
Digital Logic Design: a rigorous approach c©
Chapter 19: Foundations of Synchronous Circuits

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 30, 2019

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

1 / 55

http://www.eng.tau.ac.il/~guy/Even-Medina

Preliminary questions

1 What is a synchronous circuit?

2 How can we tell if the clock period is not too short? Is it
possible to compute the minimum clock period?

3 Is it possible to separate between the timing analysis and
functionality in synchronous circuits?

4 How can we initialize a synchronous circuit?

2 / 55

Synchronous Circuits

building blocks: combinational gates, wires, and flip-flops.

the graph G of a synchronous circuit is directed but may
contain cycles.

use flip-flops, hence the labeling π : V → Γ ∩ IO ∪ {FF}.

a flip-flop has two inputs D and clk that play quite different
roles. We must make sure that we know the input port of
each incoming edge.

the clock signal must be fed to the clk input port of each
and every flip-flop!

definition based on a reduction to a combinational circuit...

3 / 55

Synchronous Circuits

Definition

A synchronous circuit is a circuit C composed of combinational
gates, wires, and flip-flops that satisfies the following conditions:

1 There is an input gate that feeds the clock signal clk.

2 The set of ports that are fed by the clock clk equals the set
of clock-inputs of the flip-flops.

3 Let C ′ denote a circuit obtained from C by stripping the
flip-flops away. Then, the circuit C ′ is a combinational circuit.

4 / 55

Stripping Flip-Flops Away

Definition

1 Delete the input gate that feeds the clock clk and all the
wires carrying the clock signal.

2 Remove all the flip-flops.

3 Add an output gate for each D port.

4 Add an input gate for each Q port.

5 / 55

Example - stripping FFs away

clk

ff

and3

clk

ff

or

and3

or

Figure: A synchronous circuit C and the combinational circuit C ′

obtained from C by stripping away the flip-flops.
6 / 55

Remarks:

It is easy to check if a given circuit C is a synchronous circuit.

Check if there is a clock signal that is connected to all the
clock terminals of the flip-flops and only to them.

Strip the flip-flops away to obtain the circuit C ′. Check if C ′

is a combinational circuit.

7 / 55

Cycles in a synchronous circuit

Claim

Every cycle in a synchronous circuit traverses at least one flip-flop.

8 / 55

The Canonic Form of a Synchronous Circuit

comb. circuit
λ

comb. circuit
δ

Q D

clk

IN

OUT

S NS

Figure: A synchronous circuit in canonic form.

9 / 55

Stability interval

Definition

stability interval of signal X : an interval corresponding to the ith
clock cycle during which the signal X is stable.

Notation:

stable(X)i - stability interval of X during clock cycle i .

Xi - the digital value of X during the interval stable(X)i .

Stability Interval and Specification:

If X is an input, then we are guaranteed that the input will
stable during stable(X)i .

If Y is an output, then we must design the circuit so that Y
will be stable during stable(Y)i .

10 / 55

Example

clk

ff1

clk

ff2

combinational
circuit

C

D0(t) Q1(t)
D1(t)Q0(t)

pd(C)cont(C)

clk

D0(t)
tsu(FF1)

thold(FF1)

D1(t)

tpd(FF1)
Q0(t)

tcont(FF1)

thold(FF2)

tsu(FF2)

Ci Ai Ci+1 Ai+1

11 / 55

Stability Interval of D0

We require that the input D0(t) to flip-flop FF1 is stable during
the critical segments of FF1, namely, for every i ≥ 0:

stable(D0)i
△

= Ci+1(FF1)

= (ti+1 − tsu(FF1), ti+1 + thold(FF2)).

Note, that the stability interval corresponding to the ith clock
cycle of an input of a flip-flop must contain the critical segment
Ci+1. Indeed, in the ith clock cycle, the flip-flop samples its input
at the end of the cycle, at time ti+1.

12 / 55

Stability Interval of Q0

The stability interval of the output Q0(t) of flip-flop FF1 is defined
by

stable(Q0)i
△

= (ti + tpd(FF1), ti+1 + tcont(FF1)).

The rational behind this definition is that if the input D0(t) is
stable during every critical segment Ci , then the output Q0(t) of
the flip-flop is stable in the above interval.

13 / 55

Problem!?

we have a problem with the guarantee for the stability interval
of Q0 during clock cycle zero.

This is not a minor technical issue! How can we argue
anything about the output of FF1 during clock cycle zero?!

To solve this problem, we need an initialization assumption...

In the meantime, assume that

stable(Q0)i
△

= (ti + tpd(FF1), ti+1 + tcont(FF1)).

holds also for i = 0.

14 / 55

Stability Interval D1

To ensure proper functionality, the input D1(t) must be stable
during the critical segments of flip-flop FF2. Therefore, we define
the stability interval of D1(t) as follows:

stable(D1)i
△

= Ci+1(FF2)

= (ti+1 − tsu(FF2), ti+1 + thold(FF2)).

15 / 55

Timing analysis: sufficient conditions

A sufficient condition that guarantees that D1(t) is indeed stable
during the stability intervals {stable(D1)i}i≥0.

Claim

The signal D1(t) is stable during the critical segments of flip-flop

FF2 if

∀i ≥ 0 : tpd(FF1) + pd(C) + tsu(FF2) ≤ ti+1 − ti , and

thold(FF2) ≤ tcont(FF1) + cont(C).

16 / 55

two important lessons:

Minimum clock period: To ensure proper functionality, the clock
period cannot be too short. Namely, the time
ti+1 − ti between two consecutive rising clock edges
must be longer than tpd(FF1) + pd(C) + tsu(FF2).

Use simple flip-flops: Inequality

thold(FF2) ≤ tcont(FF1) + cont(C).

is satisfied if tcont(FF1) ≥ thold(FF2).

17 / 55

The Canonic Form of a Synchronous Circuit

comb. circuit
λ

comb. circuit
δ

Q D

clk

IN

OUT

S NS

What about input and output timing constraints ? Constraints for
NS?

18 / 55

Input/Output Timing Constraints

Simplifying Assumption:

Input is an output of a flip-flip.

stable(IN)i
△

= (ti + pd(FFIN), ti+1 + cont(FFIN)).

Output is an input of a flip-flip.

stable(OUT)i
△

= (ti+1 − setup(FFOUT), ti+1 + hold(FFOUT)).

Benefit: timing constraints same as before. Of course
pd(FFIN) > cont(FFIN).

19 / 55

Timing constraints of internal signals.

The only constraint we have for an internal signal is that the signal
NS that feeds a flip-flop is stable during the critical segments.
Namely, for every i ≥ 0,

stable(NS)i
△

= Ci+1.

20 / 55

Paths in the canonic form

When performing a timing analysis of a synchronous circuit in
canonic form, we notice that there are only four maximal paths
without flip-flops:

1 the path IN → δ → NS ,

2 the path S → δ → NS ,

3 the path IN → λ→ OUT , and

4 the path S → λ→ OUT .

We regard the signal IN to be the output of a flip-flop, and the
signal OUT to be an input to a flip-flop, then we have four paths
of the type studied in the simple example.

21 / 55

Sufficient Conditions

the timing constraints of NS are satisfied if:

∀i ≥ 0 : max{pd(IN), tpd(FF)}+ pd(δ) + tsu(FF) ≤ ti+1 − ti , and

min{cont(IN), tcont(FF)}+ cont(δ) ≥ thold(FF).

the timing constraints of OUT are satisfied if:

∀i ≥ 0 : max{pd(IN), tpd(FF)}+ pd(λ) + setup(OUT) ≤ ti+1 − ti , and

min{cont(IN), tcont(FF)}+ cont(λ) ≥ hold(OUT).

Claim

The timing constraints of the signals OUT and NS are satisfied if

the above equations hold.

22 / 55

Satisfying the Timing Constrains

What do we need to do to make sure that the timing constraints of
a synchronous circuit are satisfied?

lower bounds on the clock period.

use simple flip-flops in which tcont ≥ thold.

23 / 55

Initialization

we require that the output of every flip-flop be defined and
stable during the interval (t0 + tpd(FF), t1 + tcont(FF)).

How is the first clock cycle [t0, t1) defined?

What is the state of a flip-flop after power on?

introduce a reset signal.

How is a reset signal generated? Why does a reset signal
differ from the the output of the flip-flop? After all, the reset
signal might be metastable.

no solution to this problem within the digital abstraction. All
we can try to do is reduce the probability of such an event.

In practice, a special circuit, often called a reset controller,
generates a reset signal that is stable during the first clock
period with very high probability. In fact, the first clock period
of the synchronous circuit is defined by the reset controller.

24 / 55

Specification of the reset signal

Assume that the reset signal is output by a flip-flop so that it
satisfies two conditions:

reset(t)
△

=

{

1 if t ∈ (t0 + tpd(FF), t1 + tcont(FF)),

0 if t > t1 + tpd(FF).

25 / 55

Using the reset

comb. circuit

λ

comb. circuit
δ

Q D

clk

IN

OUT

NSS

reset

initial state

0

1
sel

mux

2 : 1-

Figure: A synchronous circuit in canonic form with reset.

26 / 55

edge triggered flip-flop with a reset

comb. circuit

λ

comb. circuit
δ

Q D

clk

IN

OUT

NSS

reset

initial state

0

1
sel

mux

2 : 1-

Flip-flop with the multiplexer are encapsulated into a single module
called an edge triggered flip-flop with a reset. Let FF ′ denote an
edge triggered flip-flop with a reset, then
tpd(FF

′) = tpd(FF) + pd(mux) and
tcont(FF

′) = tcont(FF) + cont(mux). On the other hand,
tsu(FF

′) = tsu(FF) and thold(FF
′) = thold(FF).

27 / 55

Using the reset

comb. circuit

λ

comb. circuit
δ

Q D

clk

IN

OUT

NSS

reset

initial state

0

1
sel

mux

2 : 1-

Claim

If the reset signal satisfies the specification, then S(t) is stable
during the interval

(t0 + tpd(FF) + pd(mux), t1 + tcont(FF) + cont(mux)).

28 / 55

Assumptions

1 Initialization: the signal S satisfies

(t0 + tpd(FF), t1 + tcont(FF)) ⊆ stable(S)0

2 Clock period is long enough: Let Φ denote the clock period
(i.e., Φ = ti+1 − ti , for every i ≥ 0). Then,

max{pd(IN), tpd(FF)}+ pd(δ) + tsu(FF) ≤ Φ, and

max{pd(IN), tpd(FF)}+ pd(λ) + setup(OUT) ≤ Φ.

3 Hold times are smaller than the contamination delays:
formally, we require that:

min{cont(IN), tcont(FF)}+ cont(δ) ≥ thold(FF).

min{cont(IN), tcont(FF)}+ cont(λ) ≥ hold(OUT).

29 / 55

Functionality: the canonic form

We denote the logical value of a signal X during the stability
interval stable(X)i by Xi .

Claim

If the assumptions hold, then the following relations hold for every

i ≥ 0:

NSi = δ(INi ,Si)

OUTi = λ(INi ,Si)

Si+1 = NSi .

30 / 55

Finite State Machines

The functionality of a synchronous circuit in the canonic form is so
important that it justifies a term called finite state machines.

Definition

A finite state machine (FSM) is a 6-tuple A = 〈Q,Σ,∆, δ, λ, q0〉,
where

Q is a set of states.

Σ is the alphabet of the input.

∆ is the alphabet of the output.

δ : Q × Σ→ Q is a transition function.

λ : Q × Σ→ ∆ is an output function.

q0 ∈ Q is an initial state.

31 / 55

What does an FSM do?

An FSM is an abstract machine that operates as follows. The
input is a sequence {xi}

n−1
i=0 of symbols over the alphabet Σ. The

output is a sequence {yi}
n−1
i=0 of symbols over the alphabet ∆. An

FSM transitions through the sequence of states {qi}
n
i=0. The state

qi is defined recursively as follows:

qi+1
△

= δ(qi , xi)

The output yi is defined as follows:

yi
△

= λ(qi , xi).

32 / 55

FSM - terminology

Other terms for a finite state machine are a finite automaton with
outputs and transducer. In the literature, an FSM according to our
definition is often called a Mealy Machine. Another type of
machine, called Moore Machine, is an FSM in which the domain of
output function λ is Q (namely, the output is only a function of
the state and does not depend on the input).

33 / 55

State Diagrams

FSMs are often depicted using state diagrams.

Definition

The state diagram corresponding to an FSM A is a directed graph
G = (Q,E) with edge labels (x , y) ∈ Σ×∆. The edge set E is
defined by

E
△

= {(q, δ(q, x)) : q ∈ Q and x ∈ Σ}.

Each edge (q, δ(q, x)) is labeled (x , λ(q, x)).

The vertex q0 corresponding to the initial state of an FSM is
usually marked in an FSM by a double circle.
We remark that a state diagram is in fact a multi-graph, namely,
one allows more than one directed edge between two vertices.
Such edges are often called parallel edges. Note that the
out-degree of every vertex in a state diagram equals |∆|.

34 / 55

A state diagram of an FSM that counts (mod 4)

(0, y) (0, n)

(0, n)(0, n)

(1, y)
(1, n)

(1, n)

(1, n)

A

B C

D

35 / 55

Timing analysis: the general case

Assume that pd(IN) = 9 while
tpd(FF) = pd(mux) = pd(and) = 1 and
tsu(FF) = setup(OUT) = 1. Moreover, assume that pd(INC) = 7.
The timing analysis in the canonic form is too pessimistic!

kINC

k

k

Q D

clk

NSS

OUT

IN

k

reset

initial state

k

k

0

1
sel

mux

2 : 1-

36 / 55

Timing analysis: the general case

Given a synchronous circuit C , we distinguish between four types
of signals:

1 Inputs - these are signals that are fed by input gates.

2 Outputs - these are signals that are fed to output gates.

3 Inputs to the D-ports of flip-flops.

4 Outputs of flip-flops.

37 / 55

Timing Constraints

Input constraints: For every input signal IN, it is guaranteed that
the stability intervals of IN satisfy, for every i ≥ 0:

stable(IN)i
△

= (ti + pd(IN), ti+1 + cont(IN)).

Output constraints: For every output signal OUT , it is required
that the stability intervals of OUT satisfy:

stable(OUT)i
△

= (ti+1 − setup(OUT), ti+1 + hold(OUT)).

Critical segments: For every signal NS that feeds a D-port of a
flip-flop, it is required that NS is stable during the
critical segments, namely:

stable(NS)i
△

= Ci+1.

38 / 55

Feasibility of timing constraints

We say that a timing constraint of signal X is satisfied if the signal
X is indeed stable during the intervals {stable(X)i}i≥0.

Definition

The timing constraints are feasible if there exists a clock period Φ
such that all timing constraints are satisfied if ti+1 − ti = Φ.

39 / 55

Algorithms: feasibility and minimum clock period

We now present two algorithms:

1 Algorithm FEAS(C), decides whether the timing constraints
of a synchronous circuit C are feasible.

2 Algorithm Min-Φ(C) computes the minimum clock period of
C if the timing constraints are feasible.

For simplicity, we assume that all the flips-flops in the synchronous
circuit C are identical and have the same parameters (i.e
tsu(FF), thold(FF), tcont(FF), tpd(FF)).

40 / 55

Algorithm FEAS(C)

The input of algorithm FEAS(C) consists of:

1 A description of the circuit C , namely, a directed graph
G = (V ,E) and a labeling π : V → Γ ∪ IO ∪ {FF},

2 cont(IN) for every input signal IN, and

3 hold(OUT) for every output signal OUT .

41 / 55

Algorithm 1 FEAS(C) - an algorithm that decides if the timing
constraints of a synchronous circuit C are feasible.

1 Let C ′ denote the combinational circuit obtained from C by
stripping away the flip-flops.

2 Assign weights w(v) to vertices in C ′ as follows.

w(v)
△

=































cont(IN) if input gate v feeds IN.

tcont(FF) if v corresponds to Q-port of a flip-flop.

−hold(OUT) if output gate v is fed by OUT .

−thold(FF) if v corresponds to D-port of a flip-flop.

cont(π(v)) if π(v) is a combinational gate.

3 Compute

w∗ △

= min{w(p) | p is a path from a source to a sink in C ′}.

4 If w∗ ≥ 0, then return(“feasible”), else return(“not feasible”).

42 / 55

Algorithm Min-Φ(C)

The input of algorithm Min-Φ(C) consists of:

1 A description of the circuit C , namely, a directed graph
G = (V ,E) and a labeling π : V → Γ ∪ IO ∪ {FF},

2 pd(IN) for every input signal IN, and

3 setup(OUT) for every output signal OUT .

43 / 55

Algorithm 2 Min-Φ(C) - an algorithm that computes the minimum
clock period of a synchronous circuit C .

1 Let C ′ denote the combinational circuit obtained from C by
stripping away the flip-flops.

2 Assign delays d(v) to vertices in C ′ as follows.

d(v)
△

=































pd(IN) if input gate v feeds IN.

tpd(FF) if v corresponds to Q-port of a flip-flop.

setup(OUT) if output gate v is fed by OUT .

tsu(FF) if v corresponds to D-port of a flip-flop.

pd(π(v)) if π(v) is a combinational gate.

3 Compute

Φ∗ △

= max{d(p) | p is a path from a source to a sink in C ′}.

4 Return(Φ∗).

44 / 55

Notation

Given a vertex v ∈ C ′, let c∗(v) denote lightest weight of a path
from a source to v . Similarly, let d∗(v) denote the largest delay of
a path from a source to v .
Using this notation, we have a simple description of the algorithms:

FEAS(C) decides that the timing constraints are feasible if
and only if minv c

∗(v) ≥ 0.

Min-Φ(C) returns Φ∗ = maxv d
∗(v).

45 / 55

Correctness

Assume that the flip-flops are reset so that their outputs are stable
during (t0 + tpd(FF), t1 + tcont(FF)). Assume also that the inputs
satisfy the input constraints.

Claim

If minv c
∗(v) ≥ 0 and ti+1 − ti ≥ maxv d

∗(v), then, for every
vertex v , every output of v is stable during the interval

(ti + d∗(v), ti+1 + c∗(v)).

Moreover, the inputs to flip-flops are stable during the critical

segments and the output constraints are satisfied.

The proof uses double induction... (clock cycle and index of vertex
in topological ordering)

46 / 55

The zero delay model

In the zero delay model transitions of all signals are instantaneous.
This means that the propagation delay and contamination delay of
combinational circuits is zero. In addition, the parameters of
flip-flops satisfy:

tsu = ti+1 − ti ,

thold = tcont = tpd = 0.

We emphasize that this model is used only as a simplified model
for specifying and simulating the functionality of circuits with
flip-flops.

47 / 55

Zero delay model - cont

For simplicity, we normalize time so that the clock period is 1 time
unit. That is, ti+1 − ti = 1, for every i . This allows us to specify
the functionality of a flip-flop in the zero delay model as follows:

Q(t + 1) = D(t).

The meaning of this specification is as follows. (1) The critical
segment Ci equals [ti−1, ti). (2) The value of D(t) is stable during
the critical segment [ti−1, ti). This value is sampled by the flip-flop
during the clock cycle (i − 1). In the next clock cycle [ti , ti+1), the
flip-flop’s output Q(t) equals the value of the input sampled
during the previous cycle.

48 / 55

Logical Simulation of Synchronous Circuits

Assumptions:

Initialization: For every flip-flop FFi , let S0(FFi) ∈ {0, 1}
denote the value output by FFi in clock cycle t = 0.

Input sequence: For every input gate X let INt(X) ∈ {0, 1}
the input fed by X in clock cycle t.

49 / 55

Simulation Algorithm

Algorithm 3 SIM(C ,S0, {INt}
T−1
t=0) - An algorithm for simulating

a synchronous circuit C with respect to an initialization S0 and a
sequence of inputs {INt}

T−1
t=0 .

1 Construct the combinational circuit C ′ obtained from C by
stripping away the flip-flops.

2 For t = 0 to T − 1 do:
1 Simulate the combinational circuit C ′ with input values

corresponding to St and INt . Namely, every input gate in C

feeds a value according to INt , and every Q-port of a flip-flop
feeds a value according to St . For every sink z in C ′, let zt
denote the value fed to z according to this simulation.

2 For every Q-port S of a flip-flop, define St+1 ← NSt , where
NS denotes the D-port of the flip-flop.

50 / 55

Synthesis and Analysis

Two tasks are often associated with synchronous circuits. These
tasks are defined as follows.

1 Analysis: given a synchronous circuit C , describe its
functionality by an FSM.

2 Synthesis: given an FSM A, design a synchronous circuit C
that implements A.

51 / 55

Analysis: Sync Circuit 7→ FSM

The task of analyzing a synchronous circuit C is carried out as
follows.

1 Define the FSM A = 〈Q,Σ,∆, δ, λ, q0〉 as follows.

1 The set of states is Q
△

= {0, 1}k, where k denotes the number
of flip-flops in C .

2 Define the initial state q0 to be the initial outputs of the
flip-flops.

3 Σ = {0, 1}ℓ, where ℓ denotes the number of input gates in C .
4 ∆ = {0, 1}r , where r denotes the number of output gates in C .
5 Define the transition function δ : {0, 1}k × {0, 1}ℓ→ {0, 1}k

to be the function implemented by the combinational “part” of
C for the inputs of the flip-flops.

6 Define the output function λ : {0, 1}k × {0, 1}ℓ → {0, 1}r to
be the function implemented by the combinational “part” of C
for the output gates.

52 / 55

Synthesis: FSM 7→ Sync Circuit

Given an FSM A = 〈Q,Σ,∆, δ, λ, q0〉, the task of designing a
synchronous circuit C that implements A is carried out as follows.

1 Encode Q,Σ and ∆ by binary strings. Formally, let f , g , h
denote one-to-one functions, where

f :Q → {0, 1}k

g :Σ→ {0, 1}ℓ

h :∆→ {0, 1}r .

2 Design a combinational circuit Cδ that implements the
(partial) Boolean function Bδ : {0, 1}

k × {0, 1}ℓ → {0, 1}k

defined by

Bδ(f (x), g(y))
△

= f (δ(x , y)), for every (x , y) ∈ Q × Σ.

3 Design a combinational circuit Cλ that implements the
(partial) Boolean function Bλ : {0, 1}k × {0, 1}ℓ → {0, 1}r

Bλ(f (x), g(z))
△

= h(λ(x , z)), for every (x , z) ∈ Q ×∆.

53 / 55

Synthesis - cont

How many flip-flops are required? f : Q → {0, 1}k is
one-to-one. So

k ≥ log2 |Q|

It is not clear that minimizing k is a always a good idea.
Certain encodings lead to more complicated Boolean functions
Bδ and Bλ.

The question of selecting a “good” encoding is a very
complicated task, and there is no simple solution to this
problem.

54 / 55

Summary

definition of synchronous circuits.

synchronous circuits in canonic form.

Timing analysis.

Initialization.

Functionality: finite-state machines.

Timing in the general case. Two algorithms are presented:
one verifies whether the timing constraints are feasible. The
second algorithm computes the minimum clock period.

simulation algorithm.

analysis and synthesis of synchronous circuits.

55 / 55

