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Preliminary questions

1 How are signed integers represented in a computer?

2 How are signed integers added and subtracted in a computer?

3 Can we use the same circuitry for adding unsigned and signed
integers?
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Representation of negative integers

Definition

The integer represented in sign-magnitude representation by
A[n − 1 : 0] ∈ {0, 1}n and S ∈ {0, 1} is

(−1)S · 〈A[n − 1 : 0]〉.

Definition

The integer represented in one’s complement representation by
A[n − 1 : 0] ∈ {0, 1}n is

−(2n−1 − 1) · A[n − 1] + 〈A[n − 2 : 0]〉.

Definition

The integer represented in two’s complement representation by
A[n − 1 : 0] ∈ {0, 1}n is

−2n−1 · A[n − 1] + 〈A[n − 2 : 0]〉.
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Comparison between representation methods

binary string ~X 〈~X 〉 2’s comp 1’s comp sign-mag

000 0 0 0 +0
001 1 1 1 1
010 2 2 2 2
011 3 3 3 3
100 4 −4 −3 −0
101 5 −3 −2 −1
110 6 −2 −1 −2
111 7 −1 0 −3

symmetric range: one’s complement and sign-magnitude.

two representations for zero: one’s complement and
sign-magnitude.
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Range of representable integers

We denote the integer represented in two’s complement
representation by A[n − 1 : 0] as follows:

[A[n − 1 : 0]]
△

= −2n−1 · A[n − 1] + 〈A[n − 2 : 0]〉.

We denote the set of integers that are representable in two’s
complement representation using n-bit binary strings by Tn. We
denote the set of integers that are representable in binary
representation using n-bit binary strings by Bn.

Claim

Tn =
{

−2n−1,−2n−1 + 1, . . . , 2n−1 − 1
}

two’s comp. rep. range

Bn = {0, . . . , 2n − 1} binary rep. range
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Same string different numbers

Claim

For every A[n− 1 : 0] ∈ {0, 1}n

[

~A
]

=

{

〈~A〉 if A[n − 1] = 0

〈~A〉 − 2n if A[n − 1] = 1

Example

Let n = 4 and let A[3 : 0] = 0110,B [3 : 0] = 1001, then:

〈A[3 : 0]〉 = 6 , [A[3 : 0]] = 6
[

~A
]

= 〈~A〉

〈B [3 : 0]〉 = 9 , [B [3 : 0]] = −7
[

~B
]

= 〈~B〉 − 24
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Alternative definition

Claim

For every A[n− 1 : 0] ∈ {0, 1}n

[

~A
]

=

{

〈~A〉 if A[n − 1] = 0

〈~A〉 − 2n if A[n − 1] = 1

Corollary

For every A[n− 1 : 0] ∈ {0, 1}n

〈~A〉 = mod(
[

~A
]

, 2n).
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Computing a two’s complement representation

Algorithm 1 two-comp(x , n) - An algorithm for computing the two’s
complement representation of x using n bits.

1 If x 6∈ Tn return (fail).

2 If x ≥ 0 return (0 ◦ binn−1(x)).

3 If x < 0 return (binn(x + 2n)).

proof:

Let ~A denote output of algorithm. If x ≥ 0, then
[

~A
]

= 〈~A〉 = x .

If x < 0, then
[

~A
]

= 〈~A〉 − 2n = (x + 2n)− 2n = x .
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Computing a two’s complement representation

Example

T4 =
{

−23,−23 + 1, . . . , 23 − 1
}

.

Hence,

two-comp(8, 4) = fail ,

two-comp(5, 4) = (0 ◦ bin3(5)) = 0101 ,

two-comp(−6, 4) = (bin4(−6 + 24)) = 1010 ,

two-comp(−1, 4) = (bin4(−1 + 24)) = 1111 .
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Negation in two’s complement representation

The following claim deals with negating a value represented in
two’s complement representation.

Claim

− [A[n− 1 : 0]] = [inv(A[n − 1 : 0])] + 1.

Examples: ~A = 0110 and ~A = 1001.
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Negation based on
− [A[n − 1 : 0]] = [inv(A[n − 1 : 0])] + 1

inv(n)

inc(n)

A[n− 1 : 0]

B[n− 1 : 0]

n

n

n

A[n− 1 : 0]

C[n]
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Negation based on
− [A[n − 1 : 0]] = [inv(A[n − 1 : 0])] + 1

We compute 〈A[n − 1 : 0]〉+ 1.

But need
[

A[n − 1 : 0]
]

+ 1.

So 〈C [n] · B [n− 1 : 0]〉 =
〈A[n − 1 : 0]〉+ 1.

Does
[

~B
]

= −
[

~A
]

?

Suspect C [n] = 1 ! Assume
C [n] = 0...

So
〈B [n − 1 : 0]〉 = 〈A[n − 1 : 0]〉+ 1.

[B [n− 1 : 0]] =
[

A[n − 1 : 0]
]

+ 1?

inv(n)

inc(n)

A[n− 1 : 0]

B[n− 1 : 0]

n

n

n

A[n− 1 : 0]

C[n]
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Negation

Very easy in sign-magnitude representation.

Easy in one’s-complement representation.

In two’s complement representation: need to check that

−
[

~A
]

∈ Tn...

Still, we need a proof and a way to tell when we fail.
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Sign bit

The most significant bit A[n − 1] of a string A[n − 1 : 0] that
represents a two’s complement integer is often called the sign-bit
of ~A. The following claim justifies this term.

Claim

[A[n − 1 : 0]] < 0 ⇐⇒ A[n− 1] = 1.

Do not be misled by the term sign-bit. Computing the absolute

value of
[

~A
]

requires negation...

Example: A = 1111 and A = 0111.
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Sign extension.

Duplicating the most significant bit does not affect the value
represented in two’s complement representation. This is similar to
padding zeros from the left in binary representation.

Claim

If A[n] = A[n − 1], then

[A[n : 0]] = [A[n − 1 : 0]] .

Corollary

[A[n − 1]∗ ◦ A[n − 1 : 0]] = [A[n − 1 : 0]] .

Example:

[11111111111111111110] = [10] = −2

[11111111111111111111] = [1] = −1
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Reduction: two’s complement addition to binary addition

Goal: two’s complement addition
[

~A
]

+
[

~B
]

+ C [0].

Suppose:

A[n− 1 : 0],B [n − 1 : 0],S [n − 1 : 0] ∈ {0, 1}n

C [0],C [n] ∈ {0, 1}

satisfy

〈A[n − 1 : 0]〉+ 〈B [n − 1 : 0]〉+ C [0] = 〈C [n] · S [n − 1 : 0]〉.

When does the output S [n − 1 : 0] satisfy:
[

~S
]

= [A[n− 1 : 0]] + [B [n− 1 : 0]] + C [0]? (1)

How can we know that Equation (1) holds?
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Reduction of two’s comp addition to binary addition

Theorem

Let C [n − 1] denote the carry-bit in position [n − 1] associated
with the binary addition described in Equation 16 and let

z
△

= [A[n − 1 : 0]] + [B [n− 1 : 0]] + C [0].

Then,

C [n]− C [n − 1] = 1 =⇒ z < −2n−1 (2)

C [n − 1]− C [n] = 1 =⇒ z > 2n−1 − 1 (3)

z ∈ Tn ⇐⇒ C [n] = C [n − 1] (4)

z ∈ Tn =⇒ z = [S [n − 1 : 0]] . (5)
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Example

[A[3 : 0]] −3 −4 −6 7
[B [3 : 0]] −5 −5 5 1
C [0] 1 0 0 1

C [n] 1 1 1 0
C [n − 1] 1 0 1 1
[S [n − 1 : 0]] −7 7 −1 −7
z −7 −9 −1 9
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Detecting overflow

Overflow - the sum of signed integers is not in Tn.

Definition

Let z
△

= [A[n − 1 : 0]] + [B [n− 1 : 0]] + C [0]. The signal ovf is
defined as follows:

ovf
△

=

{

1 if z 6∈ Tn

0 otherwise.

the term “out-of-range” is more appropriate than “overflow”
(which suggests that the sum is too big). Favor tradition...
By the theorem

ovf = xor(C [n − 1],C [n]).
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Determining the sign of the sum

Definition

The signal neg is defined as follows:

neg
△

=

{

1 if z < 0

0 if z ≥ 0.

brute force method:

neg =











S [n − 1] if no overflow

1 if C [n]− C [n − 1] = 1

0 if C [n − 1]− C [n] = 1.

(6)

Claim

neg = xor3(A[n − 1],B [n − 1],C [n]).
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A two’s-complement adder

Definition

A two’s-complement adder with input length n is a combinational
circuit specified as follows.

Input: A[n− 1 : 0],B [n− 1 : 0] ∈ {0, 1}n , and C [0] ∈ {0, 1}.

Output: S [n − 1 : 0] ∈ {0, 1}n and neg,ovf ∈ {0, 1}.

Functionality: Define z as follows:

z
△

= [A[n − 1 : 0]] + [B [n − 1 : 0]] + C [0].

The functionality is defined as follows:

z ∈ Tn =⇒ [S [n − 1 : 0]] = z

z ∈ Tn ⇐⇒ ovf = 0

z < 0 ⇐⇒ neg = 1.

We denote a two’s-complement adder by s-adder(n).
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A two’s complement adder s-adder(n)

C[n]

xor

C[n− 1]

ovf

adder(n)

B[n− 1 : 0]A[n− 1 : 0]

S[n− 1 : 0]C[n]

C[0]

C[n]A[n− 1]

neg

B[n− 1]

xor3

In an arithmetic logic unit (ALU), one may share the same
adder(n) for signed addition and unsigned addition.
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A two’s complement adder/subtractor

Definition

A two’s-complement adder/subtractor with input length n is a
combinational circuit specified as follows.

Input: A[n − 1 : 0],B [n − 1 : 0] ∈ {0, 1}n , and sub ∈ {0, 1}.

Output: S [n − 1 : 0] ∈ {0, 1}n and neg,ovf ∈ {0, 1}.

Functionality: Define z as follows:

z
△

= [A[n − 1 : 0]] + (−1)sub · [B [n− 1 : 0]] .

The functionality is defined as follows:

z ∈ Tn =⇒ [S [n − 1 : 0]] = z

z ∈ Tn ⇐⇒ ovf = 0

z < 0 ⇐⇒ neg = 1.

We denote a two’s-complement adder/subtractor by add-sub(n).
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An implementation of an add-sub(n)

S[n− 1 : 0]

ovf,neg

s-adder(n)

xor(n)

B[n− 1 : 0]

sub

A[n− 1 : 0]

Claim

The implementation of add-sub(n) is correct.
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Summary

three ways for representing negative integers: sign-magnitude,
one’s-complement, and two’s complement. We then focused
on two’s complement representation.

Negating.

Properties of two’s complement representation: (i) modulo 2n

congruent to binary rep. (ii) sign bit. (iii) sign-extension.

Reduce the task of two’s complement addition to binary
addition, and: (i) overflow detection (ii) sign of the sum even
if an overflow occurs.

Implementation of a circuit of adder/subtractor (basic part in
ALU).
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