Digital Logic Design: a rigorous approach (C) Chapter 16: Signed Addition

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 24, 2020

Book Homepage: <http://www.eng.tau.ac.il/~guy/Even-Medina>

- ¹ How are signed integers represented in a computer?
- 2 How are signed integers added and subtracted in a computer?
- ³ Can we use the same circuitry for adding unsigned and signed integers?

Representation of negative integers

Definition

The integer represented in sign-magnitude representation by $A[n-1:0] \in \{0,1\}^n$ and $S \in \{0,1\}$ is

$$
(-1)^S\cdot\langle A[n-1:0]\rangle.
$$

Definition

The integer represented in one's complement representation by $A[n-1:0] \in \{0,1\}^n$ is

$$
-(2^{n-1}-1)\cdot A[n-1]+\langle A[n-2:0]\rangle.
$$

Definition

The integer represented in two's complement representation by $A[n-1:0] \in \{0,1\}^n$ is

$$
-2^{n-1}\cdot A[n-1]+\langle A[n-2:0]\rangle.
$$

- symmetric range: one's complement and sign-magnitude.
- two representations for zero: one's complement and sign-magnitude.

Range of representable integers

We denote the integer represented in two's complement representation by $A[n-1:0]$ as follows:

$$
[A[n-1:0]] \stackrel{\triangle}{=} -2^{n-1} \cdot A[n-1] + \langle A[n-2:0] \rangle.
$$

We denote the set of integers that are representable in two's complement representation using *n*-bit binary strings by T_n . We denote the set of integers that are representable in binary representation using *n*-bit binary strings by B_n .

Claim

$$
T_n = \{-2^{n-1}, -2^{n-1} + 1, \dots, 2^{n-1} - 1\}
$$
 two's comp. rep. range

$$
B_n = \{0, \dots, 2^n - 1\}
$$
 binary rep. range

Claim

For every $A[n-1:0] \in \{0,1\}^n$

$$
\left[\vec{A}\right] = \begin{cases} \langle \vec{A} \rangle & \text{if } A[n-1] = 0\\ \langle \vec{A} \rangle - 2^n & \text{if } A[n-1] = 1 \end{cases}
$$

Example

Let $n = 4$ and let $A[3:0] = 0110, B[3:0] = 1001$, then:

$$
\langle A[3:0] \rangle = 6 , \qquad [A[3:0]] = 6 \qquad \left[\vec{A} \right] = \langle \vec{A} \rangle
$$

$$
\langle B[3:0] \rangle = 9\,, \qquad [B[3:0]] = -7 \qquad \left\lceil \vec{B} \right\rceil = \langle \vec{B} \rangle - 2
$$

4

Claim

For every $A[n-1:0] \in \{0,1\}^n$

$$
\[\vec{A}\] = \begin{cases} \langle \vec{A} \rangle & \text{if } A[n-1] = 0 \\ \langle \vec{A} \rangle - 2^n & \text{if } A[n-1] = 1 \end{cases}
$$

Corollary

For every
$$
A[n-1:0] \in \{0,1\}^n
$$

 $\langle \vec{A} \rangle = \text{mod}([\vec{A}], 2^n).$

Algorithm 1 two-comp(x, n) - An algorithm for computing the two's complement representation of x using n bits.

- **1** If $x \notin \mathcal{T}_n$ return (fail).
- **2** If $x \ge 0$ return $(0 \circ bin_{n-1}(x))$.

9 If
$$
x < 0
$$
 return $(bin_n(x + 2^n))$.

proof:

Let \vec{A} denote output of algorithm. If $x\geq 0$, then $\left|\vec{A}\right|=\langle\vec{A}\rangle=x.$ If $x < 0$, then $\left| \vec{A} \right| = \langle \vec{A} \rangle - 2^n = (x + 2^n) - 2^n = x$.

Example

$$
\mathcal{T}_4=\left\{-2^3,-2^3+1,\ldots,2^3-1\right\}.
$$

Hence,

two-comp(8, 4) = fail,
\ntwo-comp(5, 4) = (0
$$
\circ
$$
 bin₃(5)) = 0101,
\ntwo-comp(-6, 4) = (bin₄(-6 + 2⁴)) = 1010,
\ntwo-comp(-1, 4) = (bin₄(-1 + 2⁴)) = 1111.

The following claim deals with negating a value represented in two's complement representation.

Claim $-[A[n-1:0]] = [INV(A[n-1:0])] + 1.$

Examples: $\vec{A} = 0110$ and $\vec{A} = 1001$.

Negation based on $-[A[n-1:0]] = [\text{INV}(A[n-1:0]]] + 1$

Negation based on $-[A[n-1:0]] = [\text{INV}(A[n-1:0]] + 1]$

• We compute
$$
\langle \overline{A[n-1:0]} \rangle + 1
$$
.

- But need $\left| \overline{A[n-1:0]} \right| + 1$.
- \circ So $\langle C[n] \cdot B[n-1:0] \rangle =$ $\langle A[n - 1: 0] \rangle + 1.$
- Does $\left| \vec{B} \right| = \left| \vec{A} \right|$?
- Suspect $C[n] = 1$! Assume $C[n] = 0...$

So $\langle B[n - 1 : 0] \rangle = \langle \overline{A[n - 1 : 0]} \rangle + 1.$ $[B[n-1:0]] = \left[\overline{A[n-1:0]} \right] + 1?$

- Very easy in sign-magnitude representation.
- **•** Easy in one's-complement representation.
- In two's complement representation: need to check that $-\left|\vec{A}\right| \in \mathcal{T}_n...$
- Still, we need a proof and a way to tell when we fail.

The most significant bit $A[n-1]$ of a string $A[n-1:0]$ that represents a two's complement integer is often called the sign-bit of \vec{A} . The following claim justifies this term.

Claim

$$
[A[n-1:0]] < 0 \iff A[n-1] = 1.
$$

Do not be misled by the term sign-bit. Computing the absolute value of $\left| \vec{A} \right|$ requires negation... Example: $\vec{A} = 1111$ and $A = 0111$.

Duplicating the most significant bit does not affect the value represented in two's complement representation. This is similar to padding zeros from the left in binary representation.

Claim

$$
\textit{If } A[n] = A[n-1], \textit{ then }
$$

$$
[A[n:0]] = [A[n-1:0]].
$$

Corollary

$$
[A[n-1]^* \circ A[n-1:0]] = [A[n-1:0]].
$$

Example:

$$
\begin{aligned} [111111111111111111110] &= [10] = -2 \\ [1111111111111111111111] &= [1] = -1 \end{aligned}
$$

Reduction: two's complement addition to binary addition

Goal: two's complement addition

$$
\left[\vec{A}\right]+\left[\vec{B}\right]+C[0].
$$

Suppose:

$$
A[n-1:0], B[n-1:0], S[n-1:0] \in \{0,1\}^n
$$

$$
C[0], C[n] \in \{0,1\}
$$

satisfy

$$
\langle A[n-1:0]\rangle + \langle B[n-1:0]\rangle + C[0] = \langle C[n]\cdot S[n-1:0]\rangle.
$$

• When does the output $S[n-1:0]$ satisfy:

$$
\[\vec{S}\] = [A[n-1:0]] + [B[n-1:0]] + C[0]?
$$
 (1)

• How can we know that Equation (1) holds?

Theorem

Let $C[n-1]$ denote the carry-bit in position $[n-1]$ associated with the binary addition described in Equation [16](#page-15-0) and let

$$
z \stackrel{\triangle}{=} [A[n-1:0]] + [B[n-1:0]] + C[0].
$$

Then,

$$
C[n] - C[n-1] = 1 \qquad \Longrightarrow \qquad z < -2^{n-1} \qquad (2)
$$

\n
$$
C[n-1] - C[n] = 1 \qquad \Longrightarrow \qquad z > 2^{n-1} - 1 \qquad (3)
$$

\n
$$
z \in T_n \qquad \Longleftrightarrow \qquad C[n] = C[n-1] \qquad (4)
$$

\n
$$
z \in T_n \qquad \Longrightarrow \qquad z = [S[n-1:0]] \qquad (5)
$$

Overflow - the sum of signed integers is not in T_n .

Definition

Let $z\stackrel{\scriptscriptstyle\triangle}{=} [A[n-1:0]]+[B[n-1:0]]+C[0].$ The signal OVF is defined as follows:

$$
{\mathrm{OVF}}\triangleq\begin{cases} 1 & \text{if }z\notin T{n}\\ 0 & \text{otherwise.} \end{cases}
$$

the term "out-of-range" is more appropriate than "overflow" (which suggests that the sum is too big). Favor tradition... By the theorem

$$
OVF = XOR(C[n-1], C[n]).
$$

Determining the sign of the sum

Definition

The signal NEG is defined as follows:

$$
_{\text{NEG}}\triangleq\begin{cases}1 & \text{if }z<0\\0 & \text{if }z\geq0.\end{cases}
$$

brute force method:

$$
NEG = \begin{cases} S[n-1] & \text{if no overflow} \\ 1 & \text{if } C[n] - C[n-1] = 1 \\ 0 & \text{if } C[n-1] - C[n] = 1. \end{cases}
$$
 (6)

Claim

$$
\mathrm{NEG}=\mathrm{XOR}_3(A[n-1],B[n-1],C[n]).
$$

Definition

A two's-complement adder with input length n is a combinational circuit specified as follows.

Input: $A[n-1:0], B[n-1:0] \in \{0,1\}^n$, and $C[0] \in \{0,1\}$. Output: $S[n-1:0] \in \{0,1\}^n$ and $NEG, OVF \in \{0,1\}.$ Functionality: Define z as follows:

$$
z \stackrel{\triangle}{=} [A[n-1:0]] + [B[n-1:0]] + C[0].
$$

The functionality is defined as follows:

$$
z \in T_n \implies [S[n-1:0]] = z
$$

\n
$$
z \in T_n \iff \text{over } = 0
$$

\n
$$
z < 0 \iff \text{NEG } = 1.
$$

We denote a two's-complement adder by $S-ADDER(n)$.

A two's complement adder $S-ADDER(n)$

In an arithmetic logic unit (ALU), one may share the same $ADDER(n)$ for signed addition and unsigned addition.

A two's complement adder/subtractor

Definition

A two's-complement adder/subtractor with input length n is a combinational circuit specified as follows.

Input: $A[n-1:0], B[n-1:0] \in \{0,1\}^n$, and $sub \in \{0,1\}$. Output: $S[n-1:0] \in \{0,1\}^n$ and $NEG, OVF \in \{0,1\}.$ Functionality: Define z as follows:

$$
z \stackrel{\triangle}{=} [A[n-1:0]] + (-1)^{sub} \cdot [B[n-1:0]].
$$

The functionality is defined as follows:

$$
z \in T_n \implies [S[n-1:0]] = z
$$

\n
$$
z \in T_n \iff \text{over } = 0
$$

\n
$$
z < 0 \iff \text{NEG } = 1.
$$

We denote a two's-complement adder/subtractor by $ADD-SUB(n)$.

An implementation of an ADD-SUB (n)

Claim

The implementation of $ADD-SUB(n)$ is correct.

- **The may arror integer integers** integers: sign-magnitude, one's-complement, and two's complement. We then focused on two's complement representation.
- Negating.
- Properties of two's complement representation: (i) modulo 2^n congruent to binary rep. (ii) sign bit. (iii) sign-extension.
- Reduce the task of two's complement addition to binary addition, and: (i) overflow detection (ii) sign of the sum even if an overflow occurs.
- Implementation of a circuit of adder/subtractor (basic part in ALU).