Digital Logic Design: a rigorous approach © Chapter 12: Trees

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

May 3, 2020

Book Homepage: http://www.eng.tau.ac.il/~guy/Even-Medina

- Which Boolean functions are suited for implementation by tree-like combinational circuits?
- In what sense are tree-like implementations optimal?

A binary Boolean function is a function $f : \{0, 1\}^2 \rightarrow \{0, 1\}$.

A binary function is often denoted by a dyadic operator, say *. So instead of writing f(a, b), we write a * b.

A binary Boolean function $*: \{0,1\}^2 \rightarrow \{0,1\}$ is associative if

$$(x_1 * x_2) * x_3 = x_1 * (x_2 * x_3)$$
,

for every $x_1, x_2, x_3 \in \{0, 1\}$.

One may omit parenthesis: $x_1 * x_2 * x_3$ is well defined. Consider the function $f_n : \{0,1\}^n \to \{0,1\}$ defined by

$$f_n(x_1,\ldots,x_n) \triangleq x_1 \ast \cdots \ast x_n$$

Extension of associative function

Definition

Let $f : \{0,1\}^2 \to \{0,1\}$ denote a Boolean function. The function $f_n : \{0,1\}^n \to \{0,1\}$, for $n \ge 1$, is defined recursively as follows.

If
$$n = 1$$
, then $f_1(x) = x$

2 If
$$n = 2$$
, then $f_2 = f$.

③ If n > 2, then f_n is defined based on f_{n-1} as follows:

$$f_n(x_1, x_2, \ldots x_n) \stackrel{\scriptscriptstyle riangle}{=} f(f_{n-1}(x_1, \ldots, x_{n-1}), x_n).$$

Claim

If $f:\{0,1\}^2 \to \{0,1\}$ is an associative Boolean function, then

$$f_n(x_1, x_2, \ldots, x_n) = f(f_{n-k}(x_1, \ldots, x_{n-k}), f_k(x_{n-k+1}, \ldots, x_n)),$$

for every $n \ge 2$ and $k \in [1, n-1]$.

Trees of associative Boolean gates

To simplify the presentation, consider the Boolean function OR_n .

Definition

A combinational circuit $H = (V, E, \pi)$ that satisfies the following conditions is called an OR-tree(*n*).

- The graph DG(H) is a rooted tree with *n* sources.
- 2 Each vertex v in V that is not a source or a sink is labeled $\pi(v) = OR$.
- **③** The set of labels of leaves of *H* is $\{x_0, \ldots, x_{n-1}\}$.

A combinational circuit $H = (V, E, \pi)$ that satisfies the following conditions is called an OR-tree(*n*).

- **()** Topology. The graph DG(H) is a rooted tree with n sources.
- Each vertex v in V that is not a source or a sink is labeled π(v) = OR.
- **③** The set of labels of leaves of *H* is $\{x_0, \ldots, x_{n-1}\}$.

Claim

Every OR-tree(n) implements the Boolean function OR_n .

A Boolean formula φ is an OR(*n*) formula if it satisfies three conditions: (i) it is over the variables X_0, \ldots, X_{n-1} , (ii) every variable X_i appears exactly once in φ , and (iii) the only connective in φ is the OR connective.

Claim

A Boolean circuit C is an OR(n)-tree if and only if its graph (without the input/output gates) is a parse tree of an OR(n)-formula.

Cost of OR-tree(n)

Claim

The cost of every OR-tree(n) is $(n-1) \cdot c(OR)$.

Lemma

Let G = (V, E) denote a rooted tree in which the in-degree of each vertex is at most two. Then

 $|\{v \in V \mid deg_{in}(v) = 2\}| = |\{v \in V \mid deg_{in}(v) = 0\}| - 1.$

Depth of tree

delay of an ${\rm OR}$ tree = number of ${\rm OR}\xspace$ along the longest path from an input to an output.

Definition (depth - nonstandard definition)

The depth of a rooted tree T is the maximum number of vertices with in-degree greater than one in a path in T. We denote the depth of T by depth(T).

Why is this nonstandard?

- Usually, depth is simply the length of the longest path.
- Here we count only vertices with in-degree ≥ 2 .
- Why?
 - Input and output gates have zero delay (no computation)
 - Assume inverters are free and have zero delay (we will show that for OR(n) cost & delay are not reduced even if inverters are free and without delay)

A rooted tree is a binary tree if the maximum in-degree is two.

A rooted tree is a minimum depth tree if its depth is minimum among all the rooted trees with the same number of leaves. All binary trees with n leaves have the same cost. But, which have minimum depth?

- if n that is a power of 2, then there is a unique minimum depth tree, namely, the perfect binary tree with log₂ n levels.
- If n is not a power of 2, then there is more than one minimum depth tree... (balanced trees)

Are these minimum depth trees?

Figure: Two trees with six inputs.

Claim

If T_n is a rooted binary tree with n leaves, then the depth of T_n is at least $\lceil \log_2 n \rceil$.

- Suffice to prove depth $\geq \log_2 n$.
- Omplete induction on n.

Min Depth: the case $n = 2^k$ (perfect binary trees)

The distance of a vertex v to the root r in a rooted tree is the length of the path from v to r.

Definition

A rooted binary tree is perfect if:

- The in-degree of every non-leaf is 2, and
- All leaves have the same distance to the root.

Note that the depth of a perfect tree equals the distance from the leaves to the root (no vertices with in-degree 1).

Claim

The number of leaves in a perfect tree is 2^k , where k is the distance of the leaves to the root.

Claim

Let n denote the number of leaves in a perfect tree. Then, the distance from every leaf to the root is $\log_2 n$.

We now show that for every n, we can construct a minimum depth tree T_n^* of depth $\lceil \log_2 n \rceil$. In fact, if n is not a power of 2, then there are many such trees.

Two positive integers a, b are a balanced partition of n if:

a+b=n, and

 $a \max\{ \lceil \log_2 a \rceil, \lceil \log_2 b \rceil \} \le \lceil \log_2 n \rceil - 1.$

Claim

If $n = 2^k - r$, where $0 \le r < 2^{k-1}$, then the set of balanced partitions is

$$P \stackrel{\scriptscriptstyle \triangle}{=} \{(a,b) \mid 2^{k-1} - r \le a \le 2^{k-1} \text{ and } b = n-a\}.$$

Algorithm 1 Balanced-Tree(n) - a recursive algorithm for constructing a binary tree T_n^* with $n \ge 1$ leaves.

- The case that n = 1 is trivial (an isolated root).
- 2 If $n \ge 2$, then let a, b be balanced partition of n.
- Compute trees T^{*}_a and T^{*}_b. Connect their roots to a new root to obtain T^{*}_n.

Definition

A rooted binary tree T_n is a balanced tree if it is a valid output of Algorithm Balanced-Tree(n).

Def: balanced tree

Algorithm 2 Balanced-Tree(n) - a recursive algorithm for constructing a binary tree T_n^* with $n \ge 1$ leaves.

- The case that n = 1 is trivial (an isolated root).
- 2 If $n \ge 2$, then let a, b be balanced partition of n.
- Sompute trees T_a^* and T_b^* . Connect their roots to a new root to obtain T_n^* .

Claim

The depth of a binary tree T_n^* constructed by Algorithm Balanced-Tree(n) is $\lceil \log_2 n \rceil$.

Corollary

The propagation delay of a balanced OR-tree(n) is $\lceil \log_2 n \rceil \cdot t_{pd}(OR)$.

Goals: prove optimality of a balanced OR-tree(n).

Theorem

Let C_n denote a combinational circuit that implements OR_n . Then,

 $c(C_n) \geq n-1.$

Theorem

Let C_n denote a combinational circuit that implements OR_n . Let k denote the maximum fan-in of a gate in C_n . Then

 $t_{pd}(C_n) \geq \lceil \log_k n \rceil$.

Let $\mathit{flip}_i: \{0,1\}^n \to \{0,1\}^n$ be the Boolean function defined by $\mathit{flip}_i(\vec{x}) \triangleq \vec{y}$, where

$$y_j \triangleq egin{cases} x_j & ext{if } j
eq i \ \mathrm{NOT}(x_j) & ext{if } i = j. \end{cases}$$

Definition (Cone of a Boolean function)

The cone of a Boolean function $f: \{0,1\}^n \to \{0,1\}$ is defined by

$$\mathit{cone}(f) \stackrel{ riangle}{=} \{i: \exists ec{v} ext{ such that } f(ec{v})
eq f(\mathit{flip}_i(ec{v}))\}$$

Example

 $cone(XOR) = \{1, 2\}.$

We say that f depends on x_i if $i \in cone(f)$.

Consider the following Boolean function:

$$f(ec{x}) = egin{cases} 0 & ext{if } \sum_i x_i < 3 \ 1 & ext{otherwise.} \end{cases}$$

Suppose that one reveals the input bits one by one. As soon as 3 ones are revealed, one can determine the value of $f(\vec{x})$. Nevertheless, the function $f(\vec{x})$ depends on all its inputs, and hence, $cone(f) = \{1, \ldots, n\}$.

Constant Functions

Claim

$\operatorname{cone}(f) = \emptyset \iff f$ is a constant Boolean function.

Claim

If $g(\vec{x}) \triangleq B(f_1(\vec{x}), f_2(\vec{x}))$, then

$\operatorname{cone}(g) \subseteq \operatorname{cone}(f_1) \cup \operatorname{cone}(f_2)$.

Let G = (V, E) denote a DAG. The graphical cone of a vertex $v \in V$ is defined by

 $cone_G(v) \stackrel{\scriptscriptstyle riangle}{=} \{ u \in V : deg_{in}(u) = 0 \text{ and } \exists path from u to v \}.$

In a combinational circuit, every source is an input gate. This means that the graphical cone of v equals the set of input gates from which there exists a path to v.

Claim

Let $H = (V, E, \pi)$ denote a combinational circuit. Let G = DG(H). For every vertex $v \in V$, the following holds:

 $\operatorname{cone}(f_v) \subseteq \operatorname{cone}_G(v)$.

Namely, if f_v depends on x_i , then the input gate u that feeds the input x_i must be in the graphical cone of v.

"Hidden" Rooted Trees

Claim

Let G = (V, E) denote a DAG. For every $v \in V$, there exist $U \subseteq V$ and $F \subseteq E$ such that:

1
$$T = (U, F)$$
 is a rooted tree;

v is the root of T;

Society cone_G(v) equals the set of leaves of (U, F).

The sets U and F are constructed as follows.

- Initialize $F = \emptyset$ and $U = \emptyset$.
- Solution For every source u in $cone_G(v)$ do
 - (a) Find a path p_u from u to v.
 - (b) Let q_u denote the prefix of p_u , the vertices and edges of which are not contained in U or F.
 - (c) Add the edges of q_v to F, and add the vertices of q_v to U.

Theorem (Linear Cost Lower Bound Theorem)

Let $H = (V, E, \pi)$ denote a combinational circuit. If the fan-in of every gate in H is at most 2, then

$$c(H) \geq \max_{v \in V} |\operatorname{cone}(f_v)| - 1.$$

Corollary

Let C_n denote a combinational circuit that implements OR_n . Then

$$c(C_n) \geq n-1.$$

Theorem (Logarithmic Delay Lower Bound Theorem)

Let $H = (V, E, \pi)$ denote a combinational circuit. If the fan-in of every gate in H is at most 2, then

$$t_{pd}(H) \geq \max_{v \in V} \log_2 |\operatorname{cone}(f_v)|.$$

Corollary

Let C_n denote a combinational circuit that implements OR_n . Let 2 denote the maximum fan-in of a gate in C_n . Then

 $t_{pd}(C_n) \geq \lceil \log_2 n \rceil$.

Theorem (Logarithmic Delay Lower Bound Theorem)

Let $H = (V, E, \pi)$ denote a combinational circuit. If the fan-in of every gate in H is at most k, then

$$t_{pd}(H) \geq \max_{v \in V} \log_k |\operatorname{cone}(f_v)|.$$

Corollary

Let C_n denote a combinational circuit that implements OR_n . Let k denote the maximum fan-in of a gate in C_n . Then

 $t_{pd}(C_n) \geq \lceil \log_k n \rceil$.

- Focus on combinational circuits that have a topology of a tree with identical gates.
- Trees are especially suited for computing associative Boolean functions.
- Defined an OR-tree(n) to be a combinational circuit that implements OR_n using a topology of a tree.
- Proved that OR-tree(n) are asymptotically optimal (cost).
- Balance conditions to obtain good delay.
- General lower bounds based on *cone*(*f*).
 - # gates in a combinational circuit implementing a Boolean
 function f must be at least |cone(f)| − 1.
 - the propagation delay of a combinational circuit implementing a Boolean function f is at least log₂ |cone(f)|.