
Digital Logic Design: a rigorous approach c©
Chapter 20: Synchronous Modules

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

December 29, 2014

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1 / 1

http://www.eng.tau.ac.il/~guy/Even-Medina


Example: A two-state FSM

Consider the FSM A = 〈Q,Σ,∆, δ, λ, q0〉 depicted in the next
figure, where

Q = {q0, q1},

Σ = ∆ = {0, 1}.

(1, 1)

(1, 0)

(0, 1)

q0 q1

(0, 1)

Figure: A two-state FSM.

2 / 1



Two-State FSMs: Synthesis

Given an FSM A = 〈Q,Σ,∆, δ, λ, q0〉, the synchronous circuit C
that is obtained by executing the synthesis procedure is as follows.
We encode Q,Σ and ∆ by binary strings Formally, let f , g , h
denote one-to-one functions, where

f :Q → {0, 1}

g :Σ→ Σ

h :∆→ ∆,

where
f (q0) = 0, f (q1) = 1,

and
∀x ∈ {0, 1} : g(x) = h(x) = x .

3 / 1



Two-State FSMs: Synthesis - Cδ

We design a combinational circuit Cδ that implements the Boolean
function Bδ : {0, 1}

2 → {0, 1} defined by

Bδ(f (x), g(y))
△

= f (δ(x , y)), for every (x , y) ∈ Q ×Σ.

f (x) g(y) f (δ(x , y))

0 0 1
1 0 1
0 1 0
1 1 0

Table: The truth table of Bδ.

It follows that Bδ(f (x), g(y)) = not(g(y)).

4 / 1



Two-State FSMs: Synthesis - Cλ

We design a combinational circuit Cλ that implements the Boolean
function Bλ : {0, 1}2 → {0, 1} defined by

Bλ(f (x), g(y))
△

= h(λ(x , y)), for every (x , y) ∈ Q × Σ.

f (x) g(y) h(λ(x , y))

0 0 1
1 0 1
0 1 0
1 1 1

Table: The truth table of Bλ.

It follows that Bλ(f (x), g(y)) = f (x) ∨ g(y).

5 / 1



Two-State FSMs: Synthesis - the Synch. circuit C

The synchronous circuit in canonic form constructed from a
flip-flops and two combinational circuits is depicted in Figure ??.

clk

OUT

S NS
ff

Cλ

Cδ

IN

Q D

Figure: Synthesis of A.

6 / 1



Sequential Adder

Definition

A sequential adder is defined as follows.

Inputs: A,B , reset and a clock signal clk, where
Ai ,Bi , reseti ∈ {0, 1}.

Output: S , where Si ∈ {0, 1}.

Functionality: The reset signal is an initialization signal that
satisfies:

reseti =

{

1 if i = 0,

0 if i > 0.

Then, for every i ≥ 0,
〈A[i : 0]〉+ 〈B [i : 0]〉 = 〈S [i : 0]〉 (mod 2i+1).

7 / 1



Sequential Adder (cont.)

What happens if the value of the input reset equals 1 in more than
once cycle? The above definition means that if reseti = 1, then we
forget about the past, we treat clock cycle (ti , ti+1) as the first
clock cycle.
Formally, we define the last initialization r(i) as follows:

r(i)
△

= max{j ≤ i : resetj = 1}.

Namely, r(i) specifies the last time resetj = 1 not after cycle i . If
resetj = 0, for every j ≤ i , then r(i) is not defined, and
functionality is unspecified. If r(i) is well defined, then the
specification is that, for every i ≥ 0,

〈A[i : r(i)]〉+ 〈B [i : r(i)]〉 = 〈S [i : r(i)]〉 (mod 2i+1).

8 / 1



Sequential Adder: Implementation

clk

D

Q
ff

A

SC

BCin

Full-Adder

S
Cout

reset

Figure: A synchronous circuit that implements a sequential adder.

9 / 1



Sequential Adder: Implementation - correctness

Theorem

i
∑

j=0

Aj · 2
j +

i
∑

j=0

Bj · 2
j =

i
∑

j=0

Sj · 2
j + cout(i) · 2

i+1 .

Proof.

The proof is by induction on i . The induction basis for i = 0
follows from the functionality of the full-adder:

A0 + B0 + Cin(0) = 2 · Cout(0) + S0 .

10 / 1



Sequential Adder: Implementation - correctness (cont.)

Proof.

We now prove the induction step for i > 0.

i
∑

j=0

Aj · 2
j +

i
∑

j=0

Bj · 2
j = (Ai + Bi ) · 2

i +
i−1
∑

j=0

Aj · 2
j +

i−1
∑

j=0

Bj · 2
j

= (Ai + Bi ) · 2
i +

i−1
∑

j=0

Sj · 2
j + Cout(i − 1) · 2i

= (Cin(i) + Ai + Bi ) · 2
i +

i−1
∑

j=0

Sj · 2
j

= (Si + 2 · Cout(i)) · 2
i +

i−1
∑

j=0

Sj · 2
j

=

i
∑

j=0

Sj · 2
j + Cout(i) · 2

i+1.

11 / 1



Sequential Adder: Analysis

((reset = 1, A+B = 2), 0)

0

((A+B ≤ 1), A⊕B)

((reset = 0, A+B = 0), 1)

(A+B = 2, 0)

((reset = 1, A+B ≤ 1), A⊕B)

1

((reset = 0, A+B ≥ 1), 1⊕A⊕B)

Figure: an FSM of a sequential adder (each transition is labeled by a
pair: the condition that the input satisfies and the value of the output).

12 / 1



Sequential Adder: Executing Min-Φ(C ).

Let C denote the Sequential Adder that we have just implemented.

Assume that all the parameters equal to ‘1’. Assume that a full
adder is implemented by a single gate.

Execute the Min-Φ(C ) algorithm. Note that the reset signal is also
an input signal, hence we should assign a weight to the input gate
that feeds it as well.

The “heaviest” path is of weight 5 (reset input gate → not gate
→ and gate → Full adder gate → the output gate the
corresponds to the D port), hence ϕ∗ = 5.

13 / 1



Adding the initialization signal to an FSM

C is a synchronous circuit without an initialization signal (but
we assume FFs output a specific value in t = 0).

Introduce an initialization signal reset that initializes the
outputs of all flip-flops (namely, it cause the outputs of the
flip-flops to equal a value that encodes the initial state).

How? Replace each edge triggered D-flop-flop by an edge
triggered D-flip-flop with a reset input. The reset signal is fed
to the reset input port of each flip-flop.

Denote the new synchronous circuit by Ĉ .

Let A and Â denote the FSMs that model the functionality of
C and Ĉ , respectively.

What is the relation between A and Â?

14 / 1



Adding the initialization signal to an FSM - cont

Theorem

Let A = 〈Q,Σ,∆, δ, λ, q0〉 denote the FSM that models the

functionality of the synchronous circuit C . Let

Â = 〈Q ′,Σ′,∆′, δ′, λ′, q′0〉 denote the FSM that models the

synchronous circuit Ĉ . Then,

Q ′ △

= Q,

q′0
△

= q0,

Σ′ △

= Σ× {0, 1},

∆′ △

= ∆,

δ′(q, (σ, reset))
△

=

{

δ(q, σ), if reset = 0,

δ(q0, σ), if reset = 1,

λ′(q, (σ, reset))
△

=

{

λ(q, σ), if reset = 0,

λ(q0, σ), if reset = 1.
15 / 1



A Counter

Definition

A counter(n) is defined as follows.

Inputs: a clock clk.

Output: {Ni}i , where Ni ∈ {0, 1}
n .

Functionality: For every i , the number of clock cycles (mod 2n)
since the last reset equals Ni .

No input?! Input is “implied”: it is the (missing) reset signal!

16 / 1



Synthesis and Analysis

n

n

n

D

ff(n)

incrementer(n)

Q

clk

N

Figure: A synchronous circuit that implements a counter.

17 / 1



10

3 2

Figure: An FSM of a counter(2). The output always equals the state
from which the edge emanates.

18 / 1



Revisiting Shift Registerers

Recall the definition of a a shift register of n bits, that is:

Inputs: D[0](t) and a clock clk.

Output: Q[n − 1](t).

Functionality: Q[n − 1](t + n) = D[0](t).

19 / 1



Synthesis and Analysis

Q[3]

clk clk clk clk

1

1

1

1

1

1

1

1

ff0ff1ff2ff3

D[3] D[2] D[1] D[0]

Q[0]Q[1]Q[2]

Figure: A 4-bit shift register.

20 / 1



00

10 11

01

(0, 0)

(1, 0)

(1, 0)
(0, 0)

(1, 1)

(1, 1)

(0, 1)

(0, 1)

Figure: FSM of a 2-bit shift register, also called De Bruijn Graph.
21 / 1



Revisiting RAM

Definition

A ram(2n) is specified as follows.

Inputs: Address[n − 1 : 0](t) ∈ {0, 1}n ,Din(t) ∈ {0, 1},
R/W (t) ∈ {0, 1} and a clock clk.

Output: Dout(t) ∈ {0, 1}.

Functionality : The functionality of a ram is specified by the
following program:

1 data: array M[2n − 1 : 0] of bits.

2 initialize: ∀i : M[i ]← 0.
3 For t = 0 to ∞ do

1 Dout(t) = M [〈Address〉](t).
2 For all i 6= 〈Address〉: M [i ](t + 1)← M [i ](t).
3

M [〈Address〉](t + 1)←

{

Din(t) if R/W (t) = 0

M [〈Address〉](t) else. 22 / 1



(R/W = 1, 0)

00

10

(R/W = 1,Address = 0, 0)
(R/W = 1,Address = 1, 1)

(R/W = 1,Address = 0, 1)
(R/W = 1,Address = 1, 0)

01

(R/W = 1, 1)

11

((R/W = 0,Address = 1, Din = 1), 0)

((R/W = 0,Address = 0, Din = 0), 1)

((R/W = 0,Address = 0, Din = 1), 0)

((R/W = 0,Address = 0, Din = 0), 1)

((R/W = 0,Address = 0, Din = 1), 0)

((R/W = 0,Address = 1, Din = 0), 1)

Figure: A (partial) FSM of a ram(21) (the “legend” of the edge
labels:((Din, address,R/W ),Dout)).

23 / 1



Summary

We presented a few synchronous circuits and their
corresponding FSMs. We started by synthesizing a two-state
FSM. We then specified, implemented, and analyzed a few
synchronous circuits such as: a sequential adder, a counter, a
shift register, and a RAM.

We presented a general method for introducing initialization
to a synchronous circuit and to its corresponding FSM.

When the number flip-flops in a synchronous circuit is large,
such as ram(2n), it is not very useful to model its
functionality by an FSM.

24 / 1


