
3	1100	1	0101
4	0011	1	1100

Definition

A shift register of n bits is defined as follows. Inputs: D[0](t) and a clock CLK. Output: Q[n-1](t). Functionality: Q[n-1](t+n) = D[0](t).

Shift Register - design

Figure: A 4-bit shift register. Functionality: Q[3](t + 4) = D[0](t)

Shift Registers - simulation

i	D[0]	<i>Q</i> [3 : 0]
0	1	0000
1	1	0001
2	1	0011
3	0	0111
4	1	1110

Random Access Memory (RAM)

- Array of memory cells.
- Each memory cell stores a single bit.
- in each cycle, a single memory cell is accessed.
- Two operations are supported: read and write.
 - read operation: the contents of the accessed memory is output.
 - write operation: a new value is stored in the accessed memory.
- The number of memory cells is denoted by 2^n .
- Solution 5.1 Each cell has a distinct address between 0 and $2^n 1$.
- The cell to be accessed is specified by an *n*-bit string called Address.
- The array of memory cells is denoted by M[2ⁿ 1 : 0]. Let M[i](t) denote the value stored in the *i*th entry of the array M during clock cycle t.

RAM - definition

Definition

```
A RAM(2^n) is specified as follows.
        Inputs: Address[n - 1: 0](t) \in \{0, 1\}^n, D_{in}(t) \in \{0, 1\},
                     R/\overline{W}(t) \in \{0,1\} and a clock CLK.
       Output: D_{out}(t) \in \{0, 1\}.
Functionality :
  • data: array M[2^n - 1:0] of bits.
  ② initialize: \forall i : M[i] \leftarrow 0.
  Solution For t = 0 to \infty do
            D_{out}(t) = M[\langle Address \rangle](t). 
          2 For all i \neq \langle Address \rangle: M[i](t+1) \leftarrow M[i](t).
          3
                 M[\langle Address \rangle](t+1) \leftarrow egin{cases} D_{in}(t) & 	ext{if } R/\overline{W}(t) = 0 \ M[\langle Address 
angle](t) & 	ext{else.} \end{cases}
```

RAM - schematic

Figure: A schematic of a $RAM(2^n)$.

Definition

A single bit *memory cell* is defined as follows.

Inputs: $D_{in}(t)$, $R/\overline{W}(t)$, sel(t), and a clock CLK.

Output: $D_{out}(t)$.

Functionality:

Let $S(t) \in \{0, 1\}$ denote the state of memory cell in cycle t. Assume that the state is initialized to be S(0) = 0. The functionality is defined according to the following cases.

• $S(t) \leftarrow \begin{cases} D_{in}(t) & \text{if } sel(t) = 1 \text{ and } R/\overline{W}(t) = 0 \\ S(t-1) & \text{otherwise.} \end{cases}$ • $D_{out}(t) \leftarrow S(t-1).$

Memory Cell - design

Figure: An implementation of a memory cell.

- The module called Read-Only Memory (ROM) is similar to a RAM, except that write operations are not supported.
- This means that the contents stored in each memory cell are preset and fixed.
- ROMs are used to store information that should not be changed.
- For example, the ROM stores the program that is executed when the computer is turned on.

ROM - definition/design

Definition

A ROM (2^n) that implements a Boolean function $M : [0..2^n - 1] \rightarrow \{0, 1\}$ is defined as follows. Inputs: Address[n - 1 : 0](t). Output: $D_{out}(t)$. Functionality : $D_{out} = M[\langle Address \rangle]$.

$$M[2^{n} - 1:0]$$

$$2^{n}$$

$$Address[n-1:0]$$

$$(2^{n}:1) - MUX$$

$$1$$

$$D_{out}$$