Digital Logic Design: a rigorous approach (C) Chapter 12: Trees

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 3, 2020

Book Homepage: <http://www.eng.tau.ac.il/~guy/Even-Medina>

- ¹ Which Boolean functions are suited for implementation by tree-like combinational circuits?
- 2 In what sense are tree-like implementations optimal?

A binary Boolean function is a function $f:\{0,1\}^2 \rightarrow \{0,1\}.$

A binary function is often denoted by a dyadic operator, say ∗. So instead of writing $f(a, b)$, we write $a * b$.

A binary Boolean function $*: \{0,1\}^2 \rightarrow \{0,1\}$ is associative if

$$
(x_1 * x_2) * x_3 = x_1 * (x_2 * x_3),
$$

for every $x_1, x_2, x_3 \in \{0, 1\}.$

One may omit parenthesis: $x_1 * x_2 * x_3$ is well defined. Consider the function $f_n: \{0,1\}^n \rightarrow \{0,1\}$ defined by

$$
f_n(x_1,\ldots,x_n)\triangleq x_1*\cdots*x_n
$$

Extension of associative function

Definition

Let $f:\{0,1\}^2 \rightarrow \{0,1\}$ denote a Boolean function. The function $f_n: \{0,1\}^n \rightarrow \{0,1\}$, for $n \geq 1$, is defined recursively as follows.

• If
$$
n = 1
$$
, then $f_1(x) = x$.

9 If
$$
n = 2
$$
, then $f_2 = f$.

3 If *n* > 2, then *f_n* is defined based on *f_{n−1}* as follows:

$$
f_n(x_1,x_2,\ldots x_n)\stackrel{\triangle}{=} f(f_{n-1}(x_1,\ldots,x_{n-1}),x_n).
$$

Claim

If f : $\{0,1\}^2 \rightarrow \{0,1\}$ *is an associative Boolean function, then*

$$
f_n(x_1, x_2, \ldots x_n) = f(f_{n-k}(x_1, \ldots, x_{n-k}), f_k(x_{n-k+1}, \ldots, x_n)),
$$

for every n > 2 *and k* \in [1, *n* $-$ 1]*.*

Trees of associative Boolean gates

To simplify the presentation, consider the Boolean function OR_n .

Definition

A combinational circuit $H = (V, E, \pi)$ that satisfies the following conditions is called an OR-tree(n).

- ¹ The graph *DG*(*H*) is a rooted tree with *n* sources.
- ² Each vertex *v* in *V* that is not a source or a sink is labeled $\pi(v) = \text{OR}.$
- **3** The set of labels of leaves of *H* is {*x*₀, . . . , *x*_{n−1} }.

A combinational circuit $H = (V, E, \pi)$ that satisfies the following conditions is called an $OR-tree(n)$.

- ¹ *Topology.* The graph *DG*(*H*) is a rooted tree with *n* sources.
- ² Each vertex *v* in *V* that is not a source or a sink is labeled $\pi(v) = \text{OR}.$
- **3** The set of labels of leaves of *H* is $\{x_0, \ldots, x_{n-1}\}$.

Claim

Every OR-tree(n) *implements the Boolean function* OR_n.

A Boolean formula φ is an OR(*n*) formula if it satisfies three conditions: (i) it is over the variables X_0, \ldots, X_{n-1} , (ii) every variable X_i appears exactly once in φ , and (iii) the only connective in φ is the OR connective.

Claim

A Boolean circuit C is an or(*n*)*-tree if and only if its graph (without the input/output gates) is a parse tree of an* or(*n*)*-formula.*

Cost of $OR-tree(n)$

Claim

The cost of every $OR-tree(n)$ *is* $(n-1) \cdot c(OR)$ *.*

Lemma

Let $G = (V, E)$ *denote a rooted tree in which the in-degree of each vertex is at most two. Then*

 $|\{v \in V \mid deg_{in}(v) = 2\}| = |\{v \in V \mid deg_{in}(v) = 0\}| - 1.$

delay of an OR tree $=$ number of OR-gates along the longest path from an input to an output.

Definition (depth - nonstandard definition)

The depth of a rooted tree *T* is the maximum number of vertices with in-degree greater than one in a path in *T*. We denote the depth of *T* by *depth*(*T*).

Why is this nonstandard?

- Usually, depth is simply the length of the longest path.
- \bullet Here we count only vertices with in-degree ≥ 2 .
- Why?
	- Input and output gates have zero delay (no computation)
	- Assume inverters are free and have zero delay (we will show that for $OR(n)$ cost & delay are not reduced even if inverters are free and without delay)

A rooted tree is a binary tree if the maximum in-degree is two.

A rooted tree is a minimum depth tree if its depth is minimum among all the rooted trees with the same number of leaves. All binary trees with *n* leaves have the same cost. But, which have minimum depth?

- **1** if *n* that is a power of 2, then there is a unique minimum depth tree, namely, the perfect binary tree with $\log_2 n$ levels.
- 2 if *n* is not a power of 2, then there is more than one minimum depth tree... (balanced trees)

Are these minimum depth trees?

Figure: Two trees with six inputs.

Claim

If T_n *is a rooted binary tree with n leaves, then the depth of* T_n *is at least* $\lceil \log_2 n \rceil$ *.*

- **1** Suffice to prove depth $\geq \log_2 n$.
- ² Complete induction on *n*.

Min Depth: the case $n = 2^k$ (perfect binary trees)

The distance of a vertex *v* to the root *r* in a rooted tree is the length of the path from *v* to *r*.

Definition

A rooted binary tree is perfect if:

- The in-degree of every non-leaf is 2, and
- All leaves have the same distance to the root.

Note that the depth of a perfect tree equals the distance from the leaves to the root (no vertices with in-degree 1).

Claim

The number of leaves in a perfect tree is 2^k, where k is the *distance of the leaves to the root.*

Claim

Let n denote the number of leaves in a perfect tree. Then, the distance from every leaf to the root is $\log_2 n$.

We now show that for every *n*, we can construct a minimum depth tree T_n^* of depth $\lceil \log_2 n \rceil$. In fact, if *n* is not a power of 2, then there are many such trees.

Two positive integers *a*, *b* are a balanced partition of *n* if:

 \bullet $a + b = n$, and

9 max
$$
\{ \lceil \log_2 a \rceil, \lceil \log_2 b \rceil \} \leq \lceil \log_2 n \rceil - 1.
$$

Claim

If $n = 2^k - r$, where $0 \le r < 2^{k-1}$, then the set of balanced *partitions is*

$$
P \stackrel{\triangle}{=} \{(a,b) \mid 2^{k-1} - r \le a \le 2^{k-1} \text{ and } b = n - a\}.
$$

Algorithm 1 Balanced-Tree(n) - a recursive algorithm for constructing a binary tree T_n^* with $n \geq 1$ leaves.

- **1** The case that $n = 1$ is trivial (an isolated root).
- 2 If $n > 2$, then let *a*, *b* be balanced partition of *n*.
- **■** Compute trees T_a^* and T_b^* $_b^*$. Connect their roots to a new root to obtain T_n^* .

Definition

A rooted binary tree T_n is a **balanced tree** if it is a valid output of Algorithm Balanced-Tree(n).

Def: balanced tree

Algorithm 2 Balanced-Tree(n) - a recursive algorithm for constructing a binary tree T_n^* with $n \geq 1$ leaves.

- **1** The case that $n = 1$ is trivial (an isolated root).
- 2 If $n > 2$, then let *a*, *b* be balanced partition of *n*.
- **■** Compute trees T_a^* and T_b^* $b_b[*]$. Connect their roots to a new root to obtain T_n^* .

Claim

The depth of a binary tree T[∗] n *constructed by Algorithm Balanced-Tree(n) is* $\lceil \log_2 n \rceil$ *.*

Corollary

The propagation delay of a balanced OR-tree(n) *is* $\lceil \log_2 n \rceil \cdot t_{\text{pd}}(\text{OR})$.

Goals: prove optimality of a balanced OR-tree(n).

Theorem

Let C_n *denote a combinational circuit that implements* OR_n . Then,

 $c(C_n) > n-1$.

Theorem

Let C_n denote a combinational circuit that implements OR_n. Let k *denote the maximum fan-in of a gate in C*n*. Then*

 $t_{nd}(\mathcal{C}_n) > \lceil \log_k n \rceil$.

Let $\mathit{flip}_i : \{0,1\}^n \rightarrow \{0,1\}^n$ be the Boolean function defined by $\mathit{flip}_i(\vec{x}) \triangleq \vec{y}$, where

$$
y_j \stackrel{\triangle}{=} \begin{cases} x_j & \text{if } j \neq i \\ \text{NOT}(x_j) & \text{if } i = j. \end{cases}
$$

Definition (Cone of a Boolean function)

The cone of a Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ is defined by

$$
cone(f) \stackrel{\triangle}{=} \{i : \exists \vec{v} \text{ such that } f(\vec{v}) \neq f(\text{flip}_i(\vec{v}))\}
$$

Example

cone(XOR) = {1, 2}.

We say that f depends on x_i if $i \in cone(f)$.

Consider the following Boolean function:

$$
f(\vec{x}) = \begin{cases} 0 & \text{if } \sum_i x_i < 3\\ 1 & \text{otherwise.} \end{cases}
$$

Suppose that one reveals the input bits one by one. As soon as 3 ones are revealed, one can determine the value of $f(\vec{x})$. Nevertheless, the function $f(\vec{x})$ depends on all its inputs, and hence, $cone(f) = \{1, ..., n\}.$

Claim

$cone(f) = \emptyset \Longleftrightarrow f$ *is a constant Boolean function.*

Claim

If $g(\vec{x}) \triangleq B(f_1(\vec{x}), f_2(\vec{x}))$ *, then*

$$
\mathsf{cone}(g) \subseteq \mathsf{cone}(f_1) \cup \mathsf{cone}(f_2) \ .
$$

Let $G = (V, E)$ denote a DAG. The graphical cone of a vertex $v \in V$ is defined by

 $cone_G(v) \stackrel{\triangle}{=} \{u \in V : deg_{in}(u) = 0 \text{ and } \exists \text{path from } u \text{ to } v\}.$

In a combinational circuit, every source is an input gate. This means that the graphical cone of *v* equals the set of input gates from which there exists a path to *v*.

Claim

Let $H = (V, E, \pi)$ *denote a combinational circuit. Let* $G = DG(H)$ *. For every vertex* $v \in V$ *, the following holds:*

 $cone(f_v) \subseteq cone_G(v)$.

Namely, if f_v depends on x_i , then the input gate u that feeds the input *x*ⁱ must be in the graphical cone of *v*.

Claim

Let $G = (V, E)$ *denote a DAG. For every* $v \in V$ *, there exist U* \subset *V* and F \subset *E* such that:

$$
T = (U, F)
$$
 is a rooted tree;

² *v is the root of T;*

 \bullet cone_G(*v*) *equals the set of leaves of* (*U*, *F*).

The sets *U* and *F* are constructed as follows.

- **1** Initialize $F = \emptyset$ and $U = \emptyset$.
- **2** For every source *u* in *cone*_G(*v*) do
	- (a) Find a path p_u from u to v.
	- (b) Let q_u denote the prefix of p_u , the vertices and edges of which are not contained in *U* or *F*.
	- (c) Add the edges of q_v to F, and add the vertices of q_v to U.

Theorem (Linear Cost Lower Bound Theorem)

Let $H = (V, E, \pi)$ *denote a combinational circuit. If the fan-in of every gate in H is at most* 2*, then*

$$
c(H) \geq \max_{v \in V} |\text{cone}(f_v)| - 1.
$$

Corollary

Let C_n *denote a combinational circuit that implements* OR_n . Then

$$
c(C_n)\geq n-1.
$$

Theorem (Logarithmic Delay Lower Bound Theorem)

Let $H = (V, E, \pi)$ *denote a combinational circuit. If the fan-in of every gate in H is at most* 2*, then*

$$
t_{pd}(H) \geq \max_{v \in V} \log_2 |\text{cone}(f_v)|.
$$

Corollary

Let C_n *denote a combinational circuit that implements* OR_n. Let 2 *denote the maximum fan-in of a gate in C*n*. Then*

 $t_{nd}(\mathcal{C}_n) \geq \lceil \log_2 n \rceil$.

Theorem (Logarithmic Delay Lower Bound Theorem)

Let $H = (V, E, \pi)$ *denote a combinational circuit. If the fan-in of every gate in H is at most k, then*

$$
t_{pd}(H) \geq \max_{v \in V} \log_k |\text{cone}(f_v)|.
$$

Corollary

Let C_n *denote a combinational circuit that implements* OR_n . Let k *denote the maximum fan-in of a gate in C*n*. Then*

 $t_{\text{nd}}(C_n) \geq \lceil \log_k n \rceil$.

- Focus on combinational circuits that have a topology of a tree with identical gates.
- **•** Trees are especially suited for computing associative Boolean functions.
- \bullet Defined an OR-tree(*n*) to be a combinational circuit that implements OR_n using a topology of a tree.
- Proved that $OR-tree(n)$ are asymptotically optimal (cost).
- Balance conditions to obtain good delay.
- General lower bounds based on *cone*(*f*).
	- $\bullet \#$ gates in a combinational circuit implementing a Boolean function *f* must be at least $|cone(f)| - 1$.
	- the propagation delay of a combinational circuit implementing a Boolean function f is at least $log_2|cone(f)|$.