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Preface

This book is an introductory textbook on the design and analysis of digital logic circuits. It
has been written after 15 years of teaching hardware design courses in the school of Electrical
Engineering in Tel Aviv University. The main motivation for writing a new textbook was the
desire to teach hardware design rigorously. By rigorously, we mean that mathematical language
and exposition is used to define the model, to specify functionality, to describe designs, to prove
correctness, and to analyze cost and delay. We believe that students who study formal courses
such as Algebra and Calculus can cope well with a rigorous approach. Moreover, they are likely
to benefit from this approach in many ways.

The book covers the material of an introductory course in digital logic design including an
introduction to Discrete Mathematics. It is self-contained, begins with basic gates and ends
with the specification and implementation of simple microprocessor. The goal is to turn our
students into logic designers within one semester.

The rest of this preface deals with the rational, structure, and audience of the book. We
conclude with a list of the highlights some of which are new to a hardware design book.

How to acquire intuition? It is not fashionable these days to emphasize mathematical rigor.
Mathematical rigor is perceived as an alienating form that dries out the passion for learning
and understanding. Common teaching tactics avoid rigor (i.e., the holy definition-theorem-proof
triple) and resort to examples. Since intuition is what really matters (and we of course agree
with that!), in the rare cases when one feels compelled to provide a proof, the following strategy
is employed. First, a long intuition precedes the proof, in an attempt to explain in advance
what the proof does and why it actually works (is this part actually an apology for what is
about to come?). Then, a long proof follows using partially defined terms. All we can say is
that this strategy is in complete disregard of the statement: “When you have to shoot, shoot.
Don’t talk” [Tuco in The Good, the Bad and the Ugly].

Recall the huge endeavor of 19th century Mathematicians to formalize the calculus of real
functions. Weierstrass and others undertook the task of providing a formal abstraction of the
presumably well understood notions of real numbers, real functions, continuous functions, etc.
We still remember our surprise when Weierstrass’s function was first described to us: continuous
everywhere and differentiable nowhere... The lesson is clear: intuition is gradually acquired and
must be based on solid fundamentals.

What does this have to do with digital design? The quest for intuition is confronted by the
fact that it is hard to formulate precise statements about objects such as digital circuits. Our
approach is to give the students a solid rigorous basis for their intuition. Of course, examples are
easy to follow, but might give the students the false impression that they understand the topic.
We have seen many brilliant students in engineering disciplines that find it hard to acquire
intuition based only on examples. Such students can easily cope with a rigorous exposition in
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which delicate issues are not hidden or brushed aside.

Learn from the success of data structures and algorithms. We believe that successful
teaching means that a student can implement the material from the course. After studying
data structures, a student should be able to program search trees, sorting, and hashing. We
believe that the same goal should be set for a logic design course. Unfortunately, most textbooks
describe various circuits, provide examples for why they work, but do not train engineers who
can actually design digital circuits.

The goal of this book is to bring students to a level that will enable them to understand a
specification of a combinational or synchronous circuit, to design it, to prove the correctness of
their design, and to be able to analyze the efficiency of the design (i.e., delay and cost).

We do not restrict this goal to isolated circuits. We show how a system is built from
different circuits working in concert. In fact, we present a simple microprocessor, the design of
which combines multiple modules, including: an arithmetic logic unit (with an adder, logical
operators, and a comparator), a shifter, a file register (with the general purpose registers), and
main memory.

The knowledge highway. Our goal is to turn our students within one semester into logic
designers. To meet this goal we follow a bottom-up approach that begins with the basics
and ends with a simple microprocessor. We solidify the presentation by using mathematical
notations and statements and by defining the abstraction precisely. The effort spent on a formal
approach pays off simply because it enables us to teach more material, in more depth, and in
a shorter time. It is not surprising that towards the end of the course, students can not only
design nontrivial modules, they can also identify errors in designs and suggest ways to correct
these errors.

Our teachers. When writing this book, the first author and, by transitivity, the second author
were mainly influenced by three people: Shimon Even, Ami Litman, and Wolfgang Paul.

It was Shimon Even who stated that: (1) Never complain or be surprised by the students
lack of knowledge - just teach it! (2) Digital design is the same art as algorithm design. The
only difference is the model of computation. (3) Identify the methods and be systematic. In
other words, turn digital design into a discipline.

It was Ami Litman who demanded: (1) Always verify that your abstraction makes sense.
Don’t hesitate to refute the model by introducing absurd consequences. (2) Introduce a design
by a sequence of evolutionary modifications starting with a simple straightforward yet costly
design and ending with an evolved yet efficient design. Each modification preserves functionality,
and hence, the final design is correct. Describe each modification as a general transformation
that can be applied in a wide variety of settings. (3) Focus on large instances. Optimization of
small instances depends on the technology and is not likely to reveal insights.

Wolfgang Paul’s rules are: (1) Formulate a precise specification and prove that the design
satisfies the specification. (2) Write the equations that describe the delay and cost. Solving
these equations asymptotically is nice, but from a practical point of view, it suffices to solve
them numerically for the sizes one needs to actually design. (3) Keep in mind that the goal is
to design a correct well understood system. Avoid fancy optimizations that eventually impede
this goal. This rule applies both for teaching and for actual design.
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Our Students. Our students are Electrical Engineering undergraduate students in their sec-
ond or third semester. The students lack background in discrete mathematics, and the first
part of the book deals with filling this gap. This is considered the easy part of the course.

Following the logic design course, our students take courses on devices (both analog and
digital). Students who choose the computers’ track also study computer organization, com-
puter architecture, and practice digital design in a lab with an FPGA platform. In this lab
they implement the simplified DLX microprocessor described in Part IV of the book. This
implementation is from basic gates (e.g., no library modules such as adders are used). In the
end of the lab, the students program a nontrivial program in assembly language and execute it
on their design.

Apart from training the students in logic design, we also teach discrete methods that are
used in data structures and algorithms. In particular, we focus on induction and recursion,
trees and graphs, and recurrence equations.

Structure of the book. The book consists of four parts: (I) Preliminaries, (II) Combina-
tional Circuits, (III) Synchronous Circuits, and (IV) A Simplified DLX.

The first part of the book is a short introduction to discrete mathematics. We made an
effort to include only topics in discrete math that are actually used in the other parts. This
is considered the easy part of the course, however, it is essential for students that lack back-
ground in discrete mathematics. In addition, this part helps students get used to working with
definitions, mathematical notation, and proofs.

The second part of the book is the heart of the book. It focuses on Boolean functions and on
methods for building circuits that compute Boolean functions. We begin by representation by
Boolean formulas, e.g., sum of products and product of sums. This establishes the connection
between Boolean functions and propositional logic. We then define combinational gates and
combinational circuits and define two quality measures: cost and propagation delay.

The study of combinational circuits begins with circuits that have a topology of a tree. At
this point we introduce lower bounds on the number of gates and the propagation delay of a
combinational circuit that implements a Boolean function such as the or of n bits. Logical
simulation is presented in an algorithmic fashion using topological ordering of a directed acyclic
graph. The same approach is used for computing the propagation delay of combinational circuit.

We proceed with a variety of combinational circuits (e.g., decoders, encoders, selectors,
shifters, and adders). Designs are presented in a parametric fashion, where the parameter is
the length of the input. Whenever possible, designs are recursive and proofs are by induction.

Chapter 10 in the second part explains the digital abstraction. The purpose of this chapter
is to build a bridge between the analog world and the digital world.

Synchronous circuits are studied in the third part of the book. We first introduce the clock
signal and edge triggered D-flip-flops. Only one type of flip-flop is discussed in detail. This
discussion explains the different timing parameters of a flip-flop including an explanation of
why so many parameters are required. Other types of flip-flops are considered as finite state
machines with two states and are implemented using a D-flip-flop and additional combinational
logic. Synchronous circuits are viewed in two ways: (1) Memory modules, such as: registers,
random access memory (RAM), and read-only memory (ROM), and (2) Finite state machines,
including their analysis and synthesis.

Algorithmic issues related to synchronous circuits include logical simulation and calculation
of the minimum clock period. These algorithms are presented via reductions to combinational
circuits.
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Students who have studied the first three parts of the book should have a good idea of what
computer aided design tools for designing digital circuits do.

The last part of the book deals with the design of a simple microprocessor. Connections
are made between the machine language, assembly, high level programming, the instruction
set architecture (ISA). We present an implementation of the simple microprocessor using the
modules from Parts II and III. The design methodology is to present the simplest microprocessor
implementation that supports the ISA. We present an unpipelined multi-cycle microprocessor
based on a simple datapath and a small finite state machine.

How to use this book? This book is written as a textbook for an introductory course
in digital design to undergraduate students in Electrical Engineering and Computer Science.
The following material is considered advanced, and may be omitted: (i) Section 5.6: More
on Unique Binary Representation, (ii) Chapter 8: Computer Stories: Big Endian vs. Little
Endian, (iii) Section 9.6: Minimization Heuristics, (iv) Chapter 10: The Digital Abstraction,
(v) Sections 17.3-17.5. Advanced material as well as advanced questions and examples are
marked with an asterisk ∗.

When we teach this course, we spend roughly five weeks on Part I, five weeks on Part II,
and five weeks on Parts III and IV.

We suggest to start the course very rigorously and gradually relax rigor when repeating a
proof technique that was used before.

Logic design, like swimming, cannot be taught without immersion. We therefore include
homework assignments in which students practice logic design using a schematic entry tool and
a logic simulator. We found the open source Logisim software both easy to use and powerful
enough for our purposes.

We also use a DLX assembly simulator so that students can practice assembly programing
of constructs in high level programming (e.g., if-then-else statements, loops, arrays, etc.).

Highlights. We list the main highlights of the book.

1. The book is self-contained. We do not assume the students have any prior knowledge of
discrete math, propositional logic, asymptotics, graphs, hardware, electronics, etc.

2. A complete teaching tool. In each chapter, we tried to make a clear separation between
(i) conceptual parts containing new materials, (ii) applications and examples that are
based on this new material, and (iii) problems. There are many benefits to this approach
both for the teacher and the student. One clear advantage is that the examples can be
covered in greater detail during recitations.

3. “Nothing is hidden”. We adhere to the rule that all the details are complete, and every
claim is proven.

4. Methodology as a “ritual”. Each design is presented in four steps: specification, design,
correctness proof, and analysis of delay and cost. The specification formally defines what
a circuit should do. Without a formal specification, it is impossible to prove correctness.
Most designs are described using recursion, and correctness is usually proved using induc-
tion. Finally, analysis of cost and delay is carried out by formulating recurrence equations
and solving them.
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5. The recursion-induction pair. Instead of designing circuits for specific input lengths, we
consider the task of designing circuits with a parameter n specifying the length of the
inputs. For example, we consider addition of n-bit numbers, n:1-selectors, etc. These
designs are described recursively. The first advantage is that we present a precise and
formal definition of the design for any input length. The second advantage is that we
prove the correctness of the design for any input length. Naturally, the proof is carried
out using induction.

6. Modeling circuits as graphs. We use the language of graphs to describe formulas and
circuits. Boolean formulas are defined by parse trees. Circuits are defined using directed
graphs. This approach enables us to present a clean and precise definition of propaga-
tion delay and minimum clock period using longest paths in a directed graph. With a
small effort, it is possible to extend this approach also to the more elaborate setting of
nonuniform delays between input and output ports of gates.

7. Lower bounds. We prove simple lower bounds on the cost and the delay of a combinational
circuit that implement Boolean functions. The ability to formally state that a design is
an optimal adder design is remarkably powerful. Our lower bounds are stated in terms of
the number of inputs that an output depends on (i.e., the “cone” of an output). These
lower bounds are easy to apply to all the Boolean functions that are discussed.

8. Algorithmic approach. Tasks such as logical simulation, computation of propagation de-
lay, and minimum clock period are presented as algorithmic problems. Algorithms are
presented for solving these problems, and the correctness of these algorithms is proven.

For example, the algorithmic approach is used to teach timing analysis as follows: we
present an algorithm, prove its correctness, and run it on an example. In this fashion, the
topic of timing analysis is described in a precise and concise fashion that does not require
lengthy examples. One may ask why not teach about timing analysis with different delays
for different transitions (i.e., the time required for transition of the output from zero to
one does not equal the time required for the transition from one to zero). Indeed, this
question pertains to the lasting argument about the usefulness of worst case analysis. We
resort to worst case timing analysis simply because it is intractable to decide whether the
output of a combinational circuit ever equals one (see Section 9.5).

9. Relations to analog world. In Chapters 10 and 17 we connect the physical analog world
to the digital abstraction. Two physical phenomena are discussed in detail: noise and
metastability. We show how noise is overcome by using different threshold for inputs
and outputs. We show how metastability is mitigated using the timing parameters of
a flip-flop (i.e., setup time, hold time, contamination delay, and propagation delay). We
explicitly mention issues that can not be resolved within the digital abstraction (e.g., reset
controller).

10. Zero propagation delay as functional model. In Chapter 18 on memory modules we intro-
duce the zero delay model. In the zero delay model transitions of all signals are instan-
taneous. This means that the flip-flop’s output at a certain cycle equals the value of the
input sampled during the previous cycle. This simplified discrete timing model is used for
specifying and simulating the functionality of circuits with flip-flops. The advantage of
this approach is that it decouples the issues of functionality and timing into two separate
issues.
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Karnaugh Maps. A quick comparison of this book with other books on Logic Design will
reveal that we mention Karnaugh maps [7] only very briefly in Section 9.6.6. There is a good
reason for this brief mentioning.

Karnaugh maps are a technique for finding the minimum number of products in a sum-of-
products representation of a Boolean function. The input to the technique of Karnaugh maps
is the truth table of the Boolean function. Thus, the input to this technique is exponential in
the number of variables, and therefore cannot be considered efficient. In addition, the maps are
actually two-dimensional tables, and are convenient to use for at most four variables. Experts, of
course, are proud that they can use this technique also for five and even six variables! Given that
the technique of Karnaugh maps has an exponential running time and is limited to few variables,
we do not think it is an important issue in Logic Design. One should bear in mind, that the
difference between a reasonable representation and the best representation for a function over
six variables is constant. Moreover, with such small functions, even exhaustive search makes
sense if one is really interested in finding the “best” representation.

Teachers insisting on teaching heuristics for finding the minimum number of products in a
sum-of-products representation of a Boolean function can teach the Quine-McCluskey heuris-
tic [15, 16, 11]. Our presentation of the Quine-McCluskey heuristic uses a layered graph over
the implicants instead of a tabular approach. We hope that this choice favors notions over
notation. Unfortunately, the full details of the heuristic require almost 10 pages. We therefore
marked this section by an asterisk.

Recurrence Equations. We use recurrences to describe the cost and delay of circuits defined
recursively. We do not introduce the “master theorem” for solving recurrences. The reason is
that we find this theorem to be too general for the students at this stage (they do learn it later
in the algorithms course). Instead, we resort to solving the specific recurrences we encounter
later in the book.

References. There are many books on Discrete Mathematics. Two Discrete Math books that
also treat Boolean Algebra and Logic Design are by McEliece et. al [12] and Mattson [10].

There are many books on Logic Design and Computer Structure. We were mainly influenced
by the book of Mueller and Paul [13] in the choice of combinational circuits and the description of
the processor. We use the simplified timing diagrams from the notes of Litman [9]. These notes
also helped with the description of the digital abstraction and flip-flops. The book by Ward and
Halstead [18] describes, among other things, the problem of meta-stability, arbitration, and the
abstraction provided by an instruction set architecture. The book by Ercegovac et. al [3] uses
a hardware description language to design circuits. The book by Ercegovac and Lang [2] deals
with computer arithmetic.

Most textbooks do not introduce Boolean formulas via parse trees. In the book by Howson [6]
propositional logic is described by trees.

More material on finite automata (a.k.a. finite state machines) appears in the book by
Hopcroft and Ullman [5]. The book by Savage [17] starts with basic hardware and ends with
advanced material in computability.

The DLX processor architecture was designed by John L. Hennessy and David A. Patter-
son [14] as an educational architecture that demonstrates the principles of a RISC processor
without the elaborate details of a commercial processor. Our simplified DLX architecture is
based on it and on the simplified architecture designed in the RESA lab in Wolfgang Paul’s



vii

group in the University of the Saarland. See also the book by Mueller and Paul [13] for a concise
description of the DLX architecture and its implementation.

Book Homepage. The homepage of the book is:

http://www.eng.tau.ac.il/~guy/Even-Medina/

We plan to maintain this homepage so that it contains the following:

• Authors version of the book in PDF format.

• Slides that we use for the teaching.

• Errata and a simple form for reporting errors.

• Links to simulators (Logisim and a DLX assembly simulator).

• Supplementary material.

Finally, we would like to thank the anonymous reviewers. Reports of mistakes (all of which are
solely our fault) would be greatly appreciated.

Guy Even and Moti Medina
Tel Aviv, March 2012

http://www.eng.tau.ac.il/~guy/Even-Medina/
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Chapter 1

Sets and Functions

Contents
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1.3 Boolean Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Commutative and Associative Binary Operations . . . . . . . . . . . 16

This chapter introduces two major notions: sets and functions. We are all familiar with
real functions, for example, f(x) = 2x + 1 and g(x) = sin(x). Here the approach is somewhat
different. The first difference is that we do not limit the discussion to the set of real numbers;
instead, we consider arbitrary sets and are mostly interested in sets that contain only a finite
number of elements. The second difference is that we do not define a “rule” for assigning a
value for each x; instead, a function is simply a list of pairs (x, y), where y denotes the value of
the function when the argument equals x. The definition of functions relies on the definitions
of sets and relations over sets. That is why we need to define various operations over sets such
as union, intersection, complement, and Cartesian product.

The focus of this book is Boolean functions. Boolean functions are a special family of
functions. Their arguments and values are finite sequences of 0 and 1 (also called bits). In this
chapter, we show how to represent a Boolean function by a truth table and multiplication tables.
Other representations presented later in the book are Boolean formulas and combinational
circuits.

1.1 Sets

A set is a collection of objects. When we deal with sets, we usually have a universal set that
contains all the possible objects. In this section, we denote the universal set by U .

The universal set need not be fixed. For example, when we consider real numbers, the
universal set is the set of real numbers. Similarly, when we consider natural numbers, the
universal set is the set of natural numbers. The universal set need not be comprised only of
abstract objects such as numbers. For example, when we consider people, the universal set is
the set of all people.

One way to denote a set is by listing the objects that belong to the set and delimiting them
by curly brackets. For example, suppose the universe is the set of integers, and consider the set

3
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A = {1,5,12}. Then 1 is in A, but 2 is not in A. An object that belongs to a set is called an
element . We denote the fact that 1 is in A by 1 ∈ A and the fact that 2 is not in A by 2 /∈ A.
Definition 1.1 Consider two sets A and B.

1. We say that A is a subset of B if every element in A is also an element in B. We denote
that A is a subset of B by A ⊆ B.

2. We say that A equals B if the two sets consist of exactly the same elements, formally, if
A ⊆ B and B ⊆ A. We denote that A and B are equal sets by A = B.

3. The union of A and B is the set C such that every element of C is an element of A or
an element of B. We denote the union of A and B by A ∪B.

4. The intersection of A and B is the set C such that every element of C is an element of
A and an element of B. We denote the intersection of A and B by A ∩B.

5. The difference A and B is the set C such that every element of C is an element of A and
not an element of B. We denote the difference of A and B by A ∖B.

We denote strict containment , i.e., A ⊆ B and A ≠ B, by A ⊊ B.

The empty set is a very important set (as important as the number zero).

Definition 1.2 The empty set is the set that does not contain any element. It is usually denoted
by ∅.

Sets are often specified by a condition or a property. This means that we are interested in all
the objects in the universal set that satisfy a certain property. Let P denote a property. We
denote the set of all elements that satisfy property P as follows:

{x ∈ U ∣ x satisfies property P}.
The preceding notation should be read as follows: the set of all elements x in the universal set
U such that x satisfies property P .

Every set we consider is a subset of the universal set. This enables us to define the comple-
ment of a set as follows.

Definition 1.3 The complement of a set A is the set U ∖A. We denote the complement set
of A by Ā.

Given a set A, we can consider the set of all its subsets.

Definition 1.4 The power set of a set A is the set of all the subsets of A. The power set of A
is denoted by P (A) or 2A.

We can pair elements together to obtain ordered pairs.

Definition 1.5 Two objects (possibly equal) with an order (i.e., the first object and the second
object) are called an ordered pair. We denote an ordered pair by (a, b). This notation means
that a is the first object in the pair and b is the second object in the pair.

Consider two ordered pairs (a, b) and (a′, b′). We say that (a, b) = (a′, b′) if a = a′ and b = b′.
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We usually refer to the first object in an ordered pair as the first coordinate. The second object
is referred to as the second coordinate.

An important method to build large sets from smaller ones is by the Cartesian product .

Definition 1.6 The Cartesian product of the sets A and B is the set

A ×B
△

= {(a, b) ∣ a ∈ A and b ∈ B}.
Every element in a Cartesian product is an ordered pair. Thus the Cartesian product A × B
is simply the set of ordered pairs (a, b) such that the first coordinate is in A and the second
coordinate is in B. The Cartesian product A ×A is denoted by A2.

The definition of ordered pairs is extended to tuples as follows.

Definition 1.7 A k-tuple is a set of k objects with an order. This means that a k-tuple has k
coordinates numbered {1, . . . , k}. For each coordinate i, there is an object in the ith coordinate.

An ordered pair is a 2-tuple. A k-tuple is denoted by (x1, . . . , xk), where the element in the
ith coordinate is xi. Tuples are compared in each coordinate, thus, (x1, . . . , xk) = (x′1, . . . , x′k)
if and only if xi = x

′
i for every i ∈ {1, . . . , n}.

We also extend the definition of Cartesian products to products of k sets as follows.

Definition 1.8 The Cartesian product of the sets A1,A2, . . . Ak is the set

A1 ×A2 ×⋯×Ak
△

= {(a1, . . . , ak) ∣ ai ∈ Ai for every 1 ≤ i ≤ k}.
The Cartesian product of k copies of A is denoted by Ak.

Examples

0∗. Russell’s paradox. A formal axiomatic development of set theory is a branch of logic
called axiomatic set theory . This branch developed in response to paradoxes in set theory.
One of the most famous paradoxes was discovered by Bertrand Russell in 1901.

Suppose we do not restrict ourselves to a subset of a universal set. Consider the set Z
defined by

Z
△

= {x ∣ x /∈ x},
namely, an object x is in Z if and if only it does not contain itself as an element.

Russell’s paradox is obtained as follows. Is Z ∈ Z? If Z ∈ Z, then because every element
x ∈ Z satisfies x /∈ x, we conclude that Z /∈ Z—a contradiction. So we are left with the
complementary option that Z /∈ Z. But if Z /∈ Z, then Z satisfies the only condition for
being a member of Z. Thus Z ∈ Z—again, a contradiction.

1. Examples of sets: (i) A
△

= {1,2,4,8}, the universal set is the set of numbers; (ii) B
△

={pencil,pen, eraser}, the universal set is the set of “the things that we have in our pencil
case.”

2. Examples of subsets of A
△

= {1,2,4,8} and B
△

= {pencil,pen, eraser}: (i) {1,2,4,8} ⊆ A;
(ii) {1,2,8} ⊆ A; (iii) {1,2,4} ⊆ A; (iv) {1,2} ⊆ A; (v) {1} ⊆ A; (vi) ∅ ⊆ A; (vii) {pen} ⊆ B.
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3. Examples of equal sets. Let A
△

= {1,2,4,8} and B
△

= {pencil,pen, eraser}: (i) order and
repetitions do not affect the set, e.g., {1,1,1} = {1} and {1,2} = {2,1}; (ii) {2,4,8,1,1, 2} =
A; (iii) {1,2,44,8} ≠ A; (iv) A ≠ B.

4. We claim that ∅ ⊆X for every set X. By Item 1 in Definition 1.1, we need to prove that
every element in ∅ is also in X. Because the empty set ∅ does not contain any element
(see Definition 1.2), all the elements in ∅ are also in X, as required.

5. The empty set is denoted by ∅. The set {∅} contains a single element, which is the empty
set. Therefore ∅ ∈ {∅} but ∅ ≠ {∅}. Because ∅ ⊆X for all set X (see Example 4), ∅ ∈ {∅}
and ∅ ⊆ {∅}.

6. Examples of unions: (i) {1,2,4,8} ∪ {1,2,4} = A; (ii) {1,2} ∪ {4} ≠ A; (iii) A ∪ ∅ = A;
(iv) A ∪B = {1,2,4,8,pencil,pen, eraser}.

7. Intersection of sets: (i) {1,2,4}∩A = {1,2,4}; (ii) {8,16,32}∩A = {8}; (iii) {16,32}∩A = ∅;
(iv) A ∩∅ = ∅; (v) A ∩B = ∅; (vi) for every two sets X and Y , X ∩ Y ⊆X.

8. Suppose the universal set is the set of real numbers R. We can define the following sets:

(i) The set of integers Z is the set of all reals that are multiples of 1; that is,

Z
△

= {x ∈ R ∣ x is a multiple of 1}
= {0,+1,−1,+2,−2, . . .}.

(ii) The set of natural numbers N is the set of all nonnegative integers; that is,

N
△

= {x ∈ R ∣ x ∈ Z and x ≥ 0}
= {0,1,2,3, . . .}.

(iii) The set of positive natural numbers N+ is the set of all positive integers; that
is,

N
+ △= {x ∈ R ∣ x ∈ Z and x > 0}
= {1,2,3, . . .}.

(iv) The set of positive real numbers is denoted by R
+; that is,

R
+ △= {x ∈ R ∣ x > 0} .

(v) The set of nonnegative real numbers is denoted by R
≥; that is,

R
≥ △= {x ∈ R ∣ x ≥ 0} .

9. If A ∩B = ∅, then we say that A and B are disjoint . We say that the sets A1, . . . ,Ak are
disjoint if A1 ∩ ⋯ ∩Ak = ∅. We say that the sets A1, . . . ,Ak are pairwise-disjoint if, for
every i ≠ j, the sets Ai and Aj are disjoint.

10. Consider the three sets {1,2}, {2,3}, and {1,3}. Their intersection is empty; therefore
they are disjoint. However, the intersection of every pair of sets is nonempty; therefore
they are not pairwise disjoint.
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11. When A and B are disjoint, that is, A∩B = ∅, we denote their union by A⊍B: (i) {1,2}⊍{4,8} = A; (ii) {1,2} ∪A = A.

12. Difference of sets: (i) {1,2} ∖ {2,4} = {1}; (ii) A ∖ ∅ = A; (iii) A ∖A = ∅; (iv) A ∖B = A.

13. Formal specification of union, intersection, and difference:

(i) A ∪B
△

= {x ∈ U ∣ x ∈ A or x ∈ B}
(ii) A ∩B

△

= {x ∈ U ∣ x ∈ A and x ∈ B}
(iii) A ∖B

△

= {x ∈ U ∣ x ∈ A and x /∈ B}
14. We claim that Ā = {x ∈ U ∣ x /∈ A}. Indeed, x ∈ Ā is shorthand for x ∈ U ∖A, where U is

the universe. Hence x ∈ Ā if and only if x ∈ U and x /∈ A, as required.
15. Contraposition. In this example, we discuss a logical equivalence between two state-

ments, called contraposition. A rigorous treatment of contraposition appears in Chapter 6.
Consider the following two statements (regarding sets A and B):

• A ⊆ B

• B̄ ⊆ Ā

We show that these two statements are equivalent. Assume that A ⊆ B. By definition,
this means that

∀x ∈ U ∶ x ∈ A⇒ x ∈ B . (1.1)

Assume that B̄ ⊆ Ā. By the proof above, it follows that ¯̄A ⊆ ¯̄B. Note that ¯̄A = A and
¯̄B = B. Hence, A ⊆ B, as required.

Now we wish to show that B̄ ⊆ Ā. For the sake of contradiction, assume that there exists
an element x for which x ∈ B̄ and x /∈ Ā. This means that x /∈ B and x ∈ A. But this
contradicts Eq. 1.1. Hence B̄ ⊆ Ā, as required.

Assume that B̄ ⊆ Ā. By the preceding proof, it follows that ¯̄A ⊆ ¯̄B. Note that ¯̄A = A
and ¯̄B = B. Hence A ⊆ B, as required.

In its general form, contraposition states that the statement P ⇒ Q is logically equiva-
lent to the statement not(Q)⇒ not(P ). The proof of this equivalence is similar to the
preceding proof.

16. Operations on sets defined in Definition 1.1 can be depicted using Venn diagrams. The
idea is to depict each set as a region defined by a closed curve in the plane. For example,
a set can be depicted by a disk. Elements in the set are represented by points in the disk,
and elements not in the set are represented by points outside the disk. The intersections
between regions partition the planes into cells, where each cell represents an intersection of
sets and complements of sets. In Figure 1.1, we depict the union, intersection, difference,
and complement of two sets A and B that are subsets of a universal set U .

17. We claim that A ∖ B = A ∩ B̄. To prove this, we show containment in both directions.
(i) We prove that A ∖B ⊆ A ∩ B̄. Let x ∈ A ∖B. By the definition of subtraction of sets,
this means that x ∈ A and x /∈ B. By the definition of a complement set, x ∈ B̄. By the
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BA

U

(a) Union: A ∪B

B

U

A

(b) Intersection: A ∩B

U

A B

(c) Difference: A ∖B

U

BA

(d) Complement: U ∖A = Ā

Figure 1.1: Venn diagrams over the sets A and B with respect to the universal set U .

definition of intersection, x ∈ A ∩ B̄, as required. (ii) We prove that A ∩ B̄ ⊆ A ∖B. Let
x ∈ A∩B̄. By the definition of intersection of sets, this means that x ∈ A and x ∈ B̄. By the
definition a complement set, x ∈ B̄ implies that x /∈ B. By the definition of subtraction,
x ∈ A ∖B, as required.

18. Let X denote a set with a finite number of elements. The size of a set X is the number
of elements in X. The size of a set is also called its cardinality . The size of a set X is
denoted by ∣X ∣: (i) ∣A∣ = 4; (ii) ∣B∣ = 3; (iii) ∣A ⊍B∣ = 7; (iv) if X and Y are disjoint finite
sets, then ∣X ⊍ Y ∣ = ∣X ∣ + ∣Y ∣.

19. The power set of A = {1,2,4,8} is the set of all subsets of A, namely,

P (A) = {∅,{1},{2},{4}, {8},{1,2},{1,4},{1, 8}, {2,4}, {2, 8}, {4, 8},{1,2,4},{1,2,8}, {2,4, 8},{1, 4, 8},{1,2,4,8}}.
20. Every element of the power set P (A) is a subset of A, and every subset of A is an element

of P (A).
21. Recall that for every set X, the empty set ∅ is a subset of X (see Example 4). It follows

that ∅ ∈ P (X) for every set X. In particular, ∅ ∈ P (∅).
22. How many subsets does the set A have? By counting the list in Example 19, we see that∣P (A)∣ = 16. As we will see later in Problem 2.6, in general ∣P (A)∣ = 2∣A∣. This justifies

the notation of the power set by 2A.
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A B

U

Figure 1.2: Venn diagram demonstrating the identity U ∖ (A ∪B) = Ā ∩ B̄.

23. Some examples with ordered pairs:

(i) Consider the set of first names P
△

= {Jacob,Moses,LittleRed,Frank}, and the

set of last names M
△

= {Jacob,RidingHood,Sinatra}. Then,

P ×M = {(Jacob, Jacob), (Jacob,RidingHood), (Jacob, Sinatra),(Moses,Jacob), (Moses,RidingHood), (Moses, Sinatra),(LittleRed,Jacob), (LittleRed,RidingHood), (LittleRed, Sinatra),(Frank,Jacob), (Frank,RidingHood), (Frank,Sinatra)} .
(ii) Equality of pairs is sensitive to order, namely,

(Jacob,RidingHood) ≠ (RidingHood,Jacob).
(iii) Obviously, (Jacob, Jacob) = (Jacob, Jacob).

24. For every set X, ∅ ×X = ∅.

25. The Cartesian product of n identical sets {0,1} is denoted by {0,1}n. Namely,

{0,1}n =
n times³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ{0,1} × {0,1} ×⋯× {0,1} .

Every element in {0,1}n is an n-tuple (b1, . . . , bn), where bi ∈ {0,1} for every 1 ≤ i ≤ n.
We refer to bi ∈ {0,1} as a bit and to (b1, . . . , bn) as a binary string . We write a string
without separating the bits by commas, for example, (i) 010 means (0,1,0), (ii) {0,1}2 ={00,01,10,11}, and (iii) {0,1}3 = {000,001,010, 011, 100,101,110,111}.

26. De Morgan’s law states that U ∖ (A ∪B) = Ā ∩ B̄. In Figure 1.2, a Venn diagram is used
to depict this equality. A formal proof requires using propositional logic and is presented
in Section 6.8.

27. De-Morgan’s law states that U ∖ (A ∪B) = Ā ∩ B̄. In Fig. 1.2, a Venn diagram is used to
depict this equality. A formal proof requires using propositional logic, and is presented in
Section 6.8.
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A B

c

d e
(d, e)

f(d, f )

(c, b)

a b
(a, b)

Figure 1.3: A diagram of a binary relation R ⊆ A × B. The relation R equals the set{(a, b), (c, b), (d, e), (d, f)}.
1.2 Relations and Functions

A set of ordered pairs is called a binary relation.

Definition 1.9 A subset R ⊆ A ×B is called a binary relation.

A function is a binary relation with an additional property.

Definition 1.10 A binary relation R ⊆ A ×B is a function if, for every a ∈ A, there exists a
unique element b ∈ B such that (a, b) ∈ R.

Figure 1.3 depicts a diagram of a binary relation R ⊆ A×B. The sets A and B are depicted
by the two oval shapes. The elements of these sets are depicted by solid circles. Pairs in the
relation R are depicted by arcs joining the two elements in each pair . The relation depicted in
Figure 1.3 is not a function because there are two distinct pairs in which the element d ∈ A is
the first element.

A function R ⊆ A × B is usually denoted by R ∶ A → B. The set A is called the domain,
and the set B is called the range. Lowercase letters are usually used to denote functions, for
example, f ∶ R→ R denotes a real function f(x).
One can define new functions from old functions by using composition.

Definition 1.11 Let f ∶ A → B and g ∶ B → C denote two functions. The composed function
g ○ f is the function h ∶ A → C defined by h(a) = g(f(a)) for every a ∈ A.

Note that two functions can be composed only if the range of the first function is contained in
the domain of the second function.

We can also define a function defined over a subset of a domain.

Lemma 1.1 Let f ∶ A → B denote a function, and let A′ ⊆ A. The relation R defined by
R
△

= {(a, b) ∈ A′ ×B ∣ f(a) = b} is a function.
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g

A B C

h

f

Figure 1.4: The functions f ∶ A → B and g ∶ B → C, and the composed function h ∶ A → C
defined by g ○ f .

Proof: All we need to prove is that for every a ∈ A′, there exists a unique b ∈ B such that (a, b)
is in the relation. Indeed, (a, f(a)) ∈ R, and this is the only pair in R whose first coordinate
equals a. Namely, if both (a, b) and (a, b′) are in the relation, then f(a) = b and f(a) = b′,
implying that b = b′, as required. ✷

Lemma 1.1 justifies the following definition.

Definition 1.12 Let f ∶ A → B denote a function, and let A′ ⊆ A. The restriction of f to the
domain A′ is the function f ′ ∶ A′ → B defined by f ′(x) △= f(x) for every x ∈ A′.

Recall that a function f ∶ A → B is also a relation, namely f ⊆ A×B. Hence, we can view f
as a set of ordered pairs; each ordered pair in f is of the form (x, f(x)). We can also say that
f ⊆ g for two functions. This simply means that every ordered pair in f is also an ordered pair
in g.

Lemma 1.2 Suppose that f ∶ A → B and f ′ ∶ A′ ⊆ B′ are two functions with A′ ⊆ A. Then, f ′

is a restriction of f to the domain A′ if and only if f ′ ⊆ f .

Proof: Assume that f ′ is a restriction of f to the domain A′. We need to prove that f ′ ⊆ f .
Consider any pair (x, f ′(x)) ∈ f ′. We need to show that (x, f ′(x)) is also an ordered pair in f .
Because A′ ⊆ A, we know that x ∈ A, and f(x) is well defined. Because f ′ is a restriction of f ,
we know that f(x′) = f(x). Hence, (x, f ′(x)) ∈ f , as required.

To prove the other direction, assume that f ′ ⊆ f . Now we need to prove that f ′(x) = f(x)
for every x′ ∈ A′. Indeed, consider an x ∈ A′ and the ordered pair (x, f ′(x)) ∈ f ′. Since f ′ ⊆ f , it
follows that (x, f ′(x)) ∈ f . Since f is a function, this is the only pair in f whose first coordinate
equals x, hence (x, f ′(x)) = (x, f(x)). It follows that f ′(x) = f(x), as required. ✷

Given a function f ∶ A → B, we may want to extend it to a function g ∶ C →D, where A ⊆ C.
In light of lemma 1.2. This means that the relation f is a subset of the relation g.

Definition 1.13 A function g is an extension of a function f if f is a restriction of g.
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Consider a function f ∶ A ×B → C for finite sets A,B, and C. The multiplication table of f
is a table with one row per element of A and one column per element of B, namely, a table with∣A∣ rows and ∣B∣ columns. For every (a, b) ∈ A×B, the entry of the table corresponding to (a, b)
is filled with f(a, b). For example, consider the function f ∶ {0,1,2}2 → {0,1, . . . ,4} defined by
f(a, b) = a ⋅ b. The multiplication table of f appears in Table 1.1. Note the term multiplication
table is used also for functions that have nothing to do with multiplication.

f 0 1 2

0 0 0 0
1 0 1 2
2 0 2 4

Table 1.1: The multiplication table of the function f ∶ {0,1,2}2 → {0,1, . . . ,4} defined by
f(a, b) = a ⋅ b.

Examples

1. Examples related to relations. Consider a league of n teams A = {1, . . . , n}. Each match
is between two teams; one team is the hosting team, and the other team is the guest
team. Thus, a match can be represented by an ordered pair (a, b) in A2, where a denotes
the hosting team and b denotes the guest team. We can consider the set R ⊆ A2 of all
matches played in the league. Thus, R is the relation of “who played against who” with
an indication of the hosting team and the guest team. Note that the matches (a, b) and(b, a) are different due to the different host–guest teams. In addition, the relation R does
not include pairs (a, a) since a team cannot play against itself.

2. Let R ⊆ N × N denote the binary relation “smaller than and not equal” over the natural
number. That is, (a, b) ∈ R if and only if a < b.

R
△

= {(0,1), (0,2), . . . , (1,2), (1,3), . . .} .
3. Examples of relations that are functions and relations that are not functions. Let us

consider the following relations over {0,1,2} × {0,1,2}.
R1

△

= {(1,1)} ,
R2

△

= {(0,0), (1,1), (2, 2)} ,
R3

△

= {(0,0), (0,1), (2, 2)} ,
R4

△

= {(0,2), (1,2), (2, 2)} .
The relation R1 is not a function since it is not defined for x ∈ {0,2}. The relation R2

is a function since, for every x ∈ {0,1,2}, there exists a unique y ∈ {0,1,2} such that(x, y) ∈ R2. In fact, R2 consists of pairs of the form (x,x). Such a function is called the
the identity function. The relation R3 is not a function since there are two pairs with
x = 0. The relation R4 is a function that consists of pairs of the form (x,2). Such a
function R4 is called a constant function since the value y = f(x) of the function does not
depend on the argument x.
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4. Examples of restriction of a functions. Let us consider the following functions.

f(x) = sin(x) ,
salary ∶ People → N .

The function f(x) is defined for every real number x ∈ R. The restriction of f(x)
to [0, π/2] ⊂ R is the function g ∶ [0, π/2] → [0,1] defined by g(x) = f(x), for ev-
ery x ∈ [0, π/2]. Similarly, let us restrict the salary function to the set of residents of
New-York City (which is obviously a subset of the set of people), that is, let salary ′ ∶
Residents of New-York City → N be defined by salary ′(x) = salary(x). This means that
salary ′(x) is defined only if x is a resident of New-York City.

5. Examples of extensions of a functions. Let us consider the following functions.

f(x) = 1/x; for every x ∈ R ∖ {0} ,
g = {(0,1), (1,1), (2, 0)} .

Let us define the extension h ∶ R→ R ∪ {∞} of f as follows.

h(x)← ⎧⎪⎪⎨⎪⎪⎩
f(x) , if x ∈ R ∖ {0},
∞ , if x = 0 .

We extended f by adding the pair (0,∞), that is, the domain of h is R and the range of
h is R ∪ {∞}.
Let us define the extension w ∶ {0,1,2,3} → {0,1,2} of g as follows.

w(x) ← ⎧⎪⎪⎨⎪⎪⎩
g(x) , if x ∈ {0,1,2},
2 , if x = 3 .

We extended g by adding the pair (3,2). Note that in both cases we extended the functions
by extending both the domain and the range.

6. Let M denote a set of mothers. Let C denote a set of children. Let P ⊆M ×C denote the
“mother of” relation, namely, (m,c) ∈ P if and only if m is the mother of c. Similarly, let
Q ⊆ C ×M denote the “child of” relation, namely, (c,m) ∈ Q if and only if c is a child of
m. For example,

M
△

= {1,2,3} ,
C

△

= {4,5,6,7,8,9} ,
P

△

= {(1,4), (2,5), (2,6), (3,7), (3, 8), (3, 9)} ,
Q

△

= {(x, y) ∣ (y,x) ∈ P} ,
= {(4,1), (5,2), (6,2), (7,3), (8, 3), (9, 3)} .

Note that a mother may have many children while a child has a unique mother. Hence,
the relation Q is a function while P is not. Note that Q ∶ C →M is not one-to-one since
two children may share the same mother, e.g., Q(5) = Q(6).
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7. Examples of compositions of functions. Let f(x) = 2x + 4 and let g(x) = x2, then
f(g(x)) = f(x2)

= 2(x2) + 4

= 2x2 + 4 , and

g(f(x)) = g(2x + 4)
= (2x + 4)2
= (2x)2 + 2 ⋅ 2x ⋅ 4 + 42

= 4x2 + 16x + 16.

1.3 Boolean Functions

In this section, we focus on functions whose domain and range are binary strings.

Definition 1.14 A bit is an element in the set {0,1}. An n-bit binary string is an element in
the set {0,1}n.
Definition 1.15 A function B ∶ {0,1}n → {0,1}k is called a Boolean function.

1.3.1 Truth Tables

Bits are related to the logical “true” and “false.” According to common convention, a “true” is
coded as a 1 and a “false” is coded as a 0. A list of the ordered pairs (x, f(x)) is called a truth
table. This means that there are two columns in a truth table, one for the domain and one for
the range. In a truth table of a Boolean function B ∶ {0,1}n → {0,1}k , the domain column is
usually split into n columns, one column per bit.

Table 1.2 depicts the truth tables of four basic Boolean functions: (i) not ∶ {0,1} → {0,1},
(ii) and ∶ {0,1}2 → {0,1}, (iii) or ∶ {0,1}2 → {0,1}, and (iv) xor ∶ {0,1}2 → {0,1}.

x not(x)
0 1
1 0

x y and(x, y)
0 0 0
1 0 0
0 1 0
1 1 1

x y or(x, y)
0 0 0
1 0 1
0 1 1
1 1 1

x y xor(x, y)
0 0 0
1 0 1
0 1 1
1 1 0

Table 1.2: Truth tables of four basic Boolean functions.

Table 1.3 depicts the multiplication tables of and, or and xor.

and 0 1

0 0 0
1 0 1

or 0 1

0 0 1
1 1 1

xor 0 1

0 0 1
1 1 0

Table 1.3: Multiplication tables of three basic Boolean functions.
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Examples

1. It is easy to see that and(x, y) = min{x, y} and that and(x, y) = x ⋅ y (where ⋅ denotes
multiplication over the integers).

2. It is easy to see that or(x, y) =max{x, y}.
3. One can interpret the xor function as addition modulo 2. This mean that the value of

xor(x, y) equals 1 if (x + y) is odd, and 0 if (x + y) is even.
4. The Boolean function I ∶ {0,1} → {0,1}, defined by I(x) = x, is called the identity function.

(We reencounter the identity function in Chapter 6.) Table 1.4 depicts the truth table of
the identity function.

x I(x)
0 0
1 1

Table 1.4: Truth table the identity function I ∶ {0,1} → {0,1}.
5. Consider the Boolean function or{0,1}2 → {0,1}. Define the Boolean function f ∶{0,1} → {0,1} by f(y) = or(0, y). The function f is the restriction of or to the do-

main {(0,0), (1,0)}. Note that f(y) = y, for every y ∈ {0,1}, thus, f is the identity
function.

6. The parity function p ∶ {0,1}n → {0,1} is defined as follows:

p(b1, . . . , bn) △

=

⎧⎪⎪⎨⎪⎪⎩
1 if ∑ni=1 bi is odd

0 if ∑ni=1 bi is even.

For example, (i) p(0,1,0,1,0) = 0, (ii) p(0,1,1,1,0) = 1, and (iii) for n = 2, the parity
function is identical to the xor function.

7. The majority function m ∶ {0,1}n → {0,1} is defined as follows:

m(b1, . . . , bn) = 1 if and only if
n

∑
i=1
bi >

n

2
.

For example, (i) m(0,1,0,1,0) = 0, (ii) m(0,1,1,1,0) = 1, and (iii) for n = 2, the majority
function is identical to the and function.

8. The 3-bit carry function c ∶ {0,1}3 → {0,1} is defined as follows:

c(b1, b2, b3) = 1 if and only if b1 + b2 + b3 ≥ 2 .

For example, (i) c(0,1,0) = 0 and (ii) c(0,1,1) = 1.

9. The truth table of the 3-bit carry function is listed in Table 1.5.
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b1 b2 b3 c(b1, b2, b3)
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 1

Table 1.5: The truth table of the 3-bit carry function.

1.4 Commutative and Associative Binary Operations

A function whose domain equals the Cartesian product of the range is called a binary operation,
for example, f ∶ A ×A → A. Common examples of binary operations are arithmetic operations
such as addition, subtraction, multiplication, and division. Usually, a binary operation is de-
noted by a special symbol (e.g., +,−, ⋅,÷). Instead of writing +(a, b), we write a + b.

Definition 1.16 A binary operation ∗ ∶ A ×A → A is commutative if, for every a, b ∈ A;

a ∗ b = b ∗ a.

Definition 1.17 A binary operation ∗ ∶ A ×A → A is associative if, for every a, b, c ∈ A;

(a ∗ b) ∗ c = a ∗ (b ∗ c).
Consider an associative function f ∶ A ×A → A. We can define a function fk ∶ A

k → A for
any k ≥ 2 as follows. The function f2 is simply f . For k > 2, we define

fk(x1, . . . , xk) △= f(fk−1(x1, . . . , xk − 1), xk).
In Section 2.2, we refer to such a definition as a recursive definition.

We are so used to this definition that we do not even notice that we use it. For example,(x1 + x2 + ⋯ + xk) is defined by (1) first add y = (x1 + ⋯ + xk−1) and then (2) add y + xk.
This manipulation is often referred to by “placing of parentheses.” If f is associative, then the
parentheses can be placed arbitrarily without changing the outcome. We return to this issue in
Chapter 12.

Examples

1. The addition operation + ∶ R
2 → R is commutative and associative.

2. The subtraction operation − ∶ R2 → R is neither associative nor commutative. For example,
(i) 1 − 2 = −1 but 2 − 1 = 1; and (ii) (5 − 3) − 2 = 0 but 5 − (3 − 2) = 4.

3. The restriction of a binary operator is not always a binary operator. For example, consider
the addition operation + ∶ R

2 → R. Addition is a binary operator over the reals. Let
A = {0,1,2}, and consider the restriction of addition to A×A. The range of this restriction
is the set {0,1, . . . ,4}, which does not equal the set A.
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4. The multiplication operation ⋅ ∶ R
2 → R is commutative and associative.

5. The division operation ÷ ∶ (R∖ {0})2 → (R∖ {0}) is not associative and not commutative.
For example, (i) 1 ÷ 2 = 1

2
but 2 ÷ 1 = 2, hence the operation is not commutative; (ii) let

a, b, c ∈ R ∖ {0} and c /∈ {−1,+1}, then (a ÷ b) ÷ c ≠ a ÷ (b ÷ c) since
(a ÷ b) ÷ c =

a/b
c

=
a

b ⋅ c

a ÷ (b ÷ c) =
a

b/c = a ⋅ cb .

Hence division is not associative.

6. Multiplication of real matrices is associative but not commutative, as shown in the fol-
lowing example. Consider the matrices

A = (1 0
0 0

) B = (0 1
0 0

) .
The products A ⋅B and B ⋅A are:

A ⋅B = (0 1
0 0

) B ⋅A = (0 0
0 0
) .

Since A ⋅B ≠ B ⋅A, multiplication of real matrices is not commutative.

7. Prove that the Boolean function and is associative.

Proof: We prove that for every a, b, c ∈ {0,1}
and(and(a, b), c) = and(a,and(b, c)), (1.2)

by filling the truth values in the truth tables of both sized of Equation 1.2, i.e, and(and(a, b), c)
and and(a,and(b, c)) , as depicted in Table 1.6.

a b c and(a, b) and(b, c) and(and(a, b), c) and(a,and(b, c))
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 1 0 1 0 0 0
0 0 1 0 0 0 0
1 0 1 0 0 0 0
0 1 1 0 1 0 0
1 1 1 1 1 1 1

Table 1.6: The truth tables of and(and(a, b), c) and and(a,and(b, c)).
Since the columns of both and(and(a, b), c) , and(a,and(b, c)) are identical, it implies
that the Boolean function and is associative. ✷

A shorter proof is as follows.
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Proof: Note that and(x, y) = x ⋅ y, where ⋅ denotes multiplication. Associativity of and
now follows directly from the associativity of multiplication (we denote and(x, y) by x∧y
to simplify notation):

(x ∧ y) ∧ z = (x ⋅ y) ⋅ z
= x ⋅ (y ⋅ z)
= x ∧ (y ∧ z).

✷

8. Prove that or is associative.

Proof: One can easily check that or(x, y) =min{x, y}. (we denote or(x, y) by x∨ y to
simplify notation):

(x ∨ y) ∨ z =min{(min{x, y}), z}
=min{x, y, z}
=min{x,min{y, z}}
= x ∨ (y ∨ z).

✷

9. Prove that xor is associative.

Proof: For simplicity, we denote xor(x, y) by x⊕ y. Define function d ∶ N→ {0,1} by
d(n) △= ⎧⎪⎪⎨⎪⎪⎩

0 if n is even,

1 if n is odd.

We claim that for every x, y ∈ N

d(x + y) = d(x)⊕ d(y). (1.3)

Indeed, Eq. 1.3 is easy to verify by considering the four cases of the parity of x and y.
Note that for a bit a, d(a) = a.
The proof that xor is associative proceeds as follows (make sure you understand the
justification of each line):

(a⊕ b)⊕ c = (d(a) ⊕ d(b)) ⊕ d(c)
= d(a + b)⊕ d(c)
= d((a + b) + c))
= d(a + (b + c))
= d(a)⊕ d(b + c)
= d(a)⊕ (d(b)⊕ d(c))
= a⊕ (b⊕ c).

✷
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10. We may extend the Boolean function and to any number of arguments. For example,

and3(X,Y,Z) △= (X and Y ) and Z.

Since the and function is associative, we have

(X and Y ) and Z =X and (Y and Z).
Thus we often simply write (X and Y and Z) and refer to this as the and of the three
arguments. In a similar fashion, we extend the and function to any number of arguments,
just as we consider addition of multiple numbers.

Problems

1.1 Prove that for every set A,B, A = B if and only if A ⊆ B and B ⊆ A.

1.2 Prove that for every set A,B, A ∖B = A ∩ B̄.

1.3 Write the truth table of the parity function for n = 4.

1.4 Recall the definition of the 3-bit carry function c ∶ {0,1}3 → {0,1}:
c(b1, b2, b3) = 1 if and only if b1 + b2 + b3 ≥ 2 .

The truth table of the 3-bit carry function is listed in Table 1.5.

1. Prove that
c(b1, b2, b3) = (b1 ∧ b2) ∨ (b2 ∧ b3) ∨ (b1 ∧ b3) ,

where b1, b2, b3 ∈ {0,1}.
2. Set b1 = 1. Prove that c(1, b2, b3) = b2 ∨ b3.
3. Set b1 = 0. Prove that c(0, b2, b3) = b2 ∧ b3.

1.5 Prove that (regular) addition is not a binary operation over A×A if A is finite and contains
more than one element.

1.6 Define two binary operators over the set {0,1,2}, one which is commutative and one which
is not. Can you state a simple property that a multiplication table of such a function must satisfy
so that the function is commutative. Is this property sufficient?

1.7 Define two binary operators over the set {0,1,2}, one which is associative and one which
is not.

1.8 Enumerate all the Boolean functions of arity two, i.e., all the Boolean function in the
set {f ∶ {0,1}2 → {0,1}}. Identify the Boolean functions we have seen so far (and, or, xor,
implication, equivalence, nand, nor).

1.9 Prove that xor is an associative Boolean function.

1.10 Prove that or is an associative Boolean function.
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1.11 Prove that every binary operator over the set {0} is associative and commutative.

1.12 De-Morgan’s second law states that A ∩B = Ā ∪ B̄. Use Venn diagrams to demonstrate
this law.

1.13 Recall Example 15 on page 7. Use Venn diagrams to demonstrate contraposition on sets,
that is, for every two sets A,B show that:

• A ⊆ B implies that B̄ ⊆ Ā, and

• B̄ ⊆ Ā implies that A ⊆ B.

1.14 Recall that for sets A,B,

A = B if and only if A ⊆ B and B ⊆ A .

Also recall that a function g ∶ C → D is a binary relation g ⊆ C ×D, such that for every c ∈ C
there exists a unique element d ∈D such that (c, d) ∈ g. Conclude that two functions f, g ∶ C →D
are equal if and only if

∀c ∈ C ∶ f(c) = g(c) .
1.15 Let f ∶ A → B, g ∶ B → C denote two functions. Prove that the composition h = g ○ f is a
function.

1.16 Recall the parity function p ∶ {0,1}n → {0,1} from Example 6 on page 15. Prove that for
n = 2 the parity function is identical to the xor function.

1.17 Recall the majority function m ∶ {0,1}n → {0,1} from Example 7 on page 15. Prove that
for n = 2 the majority function is identical to the and function.

1.18 Let f ∶ A ×A → A denote a binary operation. We say that a multiplication table of f is
symmetric if the entry in the ith row and jth column equals to the entry in the jth row and the
ith column, for every i, j.

1. Prove or refute: f is commutative if and only if the multiplication table of f is symmetric.

2. Prove or refute: f is associative if and only if the multiplication table of f is symmetric.

1.19 Let A denote a set of functions whose range and domain equals B. Recall the definition of
composition of functions (see Definition 1.11). Prove or refute each of the following statements:

1. Composition ○ ∶ A ×A→ A is a binary operation.

2. Composition is commutative (hint: see Example 7 on page 14).

3. Composition is associative.

4. Multiplication of matrices is associative (hint: use your answer to the previous item).
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This chapter presents two very powerful techniques for defining infinite sequences (recursion)
and proving properties of infinite sequences (induction). The sequences we are interested in are
not only sequences of numbers (e.g., even positive integers), but also sequences of more elaborate
objects (e.g., digital circuits).

Suppose we wish to define the even numbers. Typically, one could write: 0,2,4, . . .. This
informal description assumes that the reader can guess how the sequence continues and how to
generate the next number in the sequence. (The next number is 6!) A more systematic way
to describe a sequence x0, x1, x2, . . . is to build a “device” that when input an element xn of
the sequence, outputs the next element xn+1. In the case of the sequence of even numbers, this
device simply adds +2, i.e., xn+1 = xn + 2. Of course, we need to define the first element x0 in
the sequence to be zero. Once we have defined x0 and the device for determining xn+1 based
on xn, the sequence is well defined. This, in a nutshell, is recursion. In this book we will use
recursion to define sequences of circuits. In the meantime, we establish the topic of recursion
on sequences of numbers.

Suppose we wish to prove that each number in the sequence defined recursively by x0 = 0
and xn+1 = xn + 2 is divisible by two. Well, the elements in this sequence are divisible by two
simply because xn = 2n. Namely, we have a formula for xn that immediately implies the desired
property (i.e., each xn is divisible by two). But, how do we prove that this formula is correct?
Bear in mind that sequences defined recursively can be very complicated. Is there a way to
prove that a recursive definition and a formula define the same sequence? The main tool for
such proofs is induction.

2.1 Induction

Suppose we wish to prove the formula for the sum of the first n positive integers. That is, we
are looking for a fast way to compute the sum 1+ 2+⋯+n. In Section 3.2 we refer to this sum
as an arithmetic series. We denote the sum by Sn, namely, Sn

△

= ∑ni=1 i.

21
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Theorem 2.1

Sn =
n ⋅ (n + 1)

2
. (2.1)

Proof: One way to prove Eq. 2.1 is by induction. The proof proceeds as follows. First, we
check that Eq. 2.1 holds for n = 0. This is easy, since both sides of the equation equal zero.
This part of the proof is called the induction basis.

Now, we formulate the induction hypothesis. It simply states that Eq 2.1 holds for n.
Namely,

Sn = n ⋅ (n + 1)/2. (2.2)

The final step of the proof is called the induction step. Here, we need to prove that if Eq. 2.1
holds for n, then it also holds for n + 1. Thus, we need to prove that

Sn+1 = (n + 1) ⋅ (n + 2)/2. (2.3)

Why is this any easier than proving Eq. 2.1? The key point is that we may rely on the
induction hypothesis (i.e., Eq. 2.2). Indeed, Sn+1 = Sn + (n + 1). By the induction hypothesis,
Sn = n ⋅ (n + 1)/2. Thus, Sn+1 = n ⋅ (n + 1)/2 + (n + 1). To complete the proof, all we need to do
is to prove that n ⋅ (n + 1)/2 + (n + 1) = (n + 1)(n + 2)/2, a simple task. ✷

A more abstract way of formulating the above proof by induction is to denote by P the set
of all natural numbers n that satisfy Eq. 2.1. Our goal is to prove that every n satisfies Eq 2.1,
namely, that P = N.

The proof consists of three steps:

1. Induction basis: prove that 0 ∈ P .

2. Induction hypothesis: assume that n ∈ P .

3. Induction step: prove that if the induction hypothesis holds, then n + 1 ∈ P .

The following theorem justifies the method of proof by induction. Note that assumption (i)
corresponds to the induction basis, and assumption (ii) corresponds to the induction step.

Theorem 2.2 Let P ⊆ N. Assume that (i) 0 ∈ P and (ii) for every n ∈ N, n ∈ P implies that(n + 1) ∈ P . Then, P = N.

Proof: Assume, for the sake of contradiction, that P ⊊ N. Let n denote the smallest element
in N ∖ P . Since 0 ∈ P , it follows that n > 0. By the definition of n, it follows that (n − 1) ∈ P .
However, assumption (ii) implies that in this case n ∈ P , a contradiction, and the theorem
follows. ✷

We remark, that sometimes the induction hypothesis is that i ∈ P , for every i ≤ n. This
form of induction is often called complete induction, as formulated in the following theorem.

Theorem 2.3 (Complete Induction) Let P ⊆ N. Assume that (i) 0 ∈ P and (ii) for every
n ∈ N, {0, . . . , n} ⊆ P implies that (n + 1) ∈ P . Then, P = N.

Note that sometimes the claims that we wish to prove are valid for n ≥ n0, where n0 ∈ N. In
this case we apply a variant of Theorem 2.2, as formulated in the following theorem.
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Theorem 2.4 Let P ⊆ N. Assume that (i) n0 ∈ P and (ii) n ∈ P implies that (n + 1) ∈ P , for
every n ∈ N ∖ {0, . . . , n0 − 1}. Then, N ∖ {0, . . . , n0 − 1} ⊆ P .

We often wish to prove theorems about structures other than natural numbers. For example,
we may want to prove a theorem about sets. Let us consider the following theorem about duality
in sets (this is a form of De-Morgan’s law over sets).

Theorem 2.5 For every n ≥ 2 sets A1, . . . ,An,

U ∖ (A1 ∪⋯∪An) = Ā1 ∩⋯∩ Ān. (2.4)

We now use induction to prove the theorem.

Proof: Although the theorem is not about natural numbers, we may use induction. Let P
denote the set of all natural numbers for which Eq. 2.4 holds. Since Eq. 2.4 is stated only for
n ≥ 2, we wish to prove that P = N ∖ {0,1}.

To prove the induction basis we need to show that 2 ∈ P . This is simply the statement
U ∖ (A1 ∪A2) = Ā1 ∩ Ā2. This case is discussed in Example 27 on page 9. A formal proof of this
case is deferred to Section 6.8.

The induction hypothesis states that n ∈ P . Namely, that U ∖ (A1 ∪⋯∪An) = Ā1 ∩⋯∩ Ān.

Now we wish to prove the induction step, namely, that (n+ 1) ∈ P . In other words, we need
to prove that U ∖ (A1 ∪⋯ ∪An ∪An+1) = Ā1 ∩⋯∩ Ān ∩ Ān+1.

Let B
△

= A1 ∪ ⋯ ∪ An. We first prove that U ∖ (B ∪ An+1) = B̄ ∩ Ān+1. In fact, this holds
because 2 ∈ P . Now U ∖ (A1 ∪⋯ ∪An ∪An+1) = U ∖ (B ∪An+1). Since 2 ∈ P , we conclude that
U ∖ (B ∪ An+1) = B̄ ∩ Ān+1. Since B̄ = U ∖ (A1 ∪ ⋯ ∪ An), by the induction hypothesis (i.e.,
n ∈ P ), B̄ = Ā1 ∩⋯∩ Ān. We conclude that

U ∖ (A1 ∪⋯∪An ∪An+1) = U ∖ (B ∪An+1)
= B̄ ∩ Ān+1
= Ā1 ∩⋯∩ Ān ∩ Ān+1,

and we completed the proof of the induction step.

The proof of the induction basis, induction hypothesis, and proof of the induction step
complete the proof of the theorem. ✷

Induction is a very powerful tool for proving theorems. We will use it many times in proofs.

Examples

1. Pólya’s proof that “all horses have the same color”. In this paradox, induction is
(mis)-used to prove that all the horses are the same color. It is important to verify that
you identify the error in the proof (since we obviously know that there are two horses with
different colors, as depicted in Figure 2.1).

The proof is by induction on the number of horses, denoted by n. Thus, we wish to prove
that in every set of n horses, all the horses have the same color. The induction basis, for
n = 1, is trivial since in a set consisting of a single horse there is only one color.

The induction hypothesis simply states that in every set of n horses, all horses have the
same color.
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HorseHorse

Figure 2.1: A counter example to the claim that all the (spherical) horses have the same color.
To prove that a claim is not correct all we need is to supply a counter example.

We now prove the induction step. Namely, we need to prove that if the claim holds for n,
then it also holds for n + 1.

Let us number the horses, i.e., {1, . . . , n + 1}. We consider two subsets of horses A
△

={1, . . . , n} and B
△

= {2, . . . , n + 1}. By the induction hypothesis the horses in set A have
the same color and the horses in set B also have the same color. Since 2 ∈ A∩B, it follows
that the horses in A∪B have the same color. We have proved the induction step, and the
theorem follows.

What is wrong with this proof? Note that, in the induction step, A∩B ≠ ∅ only if n ≥ 2.
However, the induction basis was proved only for n = 1. Thus, we did not prove the
induction step for a set of two horses! Obviously a set of two horses may not satisfy the
claim, as depicted in the counter-example in Figure 2.1. To summarize, a correct proof
would have to extend the basis to n = 2, an impossible task.

The take home advice from this example is to make sure that the induction basis is proved
for all the cases. In particular, the induction basis is just as crucial as the induction step.

2. We prove by induction that 3n > 2n for all n ∈ N+.

Proof: The proof is by induction on n. The induction hypothesis, for n = 1, is easy since
31 > 2 ⋅ 1.

The induction hypothesis simply states that 3n > 2n.

We now prove the induction step. Namely, we need to prove that if the claim holds for n,
then it also holds for n + 1. Thus, we need to prove that

3n+1 > 2(n + 1).
Indeed,

3n+1 = 3 ⋅ 3n

> 3 ⋅ (2n)
> 2(n + 1) .

The second line follows from the induction hypothesis. The third line follows from the
fact that 6n > 2(n + 1) for n ≥ 1. ✷
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2.2 Recursion

Recursion is a method to define a function (or other structures) for large arguments from small
arguments. Two main reasons to define functions by recursion are simplicity and amenability
to proofs by induction. In this section we present two simple recursions: the factorial function
and the Fibonacci sequence.

A recursive definition of a function f ∶ N → N has two parts: (i) the base cases and (ii) re-
duction rules. The base cases define the values of f(n) for small values of n. The reduction rule
is applied to values of n that are not small; these rules define f(n) by values of f for smaller
values. We now demonstrate two recursive definitions.

The factorial function. We define the function f ∶ N+ → N
+ recursively as follows:

(i) Base case: f(1) = 1.

(ii) Reduction rule: f(n + 1) = f(n) ⋅ (n + 1).
It is easy to prove by induction that, for n ≥ 1, f(n) = 1⋅2⋅3 ⋯ ⋅n. Indeed, the induction basis,

for n = 1 is identical to the base case. The induction step is proved as follows. The reduction
rule states that f(n+ 1) = f(n) ⋅ (n+ 1). The induction hypothesis states that f(n) = 1 ⋅ 2 ⋅ 3⋯n.
Thus f(n + 1) = 1 ⋅ 2 ⋅ 3⋯n ⋅ (n + 1), as required.

The function f defined above is known as the factorial function; one uses n! to denote f(n).
The factorial function has many applications in combinatorics. For example, n! equals the
number of different ways one can order n different books on a shelf.

The Fibonacci sequence We define the function g ∶ N → N recursively as follows.

(i) Base case: g(0) = 0 and g(1) = 1.

(ii) Reduction rule: g(n + 2) = g(n + 1) + g(n).
Following the reduction rule we obtain:

g(2) = g(1) + g(0) = 1 + 0 = 1.

g(3) = g(2) + g(1) = 1 + 1 = 2.

g(4) = g(3) + g(2) = 2 + 1 = 3.

g(5) = g(4) + g(3) = 3 + 2 = 5.

Note that the self-reference to g in its definition does not lead to an infinite loop. Indeed,
the arguments (n + 1) and n in the right hand side of the reduction rule are strictly smaller
than the argument (n + 2) in the left hand side. Thus, the chain of self-references eventually
ends with a base case.

The Fibonacci sequence has many applications. For example, it is used to prove an upper
bound on the number of iterations in Euclid’s algorithm for computing the greatest common
divisor of two integers. The following lemma is proved using complete induction.

Denote the golden ratio by ϕ
△

= 1+
√
5

2
.

Lemma 2.6 Let {g(n)}∞n=0 is the Fibonacci sequence. Then, for every n ∈ N,

g(n) ≤ ϕn−1 . (2.5)
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Proof: The proof is by complete induction on n. The induction hypothesis for n = 0 and

n = 1 , is easy since for n = 0, 0 ≤ (1+√5
2
)−1 and for n = 1, 1 ≤ 1, respectively. The induction

hypothesis states that Eq. 2.5 holds for all k ≤ n. We now prove the induction step. Namely,
we need to prove that if Eq. 2.5 holds for all k ≤ n, then it also holds for n + 1. Thus, we need
to prove that

g(n + 1) ≤ ϕn .

Indeed,

g(n + 1) = g(n) + g(n − 1)
≤ ϕn−1 +ϕn−2

= ϕn−2 ⋅ (ϕ + 1)
= ϕn .

The first line follows from the definition of g(n + 1). The second line follows from the
induction hypothesis for n and n − 1. In the third line, we simply arranged the terms. The
fourth line follows from the fact that ϕ is a solution of the quadratic equation ϕ2 = ϕ + 1. We
have proved the induction step, and the theorem follows. ✷

2.3 Application: One-to-one and Onto Functions

Definition 2.1 Let f ∶ A → B denote a function from A to B.

1. The function f is one-to-one if, for every a, a′ ∈ A, if a ≠ a′ then f(a) ≠ f(a′).
2. The function f is onto if, for every b ∈ B, there exists an a ∈ A such that f(a) = b.
3. The function f is a bijection if it is both onto and one-to-one.

A one-to-one function is sometimes called an injective function (or an injection). A function
that is onto is sometimes called a surjection.

The following two lemmas show how one-to-one and onto functions can be used to compare
cardinalities of sets.

Lemma 2.7 Let A and B denote two finite sets. If there exists a one-to-one function f ∶ A → B,
then ∣A∣ ≤ ∣B∣.
Proof: The proof is by induction on ∣A∣. The induction basis for ∣A∣ = 0 is trivial since 0 ≤ ∣B∣.
(A function may have an empty domain! In this case it is simply an empty relation.)

The induction hypothesis states that the lemma holds if ∣A∣ = n. We prove the induction
step for ∣A∣ = n + 1 as follows. Pick an element a ∈ A. Define,

A′ △= A ∖ {a} B′ △= B ∖ {f(a)}.
Let g denote the restriction of f to the domain A′. Since f is one-to-one, g is also one-to-one
(see Lemma 2.11 on page 28.)
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Moreover, for every x ∈ A′, g(x) ≠ f(a). Indeed, if g(x) = f(a), then f(x) = f(a), contra-
dicting the assumption that f is one-to-one. Hence, we may redefine the range of g to be B′,
namely, g ∶ A′ → B′.

Since ∣A′∣ = n, by the induction hypothesis, ∣A′∣ ≤ ∣B′∣. But, ∣A∣ = ∣A′∣ + 1 and ∣B∣ = ∣B′∣ + 1,
hence ∣A∣ ≤ ∣B∣, as required. ✷

Recall the contraposition form of a “logical statement” (see Example 15 on page 7). The
contrapositive form of Lemma 2.7 is as follows: if ∣A∣ > ∣B∣, then every function f ∶ A → B is
not one-to-one. This statement is known as Pigeonhole Principle formulated in the following
corollary.

Corollary 2.8 (The Pigeonhole Principle) Let f ∶ A → {1, . . . , n}, and ∣A∣ > n, then f is
not one-to-one, i.e., there are two distinct element a1, a2 ∈ A such that f(a1) = f(a2).
Lemma 2.9 Let A and B denote two finite sets. If there exists an onto function f ∶ A → B,
then ∣A∣ ≥ ∣B∣.
Proof: The proof is by complete induction on ∣B∣. The induction basis for ∣B∣ = 0 is trivial
since ∣A∣ ≥ 0. (A function may have an empty range! In this case it is simply an empty relation.)

The induction hypothesis states that the lemma holds if ∣B∣ ≤ n. We prove the induction
step for ∣B∣ = n+1 as follows. Pick an element b ∈ B. Let f−1(b) denote the set {a ∈ A ∣ f(a) = b}.
Since f is onto, the set f−1(b) is not empty. Define,

A′
△

= A ∖ f−1(b) B′
△

= B ∖ {b}.
Let g denote the restriction of f to the domain f−1(B′). By Lemma 2.12 (on page 28) g ∶

f−1(B′)→ B′ is onto.
Note that A′ = f−1(B′). Indeed, for every x ∈ A′, the image f(x) ≠ b. Hence f(x) ∈ B′, and

it follows that A′ ⊆ f−1(B′). On the other hand, if x ∈ f−1(B′), then f(x) ∈ B′ and f(x) ≠ b. It
follows that x ∈ A′, and f−1(B′) ⊆ A′, as required.

If follows that g ∶ A′ → B′ is an onto function. Since ∣B′∣ = ∣B∣ − 1, by the induction
hypothesis, ∣A′∣ ≥ ∣B′∣. But, ∣A∣ = ∣A′∣ + ∣f−1(b)∣ ≥ ∣A′∣ + 1, hence

∣A∣ = ∣A′∣ + ∣f−1(b)∣ ≥ ∣A′∣ + 1 ≥ ∣B′∣ + 1 = ∣B∣,
as required. ✷

Lemma 2.10 Assume that A and B are finite sets of equal cardinality (i.e., ∣A∣ = ∣B∣). If
f ∶ A → B is onto, then f is also one-to-one.

Proof: For the sake of contradiction, assume that f is not one-to-one. Thus, there exists two
distinct elements a ≠ a′ in A such that f(a) = f(a′). Let b ∈ B be defined by b

△

= f(a).
As in the proof of Lemma 2.9, define B′ △= B ∖ {b} and A′ △= f−1(B′). Let g denote the

restriction of f to the domain A′. The range of the function g is B′ and it is onto.
Since g ∶ A′ → B′ is onto, by Lemma 2.9, ∣A′∣ ≥ ∣B′∣. Recall that ∣f−1(b)∣ ≥ 2, and therefore,∣A′∣ ≤ ∣A∣ − 2.

We now obtain a contradiction as follows:

∣B∣ = ∣B′∣ + 1

≤ ∣A′∣ + 1

≤ ∣A∣ − 2 + 1 < ∣A∣.
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(a) y = 2x + 4 (b) y = x2 (c) y = sin(x) (d) y = arctan(x)

Figure 2.2: Graphs of real functions.

Hence, ∣B∣ < ∣A∣, contradicting the assumption that ∣A∣ = ∣B∣, and the lemma follows. ✷

Examples

1. The functions y = 2x + 4, y = x2, y = sin(x), and y = arctan(x) are depicted in Figure 2.2.

2. The functions y = 2x+ 4 and y = arctan(x) are one-to-one, while y = x2 and y = sin(x) are
not. For example: 42 = (−4)2 = 16.

3. The functions y = 2x + 4 and y = x2 are onto, while y = sin(x) and y = arctan(x)are not.
For example: the function y = sin(x) does not attain values that are greater than 1.

4. Prove the following lemma.

Lemma 2.11 Let f ∶ A → B denote a function. Let g denote the restriction of f to the
domain A′ ⊆ A. If f is one-to-one, then g is also one-to-one.

Proof: We show that, for every x, y ∈ A′, if x ≠ y, then g(x) ≠ g(y). The proof is by
contradiction. Let us assume that there are x, y ∈ A′ such that g(x) = g(y). Since g is

defined by g(x) △= f(x), it implies that f(x) = f(y), a contradiction to the assumption
that f is one-to-one. Hence, g is one-to-one function, as required. ✷

5. Let f ∶ A → B denote a function. Let B′ ⊆ B. Let f−1(B′) denote the set {a ∈ A ∣ f(a) ∈
B′}. Prove the following lemma.

Lemma 2.12 Let f ∶ A → B denote an onto function. Let B′ ⊆ B and A′ △= f−1(B′). Let
g denote the restriction of f to the domain A′. Then, the range of g is B′ and g ∶ A′ → B′

is onto.

Proof: To prove that the range of g is B′, we first need to prove that for every x ∈ A′,
the image g(x) is in B′. This follows from the fact that A′ △= f−1(B′).
To prove that g ∶ A′ → B′ is onto, we need to show that for every y ∈ B′, there exists an
element x ∈ A′ such that g(x) = y. Fix y ∈ B′. Since f is onto, there exists an x ∈ A such

that f(x) = y. By the definition of A′ △= f−1(B′), it follows that x ∈ A′. By the definition
of g, it follows that g(x) = f(x) = y, and the lemma follows. ✷



2.3. APPLICATION: ONE-TO-ONE AND ONTO FUNCTIONS 29

Problems

2.1 Prove Theorem 2.3.

2.2 Prove Theorem 2.4.

2.3 Prove the following theorem.

Theorem 2.13 For every n ≥ 2 sets A1, . . . ,An,

U ∖ (A1 ∩⋯∩An) = Ā1 ∪⋯∪ Ān.

2.4 Prove that for every finite set A,B, ∣A ×B∣ = ∣A∣ ⋅ ∣B∣.
Hint: Use induction on ∣A∣.
2.5 Prove that ∣{0,1}k ∣ = 2k for every k ∈ N.

Hint: Question 2.4.

2.6 Prove that ∣P (A)∣ = 2∣A∣, for every finite set A.

2.7 Prove the following claim.

Claim 2.14 Let A,B be finite sets. Consider the set F
△

= {f ∣ f ∶ A → B} consisting of all the
functions whose domain is A and whose range is B. Then, ∣F ∣ = ∣B∣∣A∣.
2.8 Does Pólya’s proof that “all horses have the same color” hold for n ≥ 3? Which part fails?
The induction basis or the induction step?

2.9 Suppose we wish to prove that 3n > 2n, for every n ∈ N (including zero). Which part of the
proof in Example 2 on page 24 requires n > 0? How can you fix the proof so that it applies also
to n = 0.

2.10 (i) Write a recursive definition of the function 2n, for n ∈ N. (ii) Prove that your
definition is correct.

2.11 (i) Write a recursive definition of the function 2z, for z ∈ Z. (Hint: recurse over ∣z∣
and separate the reduction step to two cases according to the sign of z.) (ii) Prove that your
definition is correct.

2.12 Let fk(n) = k ⋅n!, where k ∈ N, i.e., fk(n) = k ⋅ 1 ⋅ 2 ⋅ . . . ⋅n. Define fk(n) using a recursive
definition. Prove that your definition is correct.

2.13 Let ϕ denote the “golden ratio” 1+
√
5

2
. Let ϕ̂ denote 1−

√
5

2
.

1. Prove that, for every n ∈ N ∖ {0,1}
g(n) = 1√

5
⋅ (ϕn − ϕ̂n) ,

where {g(n)}∞n=0 is the Fibonacci sequence.

Hint: Note that ϕ̂ also satisfies (ϕ̂)2 = ϕ̂ + 1.
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2. Prove or refute the following claim. For every n ∈ N ∖ {0,1},
g(n) ≤ (ϕ̂)n .

* 2.14 Consider the function f ∶ N
2 → N defined by f(n,k) = (n

k
). Recall that the binomial

coefficient (n
k
) equals the number of subsets of cardinality k of a set of cardinality n. Redefine

f(n,k) using a recursive definition.

2.15 Let f ∶ A → B denote a function. Let B′ ⊆ B. Prove that f−1(B′) = A ∖ f−1(B ∖B′).
2.16 Prove the following lemma.

Lemma 2.15 Assume that A and B are finite sets of equal cardinality (i.e., ∣A∣ = ∣B∣). If
f ∶ A → B is one-to-one, then f is also onto.

2.17 The Tower of Hanoi is a puzzle consisting of three rods and k disks of different sizes.
Initially, all the disks are stacked in descending order on the first rod (the largest disk is at the
bottom, the smallest on the top). The goal is to transfer the k disks to the third rod using a
sequence of moves subject to two rules:

• In each move, we may move a disk at a top of a stack to the top of another stack.

• A disk may not be added to a stack if it is larger than the disk currently at the top of the
stack.

Solving this puzzle with one or two disks is trivial. With three disks we need seven moves. To
promote the puzzle, a legend was invented about priests solving a puzzle with k = 64 disks, with
the danger that once solved, the world will end. Should we really worry about the truthfulness
of the legend?

1. Design an algorithm that solves the puzzle for every k.

2. Let f(k) denote the number of moves required by your algorithm to solve the puzzle with
k disks. Formulate a recursive formula for f(k).

3. (∗) Can you prove that your algorithm solves the puzzle with the smallest number of moves?

4. (∗) Formulate a closed formula for f(k) and prove it by induction.
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In this chapter we consider three important types of sequences: arithmetic sequences, geo-
metric sequences, and the harmonic sequence. In an arithmetic sequence the difference between
consecutive elements is constant. In a geometric sequence the ratio between consecutive ele-
ments is constant. The Harmonic sequence is simply the sequence (1, 1

2
, 1
3
, . . .).

Given a sequence (x0, x1, . . .), we may wish to define a new sequence that consists of the
partial sums

y0 = x0,

y1 = x0 + x1,

y2 = x0 + x1 + x2, . . .

The sequence (y0, y1, . . .) of partial sums is a series. We consider three types of series: arithmetic
series, geometric series, and the harmonic series. Our goal is to find explicit formulas for the
elements of these series.

3.1 Sequences

Definition 3.1 An infinite sequence is a function f whose domain is N or N
+.

Note that we do not specify the range of a sequence. Any set R may serve as the range of a
sequence. Instead of denoting a sequences by a function f ∶ N→ R, one usually writes {f(n)}∞n=0
or {fn}∞n=0. Sometimes sequences are only defined for n ≥ 1.

A prefix of N is a set {i ∈ N ∣ i ≤ n}, for some n ∈ N. One could similarly consider prefixes of
N
+.

Definition 3.2 A finite sequence is a function f whose domain is a prefix of N or N
+.

Note that if the domain of a sequence f is {i ∈ N ∣ i < n} or {i ∈ N+ ∣ i ≤ n}, then f is simply an
n-tuple.

31
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We already saw examples of sequences. For example, the Fibonacci sequence. The factorial
function defines the sequence fn

△

= n!.
We now define three important sequences in Mathematics:

1. Arithmetic sequences. The simplest sequence is the sequence (0,1, . . .) defined by f(n) △=
n, for every n ∈ N. In general, an arithmetic sequence is specified by two parameters: a0
- the first element in the sequence and d- the difference between successive elements.

Definition 3.3 The arithmetic sequence {an}∞n=0 specified by the parameters a0 and d is
defined by

an
△

= a0 + n ⋅ d.

One can also define the arithmetic sequence {an}∞n∈N by recursion. The first element is
simply a0. The reduction rule is an+1 = an+d. Claim 3.4 states the equivalence of the two
definitions of an arithmetic sequence (see page 38).

2. Geometric sequences. The simplest example of a geometric sequence is the sequence of
powers of 2: (1,2,4,8, . . .). In general, a geometric sequence is specified by two parameters:
b0 - the first element and q - the ratio or quotient between successive elements.

Definition 3.4 The geometric sequence {bn}∞n=0 specified by the parameters b0 and q is
defined by

bn
△

= b0 ⋅ q
n.

One can also define the geometric sequence {bn}∞n∈N by recursion. The first element is
simply b0. The recursion rule is bn+1 = q ⋅ bn. Claim 3.5 states the equivalence of these two
definitions of a geometric sequence (see page 38).

3. Harmonic sequence.

Definition 3.5 The harmonic sequence {cn}∞n=1 is defined by cn
△

= 1
n
, for n ≥ 1.

Note that the first index in the harmonic sequence is n = 1. The harmonic sequence is
simply the sequence (1, 1

2
, 1
3
, . . .).

Examples

1. The digits of π define a sequence {dn}∞n=0 where dn is the nth digit of π ≈ 3.1415926.
Namely, d0 = 3, d1 = 1, d2 = 4, etc.

2. The sequence of even numbers {en}∞n=0 is defined by

en
△

= 2n .

The sequence {en}∞n=0 is an arithmetic sequence since en+1 − en = 2, thus the difference
between consecutive elements is constant, as required.

3. The sequence of odd numbers {ωn}∞n=0 is defined by

ωn
△

= 2n + 1 .

The sequence {ωn}∞n=0 is also an arithmetic sequence since ω(n + 1) − ω(n) = 2.
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4. If {an}∞n=0 is an arithmetic sequence with a difference d, then {bn}∞n=0 defined by bn = a2n
is also an arithmetic sequence. Indeed, bn+1 − bn = a2n+2 − a2n = 2d.

5. The sequence of powers of 3, {tn}∞n=0, is defined by

tn
△

= 3n .

The sequence {tn}∞n=0 is a geometric sequence since tn+1/tn = 3, for every n ≥ 0.

6. If {cn}∞n=0 is a geometric sequence with a ratio q, then {dn}∞n=0 defined by dn = c2n is also
a geometric sequence. Indeed, dn+1/dn = c2n+2/c2n = q2.

7. If q = 1 then the sequence {bn}∞n=0 defined by bn = a0 ⋅ q
n is constant. Note that the

constant series is both an arithmetic sequence and a geometric sequence.

3.2 Series

The sum of a sequence is called a series. We are interested in the sum of the first n elements
of sequences.

Arithmetic Series. In Sec. 2.1, we considered the series ∑ni=1 i. We also proved a formula
for this sum. We now consider general arithmetic sequences. Note that the following theorem
indeed generalizes Eq. 2.1 since a0 = 0 and d = 1 in the sequence an = n.

Theorem 3.1 Let

an
△

= a0 + n ⋅ d,

Sn
△

=
n

∑
i=0
ai.

Then,

Sn = a0 ⋅ (n + 1) + d ⋅ n ⋅ (n + 1)
2

. (3.1)

Proof: The proof is by induction on n. The induction hypothesis, for n = 0, is easy since
S0 = a0.

The induction hypothesis simply states that Eq 3.1 holds for n.
We now prove the induction step. Namely, we need to prove that if Eq. 3.1 holds for n, then

it also holds for n + 1. Thus, we need to prove that

Sn+1 = a0 ⋅ (n + 2) + d ⋅ (n + 1) ⋅ (n + 2)
2

. (3.2)

Indeed,

Sn+1
△

= Sn + an+1

= (a0 ⋅ (n + 1) + d ⋅ n ⋅ (n + 1)
2

) + (a0 + (n + 1) ⋅ d)
= a0 ⋅ (n + 2) + d ⋅ (n ⋅ (n + 1)

2
+ (n + 1))

= a0 ⋅ (n + 2) + d ⋅ (n + 1) ⋅ (n + 2)
2

.
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The first line follows from the definition of Sn+1. The second line follows from the induction
hypothesis and the definition of an+1. In the third and fourth lines we simply arranged the
terms. We have proved the induction step, and the theorem follows. ✷

Geometric Series. We now consider the sum of the first n elements in a geometric sequence.

Theorem 3.2 Assume that q ≠ 1. Let

bn
△

= b0 ⋅ q
n,

Sn
△

=
n

∑
i=0
bi.

Then,

Sn = b0 ⋅
1 − qn+1

1 − q
. (3.3)

Proof: The proof is by induction on n. The induction hypothesis, for n = 0, is easy since
S0 = b0.

The induction hypothesis simply states that Eq 3.3 holds for n.

We now prove the induction step. Namely, we need to prove that if Eq. 3.3 holds for n, then
it also holds for n + 1. Thus, we need to prove that

Sn+1 = b0 ⋅
1 − qn+2

1 − q
. (3.4)

Indeed,

Sn+1
△

= Sn + bn+1

= (b0 ⋅ 1 − qn+1
1 − q

) + (b0 ⋅ qn+1)
= b0 ⋅ (1 − qn+1

1 − q
+ qn+1)

= b0 ⋅ (1 − qn+1 + (1 − q) ⋅ qn+1
1 − q

)
= b0 ⋅

1 − qn+2

1 − q
.

The first line follows from the definition of Sn+1. The second line follows from the induction
hypothesis and the definition of bn+1. In the third and fourth lines we simply arranged the
terms. We have proved the induction step, and the theorem follows. ✷

Harmonic Series. We now consider the sum of the first n elements in the harmonic sequence.
Unfortunately, this sum does not have a nice closed formula. Instead we will prove a simple
lower and upper bound.
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Theorem 3.3 Let

cn
△

=
1

n
, for n ≥ 1, and

Hn
△

=
n

∑
i=1
ci.

Then, for every k ∈ N

1 +
k

2
≤H2k ≤ k + 1. (3.5)

The theorem is useful because it tells us that Hn grows logarithmically in n (see Example 2).
In particular, Hn tends to infinity as n grows.

Proof: The proof is by induction on k. The induction basis, for k = 0, holds because 2k = 1,
and H1 = 1. Thus, Eq. 3.5 for k = 0 simply says that 1 ≤ 1 ≤ 1.

The induction hypothesis states that Eq. 3.5 holds for k. In the induction step we prove
that it holds for k + 1 as follows.

We first prove the upper bound: Since each of the last 2k elements in H2k+1 is less than 1/2k,
H2k+1 ≤H2k + 2k ⋅

1

2k

≤ (k + 1) + 1.

The second line follows from the induction hypothesis. Thus, the induction step for the upper
bound is completed.

We now prove the lower bound: Since each of the last 2k elements in H2k+1 is greater than
1/2k+1,

H2k+1 >H2k + 2k ⋅
1

2k+1

≥ (k
2
+ 1) + 1

2
=
k + 1

2
+ 1.

The second line follows from the induction hypothesis. Thus, the induction step for the lower
bound is completed. ✷

Examples

1. Prove that ∑n−1i=0 2i = 2n − 1.

Proof: Let b0 = 1, q = 2, and Sn−1 = ∑n−1i=0 2i. Theorem 3.2 states that

Sn−1 = b0 ⋅
1 − qn

1 − q
= 1 ⋅

1 − 2n

1 − 2
= 2n − 1 ,

as required. ✷

2. This example bounds the harmonic series for every n ∈ N+. For every n ∈ N+

1 +
(log2 n) − 1

2
<Hn < (log2 n) + 2 . (3.6)
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Proof: Observe that for every n ∈ N+ there exists k ∈ N such that,

2k ≤ n < 2k+1 . (3.7)

We first prove the upper bound of Eq. 3.6.

Hn <H2k+1

≤ (k + 1) + 1

≤ (log2 n) + 2 .

The first line follows since Hn is monotone increasing with n. The second line follows
from Eq. 3.5. The last line follows Eq. 3.7 that implies that k ≤ log2 n.

We now prove the lower bound of Eq. 3.6.

Hn ≥H2k

≥ 1 +
k

2

> 1 +
log2(n/2)

2

= 1 +
(log2 n) − 1

2
.

The first line follows since Hn is monotone increasing with n. The second line follows from
Eq. 3.5. The third line follows Eq. 3.7 that implies that n < 2k+1⇔ n

2
< 2k⇔ log2(n/2) <

k. The last line follows from the fact that log2(n/2) = log2(n) − log2(2) = log2(n) − 1. ✷

3. The Worm Paradox (*). This paradox is also called the “worm on the rubber band
paradox”. The scenario of the paradox is as follows. Consider a worm that crawls along a
1 meter rubber band, i.e., 100 cm. The velocity of the worm is 1 cm

min
. After every minute,

the rubber band is stretched instantaneously by an additional 1 meter. Note that since
the worm holds the rubber band with its “feet” its location is also changed during this
instantaneous stretch. Will the worm reach to the end of the rubber band? Intuitively it
seems that the “slow” worm will not make it - we show that the worm reaches the end
of the rubber band in the following series of questions (although we should wish it a long
life to reach this goal).

Let x(t) denote the position of the worm in centimeters as a function of the time t ∈ [0,∞)
in minutes. Let ℓ(t) denote the length of the rubber band in centimeters at time t. Let
us sample x(t) and ℓ(t) at the time instances n ∈ N “just before” the stretching occurs.

(a) Express x(n + 1) recursively, i.e., by using x(n), ℓ(n + 1), ℓ(n), and additional con-
stants.

(b) Express ℓ(n + 1) recursively, i.e., by using ℓ(n) and additional constants.

(c) What is
x(n+1)
ℓ(n+1) ?

(d) Find an n0 ∈ N such that, for all n ≥ n0, the value that Hn attains is greater than
100, i.e., Hn ≥ 100. What does it imply?

The answers to these sub-questions are as follows.
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(a) The position of the worm x(n + 1) is expressed recursively as follows.

x(n + 1) = x(n) ⋅ ℓ(n + 1)
ℓ(n) + 1 . (3.8)

(b) The length of the rubber band ℓ(n + 1) is expressed recursively as follows.

ℓ(n + 1) = ℓ(n) + 100 . (3.9)

(c) Plugging in Equations 3.8, 3.9 we get

x(n + 1)
ℓ(n + 1) =

x(n) ⋅ ℓ(n+1)
ℓ(n) + 1

ℓ(n + 1)
=
x(n)
ℓ(n) + 1

ℓ(n + 1) .
Let an+1

△

=
x(n+1)
ℓ(n+1) , then we have managed to show that,

an+1 =an +
1

ℓ(n + 1) . (3.10)

Let us “work” some more on this recursive formula:

an+1 =an +
1

ℓ(n + 1)
=(an−1 + 1

ℓ(n)) + 1

ℓ(n + 1)
=(an−2 + 1

ℓ(n − 1)) + 1

ℓ(n) + 1

ℓ(n + 1)
= . . . = an−k +

k

∑
i=0

1

ℓ(n + 1 − i)
=a0 +

n

∑
i=0

1

ℓ(n + 1 − i) =
n

∑
i=0

1

ℓ(n + 1 − i) .
The first line follows from Eq. 3.10. The second and the third line follow by reapplying
Eq. 3.10 on an and an−1, respectively. After realizing the general form of the equation

in line four, the fifth line follows by plugging k = n and by the fact that a0 =
x(0)
l(0) =

0
100

.

The substitution j = n − k gives

n

∑
i=0

1

ℓ(n + 1 − i) =
n

∑
j=0

1

ℓ(j + 1) . (3.11)

Since ℓ(k + 1) = 100 ⋅ (k + 1), Eq. 3.11 implies that,

an+1 =
n

∑
i=0

1

ℓ(i + 1)
=
n

∑
i=0

1

100 ⋅ (i + 1)
=

1

100
⋅

n+1
∑
i=1

1

i
=

1

100
⋅Hn+1 (3.12)
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Observe that an →∞ as n→∞. Since the worm reaches the end of the rubber band
when an ≥ 1, we conclude that the worm reaches the end. How long does it take?

(d) We use Example 2 in order to find such an n0. Equation 3.6 implies that Hn >

1 +
(log2 n)−1

2
. To find such an n0 we require that Hn0

> 1 +
(log2 n0)−1

2
≥ 100. Let us

solve this formula:

1 +
(log2 n0) − 1

2
≥100⇔

(log2 n0) − 1

2
≥99⇔

(log2 n0) − 1 ≥198⇔(log2 n0) ≥199⇔
n0 ≥2

199 .

We found out the for n0 ≥ 2199, the values that Hn attains is greater than 100.

Equation 3.6 also implies that Hn < (log2 n) + 2. It follows that Hn < 100 if n < 298.
Hence the worm does not reach the end of the rubber band before 298 minutes have
passed.

A more careful inspection (using software tools) implies that for n0 = 2144, Hn0
=

100.3904 . . ..

This, amazingly, implies that our beloved worm will, eventually, arrive to the end of
the rubber band - after 2144 minutes (which is infinity for all practical purposes).

Problems

3.1 Consider the following recursive definition of an arithmetic sequence {an}∞n=0:
• The first element is simply a0.

• The reduction rule: an+1 = an + d.

Prove that the recursive definition is equivalent to Definition 3.3, i.e., prove the following claim.

Claim 3.4 {an}∞n=0 is an arithmetic sequence iff ∃d∀n ∶ an+1 − an = d.

3.2 Consider the following recursive definition of a geometric sequence {bn}∞n=0:
• The first element is simply b0.

• The reduction rule: bn+1 = q ⋅ bn.

Prove that the recursive definition is equivalent to Definition 3.4, i.e., prove the following claim.

Claim 3.5 {bn}∞n=0 is a geometric sequence iff ∃q∀n ∶ bn+1/bn = q.
3.3 Prove or refute the following claim.

Claim 3.6 If {bn}∞n=0 is a geometric sequence with a quotient q and bn > 0, then the sequence{an}∞n=0 defined by an
△

= log bn is an arithmetic sequence.

Does your answer depend on the basis of the logarithm?
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3.4 Consider the following sequences. For each sequence, prove/refute if it is (i) arithmetic,
(ii) geometric, (iii) harmonic, or (iv) none of the above.

1. an
△

= 5n.

2. bn
△

= n2.

3. cn
△

= 2n − 1.

4. dn
△

= 1.

5. en
△

= 7.

6. fn
△

= gn + hn, where {gn}n and {hn}n are arithmetic sequences.

7. pn
△

= qn ⋅ rn, where {qn}n and {rn}n are geometric sequences.

3.5 Prove that ∑ni=1 2
−i = 1 − 2−n.

3.6 Prove or refute: if a sequence {an}n∈N is both an arithmetic sequence and a geometric
sequence, then it is a constant sequence. Namely, there exists a constant c such that an = c, for
every n ∈ N.
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A directed graph is simply an abstraction of a network of one-way roads between a set of
cities. When one travels in such a network, one may return to the starting point. In this
chapter we are interested in special networks that exclude the possibility of ever returning to
the starting point or to any city we have already visited. We refer to a network as acyclic.

Suppose we are traveling in an acyclic network of one-way roads. By definition, in each
travel, we may visit each city at most once. A very natural question that arises is: what is
the maximum number of cities we can visit? In this chapter we present a simple and efficient
algorithm that finds the longest sequence of cities we can visit in the special case of acyclic
networks of one-way roads.

Acyclic directed graphs are also an abstraction of assembly instructions of an airplane model.
The vertices in this case are not cities but assembly tasks (e.g., glue two parts together, paint
a part, etc.). An edge from task u to task v is not a one-way road but a dependence indicating
that before task v is started, one must complete task u. Given such assembly instructions, we
would like to find an ordering of the tasks that obeys the dependencies. A single worker can
then assemble the airplane model by completing one task at a time according to this ordering.
Such an ordering is a called a topological ordering . We present a simple an efficient algorithm
for topological ordering.

Finally, we consider a special subclass of acyclic directed graphs called rooted trees. Rooted
trees play an important role in defining parse trees of Boolean formulas in Chapter 6.

Why are we so interested in directed graphs? Our main motivation for studying directed
graphs is that they can be used to model circuits. Instead of one-way roads and assembly
instructions, think of wires that connect basic units (gates and flip-flops).

4.1 Definitions

Definition 4.1 (directed graph) Let V denote a finite set and E ⊆ V × V . The pair (V,E)
is called a directed graph and is denoted by G = (V,E). An element v ∈ V is called a vertex or
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Figure 4.1: A directed graph G = (V,E). The graph has 8 vertices, i.e. ∣V ∣ = 8. The graph has
11 arcs, i.e., ∣E∣ = 11.

a node. An element (u, v) ∈ E is called an arc or a directed edge.

Figure 4.1 depicts a directed graph. The black circles represent the vertices. The arrows
represent the arcs. Indeed, an arc is between two nodes. One can think of a directed graph as
a road map between cities in which the cities are the nodes, and every one-way road is an arc
between two cities.

Definition 4.2 (path) A path or a walk of length ℓ in a directed graph G = (V,E) is a
sequence (v0, e0, v1, e1, . . . , vℓ−1, eℓ−1, vℓ) such that: (i) vi ∈ V , for every 0 ≤ i ≤ ℓ, (ii) ei ∈ E, for
every 0 ≤ i < ℓ, and (iii) ei = (vi, vi+1), for every 0 ≤ i < ℓ.

We denote an arc e = (u, v) by u e
Ð→ v or simply u Ð→ v. A path of length ℓ is often denoted

by

v0
e0Ð→ v1

e1Ð→ v2⋯vℓ−1
eℓ−1Ð→ vℓ.

Definition 4.3 (closed/simple path) The following definitions capture special properties of
paths.

1. A path is closed if the first and last vertices are equal.

2. A path is open if the first and last vertices are distinct.

3. An open path is simple if every vertex in the path appears only once in the path.

4. A closed path is simple if every interior vertex appears only once in the path. (A vertex
is an interior vertex if it is not the first or last vertex.)
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5. A self-loop is a closed path of length 1, e.g., v
e
Ð→ v.

To simplify terminology, we refer to a closed path as a cycle, and to a simple closed path as a
simple cycle.

Consider the following paths in the directed graph depicted in Figure 4.1.

1. The path v0
e7Ð→ v5

e8Ð→ v0 is closed.

2. The path v2
e3Ð→ v3

e4Ð→ v2
e3Ð→ v3

e5Ð→ v4 is open.

3. The path v7
e10Ð→ v6 is simple.

4. The path v0
e0Ð→ v1

e1Ð→ v1
e2Ð→ v2 is not simple, since v1 appears more the once.

5. The path v7
e10Ð→ v6

e9Ð→ v7 is a simple closed path - the interior vertex in this path is v6.

6. The path v1
e1Ð→ v1 is a self-loop.

Note that v0 Ð→ v2 is not a path.
The special case of directed graphs that lack cycles is used for defining combinational circuits.

Definition 4.4 (DAG) A directed acyclic graph (DAG) is directed graph that does not contain
any cycles.

Figure 4.2 depicts a DAG. One can check that there are no cycles in the graph depicted in
Figure 4.2. Moreover, the graph is depicted in such a way that arcs always “go right”. Since
there is only one copy of each vertex, we conclude that this graph is a DAG.

We say that an arc u
e
Ð→ v enters v and emanates (or exits) from u.

Definition 4.5 (indegree/outdegree) The in-degree and out-degree of a vertex v are denoted
by degin(v) and degout(v), respectively, and defined by:

degin(v) △= ∣{e ∈ E ∣ e enters v}∣,
degout(v) △= ∣{e ∈ E ∣ e emanates from v}∣.

Definition 4.6 (source/sink) A vertex is a source if degin(v) = 0. A vertex is a sink if
degout(v) = 0.

In circuits, sources correspond to inputs and sinks correspond to outputs.

The following lemma claims that every DAG has at least one sink. The proof idea is to
to walk in the graph as follows. Let us assume by contradiction that there are no sinks. Pick
an arbitrary node as a starting point. Since it is not a sink, it is not a dead-end, and there is
an arc that emanates from it to another node. We move to the end of this arc, and continue
our walk from this node. After visiting ∣V ∣ + 1 nodes we apply the Pigeonhole Principle (See
Corollary 2.8), and conclude that there is a node that we have traversed twice, i.e., we have
revealed a cycle, which contradicts the assumption that the graph is a DAG.

Lemma 4.1 Every DAG has at least one sink.
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Figure 4.2: A DAG. The in-degree of vertex v0 is 0, i.e., deg in(v0) = 0. Hence, v0 is a source.
On the other hand, degout(v0) = 3. The in-degree of v9 and v10 is 2 while their out-degree is 0,
i.e., degout(v9) = degout(v10) = 0. Hence, vertices v9 and v10 are sinks. The in-degree of v6 is
deg in(v6) = 2. The out-degree of v5 is degout(v5) = 2.

Proof: Consider a DAG G = (V,E), and assume for the sake of contradiction that no vertex
in V is a sink. This means that degout(v) > 0, for every v ∈ V . Pick an arbitrary vertex, and
denote it by v0. Since v0 is not a sink, there is an edge emanating from v0. Let vertex v1 be
a vertex such that (v0, v1) ∈ E. We continue to extend the path until we construct a path of
length n = ∣V ∣. Let v0 Ð→ v1 Ð→ ⋯ Ð→ vn denote the path p we have constructed. We claim
that the path p cannot be simple. Indeed, it contains n+1 vertices, and there are only n distinct
vertices in G. Hence, by the pigeonhole principle at least one of the vertices along p appears
at least twice in p. Let use denote two occurrences of the same vertex by vi = vj for i < j. The
subpath vi Ð→ ⋯Ð→ vj of p is a cycle, contradicting the assumption that G is acyclic. ✷

We prove the following corollary by a reduction it to Lemma 4.1.

Corollary 4.2 Every DAG has at least one source.

Proof: Given a DAG G = (V,E), consider the reversed DAG G′ = (V,E′), defined by

E′ △= {(v,u) ∈ V × V ∣ (u, v) ∈ E}.
Indeed, a cycle v1 Ð→ v2⋯ Ð→ vn = v1 in G′ implies the cycle vn Ð→ vn−1⋯ Ð→ v1 = vn in G,
thus G′ is acyclic.

Moreover, a node v is a sink in G′ if and only if it is a source in G. By Lemma 4.1, there is
a sink v in G′. Hence, the vertex v is a source in G, and the corollary follows. ✷
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4.2 Topological Ordering

In this section we show how one can order the vertices of a DAG so that if u precedes v, then(v,u) is not an arc. This means that if we list the vertices according to this order from left
to right, then no arc will point to the left. Our main application of topological ordering is for
simulating digital circuits.

Definition 4.7 (topological ordering) Let G = (V,E) denote a DAG with ∣V ∣ = n. A bijec-
tion π ∶ V → {0, . . . , n − 1} is a topological ordering if (u, v) ∈ E implies that π(u) < π(v).
Note that by contraposition, π(v) < π(u) implies that (u, v) /∈ E.

A bijection π ∶ V → {0, . . . , n − 1} can be represented by an n-tuple (v0, . . . , vn−1) in which
each vertex appears exactly once. Such an n-tuple is called a permutation of the vertices.

Algorithm 4.1 lists a recursive algorithm for sorting the vertices of DAG G = (V,E) in a
topological ordering. The algorithm outputs a list of the evaluations of the topological ordering.
Namely, π(u) = 0, π(v) = 1, etc. The algorithm uses the following notation:

Ev
△

= {e ∣ e enters v or emanates from v}.
Algorithm 4.1 TS(V,E) - An algorithm for sorting the vertices of a DAG G = (V,E) in
topological ordering.

1. Base Case: If ∣V ∣ = 1, then let v ∈ V and return (π(v) = 0).
2. Reduction Rule:

(a) Let v ∈ V denote a sink.

(b) return (TS(V ∖ {v},E ∖Ev) extended by (π(v) = ∣V ∣ − 1))
Algorithm 4.1 and its correctness proof are an example of “recursion-induction duo”. The

algorithm is recursive, and its proof uses induction. In fact, the base case of the recursive
algorithm is exactly the induction basis. The reduction rule of the recursive algorithm is used
in proof of the induction step.

Theorem 4.3 Algorithm TS(V,E) computes a topological ordering of a DAG G = (V,E).
Proof: The proof is by induction on the number of vertices. The induction basis for ∣V ∣ = 1
holds since the algorithm outputs π(v) = 0, as required.

The induction hypothesis states that the if ∣V ∣ = n, then π is a topological ordering.

We now prove the induction step. Assume ∣V ∣ = n + 1. By Lemma 4.1, there is a sink
in G. Thus the reduction step succeeds in finding a sink v ∈ V . The directed graph G′ =(V ∖ {v},E ∖ Ev) is acyclic and has n vertices. By the induction hypothesis, the recursive
call TS(V ∖ {v},E ∖ Ev) computes a topological ordering π ∶ V ∖ {v} → {0, . . . , n − 1} of G′.
This topological ordering is extended by π(v) = n. Clearly, even after the extension, π is a
bijection. To prove that it is a topological ordering we need to show that π(u′) < π(v′) implies
that (v′, u′) ∉ E. Indeed, if π(v′) < n, then both u′ and v′ are not the selected sink v. Thus,
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(v′, u′) ∉ E by the induction hypothesis. If π(v′) = n, then v′ = v is a sink, and no edge emanates
from v′, and the theorem follows. ✷

One can think of a DAG as assembly instructions (e.g., how to assemble a couch?). That
is, nodes represent actions and arcs between two actions represent dependence between these
actions. Namely, an arc (u, v) signifies that the action represented by node v cannot begin
before the action represented by node u is completed. An example of such an arc in the
assembly instructions of a couch is an arc between the action of putting the skeleton together
and the action of putting the pillows on the couch. Now, if a single person would like to assemble
the couch she will need to compute a schedule, that is a “legal” ordering of the actions. By legal
we mean that she cannot put the pillows of the couch before she has constructed the skeleton
of the couch. Such a schedule is a topological sorting of the assembly instructions. In this case
the “time” it will take her to build the couch is, roughly, the number of actions. In Chapter 11,
we show how to compute a shortest schedule if the number of workers is large. Hopefully, the
more workers, the shorter the schedule becomes.

Examples

1. Two topological orderings of the vertices of the DAG depicted in Figure 4.2 are:

(v0, v2, v4, v1, v3, v6, v7, v10, v5, v8, v9),(v0, v1, v3, v2, v4, v5, v8, v9, v6, v7, v10).
2. Let us execute Algorithm TS(V,E) on the DAG depicted in Figure 4.2. Since the graph

has more than a single node, the algorithm proceeds to the reduction rule.

The algorithm picks arbitrarily a sink, i.e., v9. The algorithm removes the edges that
enter v9, that is e13 and e9. The algorithm sets π(v9) = ∣V ∣ = 11 and makes a recursive
call with the DAG (V ∖ {v9},E ∖ {e13, e9}).
This process continues recursively until the last recursive call, that is TS({v0},∅). Since in
this case there is only one node, v0, the algorithm applies the base case and sets π(v0) = 0.

The following is a possible output of the TS(V,E) on the DAG depicted in Figure 4.2.

(v0, v2, v1, v4, v3, v6, v5, v7, v8, v10, v9) .
4.3 Longest path in a DAG

In this section we show how to compute a longest path in a DAG. Longest paths in DAGs are
used to compute the delay of combinational circuits as well as the shortest clock periods of
synchronous circuits.

Figure 4.2 depicts a DAG. Note that there might be more than one longest path in a DAG.
Indeed, in Figure 4.2 There are 4 longest paths of length 5. The longest paths are as follows:

1. v0
e0Ð→ v2

e3Ð→ v4
e5Ð→ v5

e11Ð→ v8
e13Ð→ v9.

2. v0
e0Ð→ v2

e3Ð→ v4
e6Ð→ v6

e10Ð→ v7
e12Ð→ v10.

3. v0
e1Ð→ v1

e2Ð→ v3
e4Ð→ v6

e10Ð→ v7
e12Ð→ v10.
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4. v0
e1Ð→ v1

e2Ð→ v3
e8Ð→ v5

e11Ð→ v8
e13Ð→ v9.

Note that a longest path in a DAG begins in a source and ends in a sink. We denote the
length of a path Γ by ∣Γ∣.
Definition 4.8 A path Γ that ends in vertex v is a longest path ending in v if ∣Γ′∣ ≤ ∣Γ∣, for
every path Γ′ that ends in v.

Definition 4.9 A path Γ is a longest path if ∣Γ′∣ ≤ ∣Γ∣, for every path Γ′.

If a directed graph has a cycle, then there does not exist a longest path. Indeed, one could
walk around the cycle forever. However, longest paths do exist in DAGs.

Lemma 4.4 If G = (V,E) is a DAG, then there exists a longest path that ends in v, for every
v. In addition, there exists a longest path in G.

Proof: A path with more than ∣V ∣ vertices must visit at least one vertex more than once, and
therefore, cannot be simple. A path that is not simple reveals a cycle in G, a contradiction
since G is acyclic. Thus, the length of every path in G is bounded by ∣V ∣.

Since there are a finite number of paths of length at most ∣V ∣ that end in v, it follows that
there exists a longest path that ends in v. A similar argument implies that there exists a longest
path in G. ✷

Lemma 4.4 states that longest paths exist. Our goal in this section is to compute, for every
v in a DAG, a longest path that ends in v. We begin with the simpler task of computing the
length of a longest path.

The requirements from an algorithm for computing the length of a longest path in a DAG
are as follows.

Specification 4.1 Algorithm longest-path is specified as follows.

input: A DAG G = (V,E).
output: A delay function d ∶ V → N.

functionality: For every vertex v ∈ V , the length of a longest path ending in v equals d(v).
Note that if a vertex v is a source, then the longest path ending in v has length zero. Indeed,
the specification requires in this case that d(v) = 0.

The term delay function is justified by an application for bounding the delay of a combina-
tional circuit. We later model circuits by DAGs, and show that the delay of the output of a
gate in the circuit equals d(v) (if all gates have unit delays).

An algorithm for computing lengths of longest paths is listed as Algorithm 4.2. The algo-
rithm uses topological sorting as a subroutine. One could “combine” the two to obtain a “single
pass” algorithm; however, the proof of the two-pass algorithm is shorter.

We now prove the correctness of Algorithm 4.2.

Theorem 4.5 Algorithm longest-path-lengths(V,E) satisfies Specification 4.1.
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Algorithm 4.2 longest-path-lengths(V,E) - An algorithm for computing the lengths of longest
paths in a DAG. Returns a delay function d(v).

1. topological sort: (v0, . . . , vn−1)← TS(V,E).
2. For j = 0 to (n − 1) do

(a) If vj is a source then d(vj)← 0.

(b) Else

d(vj)← 1 +max{d(vi) ∣ i < j and (vi, vj) ∈ E}.

Proof: Let δ(v) denote the length of a longest path that ends in v. Recall that d(v) is the
output of the Algorithm 4.2. We want to prove that d(v) = δ(v), for every v. We break this
goal into two subgoals:

1. δ(v) ≥ d(v), namely, there exists a path Γ that ends in v such that ∣Γ∣ ≥ d(v).
2. δ(v) ≤ d(v), namely, for every path Γ that ends in v we have ∣Γ∣ ≤ d(v).

We are now ready to prove the theorem by complete induction on the index j of a vertex in the
topological ordering. The induction basis for j = 0 holds since v0 is a source. Thus, δ(v0) = 0
and the algorithm outputs d(v0) = 0, as required.

The induction hypothesis states that, for every i ≤ j, d(vi) = δ(vi).
We now prove the induction step. If vj+1 happens to be a source, then, as in the induction

basis, d(vj+1) = δ(vj+1) = 0. Suppose that vj+1 is not a source. For the sake of simplicity assume
that three edges enter vj+1. Let x, y, z ∈ V denote the vertices such (x, vj+1), (y, vj+1) and(z, vj+1) are the edges that enter vj+1. By the definition of topological oredering, the vertices
x, y, and z must precede vj+1 in topological ordering. Hence the values d(x), d(y), d(z) have
been already determined. Suppose that d(x) = max{d(x), d(y), d(z)}. The algorithm in this
case sets d(vj+1)← d(x) + 1.

We prove that δ(vj+1) ≥ d(vj+1). By the induction hypothesis (applied to the vertex x),
there exists a path Γx that ends in x such that ∣Γx∣ ≥ d(x). Let Γ denote the path obtained by
appending the edge (x, vj+1) to Γx. Clearly,

∣Γ∣ = ∣Γx∣ + 1 ≥ d(x) + 1 = d(vj+1),
as required.

We prove that δ(vj+1) ≤ d(vj+1). Consider a path Γ that ends in vj+1. The last edge in
Γ must enter vj+1 through one of the three edges that enter vj+1. Suppose that the last edge
along Γ is the edge (y, vj+1). Let Γ′ denote the path that is obtained by removing the last edge(y, vj+1) from Γ. Then Γ′ is a path that ends in y. By the induction hypothesis ∣Γ′∣ ≤ d(y). By
the choice of x, d(y) ≤ d(x). Hence,

∣Γ∣ = ∣Γ′∣ + 1 ≤ d(y) + 1 ≤ d(x) + 1 = d(vj+1),
as required, and the theorem follows. ✷
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Examples

1. A zero length path that starts at the vertex v is simply the vertex v.

2. An example of a delay function of DAG. Let us consider the DAG G = (V,E) depicted in
Figure 4.2. Recall that a delay function d ∶ V → N satisfies that for every vertex v ∈ V , the
length of a longest path ending in v equals d(v). Hence, if we are interested in computing
d ∶ V → N, we first should find a longest path that ends in v for every v ∈ V , as follows.

(a) v0: v0.

(b) v1: v0
e1Ð→ v1.

(c) v2: v0
e0Ð→ v2.

(d) v3: v0
e1Ð→ v1

e2Ð→ v3.

(e) v4: v0
e0Ð→ v2

e3Ð→ v4.

(f) v5: v0
e0Ð→ v2

e3Ð→ v4
e5Ð→ v5.

(g) v6: v0
e1Ð→ v1

e2Ð→ v3
e4Ð→ v6.

(h) v7: v0
e1Ð→ v1

e2Ð→ v3
e4Ð→ v6

e10Ð→ v7.

(i) v8: v0
e0Ð→ v2

e3Ð→ v4
e5Ð→ v5

e11Ð→ v8.

(j) v9: v0
e0Ð→ v2

e3Ð→ v4
e5Ð→ v5

e11Ð→ v8
e13Ð→ v9.

(k) v10: v0
e1Ð→ v1

e2Ð→ v3
e4Ð→ v6

e10Ð→ v7
e12Ð→ v10.

Hence, the following is the delay function d ∶ V → N of the DAG depicted in Figure 4.2.

• v0 = 0.

• d(v1) = 1.

• d(v2) = 1.

• d(v3) = 2.

• d(v4) = 2.

• d(v5) = 3.

• d(v6) = 3.

• d(v7) = 4.

• d(v8) = 4.

• d(v9) = 5.

• d(v10) = 5.

Note that although there might many longest paths, the delay function d ∶ V → N is
unique.

3. We now execute Algorithm longest-path-lengths(V,E) listed in Algorithm 4.2. The input
is the DAG G = (V,E) depicted in Figure 4.2.
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The first step in the algorithm is computing a topological sort of the vertices of G = (V,E)
by invoking TS(V,E) algorithm. Recall that in Example 2, on page 46, we have already
executed TS(V,E) on the same input. The output of TS(V,E) is:

(u0, . . . , u10) = (v0, v2, v1, v4, v3, v6, v5, v7, v8, v10, v9) .
The second step of the algorithm is to assign a value to d(uj) for every j ∈ {0, . . . , n − 1},
in an ordered manner, e.g., first we deal with d(v0) followed by d(v2), etc.
Hence, we first consider d(v0). Since d(v0) is a source we assign it with the value 0, i.e.,
d(v0)← 0.

We now consider vertex u1 = v2, i.e., we compute d(v2). The vertex v2 is not a source,
hence we need to calculate

d(v2) = 1 +max{d(ui) ∣ i < 1 and (ui, u1) ∈ E}
= 1 + d(0) = 1 .

We then consider v1, v4, v3, the calculation of their delay is similar to that of v2.

We now consider vertex u5 = v6, i.e., we compute d(v6). The vertex v6 is not a source,
hence we need to calculate

d(v6) = 1 +max{d(ui) ∣ i < 5 and (ui, u5) ∈ E}
= 1 +max{d(v3), d(v4)}
= 1 + 2 = 3 .

The rest of the delays are calculated similarly.

4.4 Rooted Trees

In the following definition we consider a directed acyclic graph G = (V,E) with a single sink
called the root.

Definition 4.10 A DAG G = (V,E) is a rooted tree if it satisfies the following conditions:

1. There is a single sink in G.

2. For every vertex in V that is not a sink, the out-degree equals one.

The single sink in rooted tree G is called the root, and we denote the root of G by r(G).
Theorem 4.6 In a rooted tree there is a unique path from every vertex to the root.

Proof: Consider a rooted tree G = (V,E) with a root r = r(G). Assume for the sake of
contradiction that there exists a vertex v ∈ V and two different paths p and q from v to r. First,
consider the case that v ≠ r. Let p∗ denote the common prefix of p and q. This means that
p∗ ends in a vertex u such that p and q exit u via different arcs. Thus, the out-degree of u is
greater than one, a contradiction. If v = r, then one of these paths from r to r has positive
length. This contradicts the fact that r is a sink. Thus, we proved that there is at most one
path from every vertex to r.
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To complete the proof, we show that there exists at least one path. (The proof is similar to
the proof of Lemma 4.1.) Clearly the zero length path is a path from r to itself. If v ≠ r, then
follow the arc that exits from v, and continue in this fashion until a sink is reached. Since G is
acyclic, a sink is reached after at most ∣V ∣ − 1 arcs. Since the sink is unique, the path reaches
the root, as required. ✷

Note that the proof of Theorem 4.6 is constructive, that is, we show how to find the path
from every vertex to the root.

The following claim states that every rooted tree G can be decomposed into rooted trees that
are connected to r(G).
Claim 4.7 Let G = (V,E) denote a rooted tree. Let {ri eiÐ→ r}ki=1 denote the set of arcs that
enter the root r = r(G). Define the sets Vi and Ei by

Vi
△

= {v ∈ V ∶ there exists a path from v to ri in G}.
Ei

△

= {e ∈ E ∶ the arc e emanates from a vertex in Vi ∖ {ri}}.
Then,

1. The sets V1, . . . Vk are pairwise disjoint and V = V1 ∪⋯∪ Vk ∪ {r}.
2. The graph Gi

△

= (Vi,Ei) is a rooted tree with r(Gi) = ri, for every 1 ≤ i ≤ k.

Proof: To prove the first part, we need to show that every vertex in v ∈ V ∖ {r} belongs to
exactly one Vi. Fix a vertex v ∈ V ∖ {r}. By Theorem 4.6, there is a unique path p from v to
r. Let i denote the index such that the path p enters v via the arc ri Ð→ r. Hence, v ∈ Vi, and
v belongs to at least one of the sets V1, . . . , Vk.

Assume for the sake of contradiction that v belongs to more than one set, namely, v ∈ Vi∩Vj
for i ≠ j. Hence there is a path pi from v to r via ri and a path pj from v to r via rj . The
paths pi and pj differ in the last arc, and are thus different. This contradicts Theorem 4.6. We
conclude that every vertex v ∈ V ∖ {r} belongs to exactly one Vi, as required.

To prove the second part, consider a graph Gi
△

= (Vi,Ei). Since Ei ⊆ E, the graph Gi is
acyclic. Moreover, the out-degree of every vertex in Vi (with respect to Gi) is at most one.
Since from every vertex in Vi there is a path to ri, it follows that the out-degree of vertex in
Vi ∖ {ri} is at least one. Finally, ri is a sink in Gi since Ei does not include edges emanating
from ri. We proved that Gi is a DAG with a single sink, and all the other vertices have an
out-degree that equals one. Hence, each Gi is a rooted tree, as required. ✷

Note that, in the decomposition we always have ri ∈ Vi. Indeed, the path with a single node
ri is a zero length path from ri to ri. In addition r ∉ Vi. Otherwise, we would have a cycle
through r and ri. Thus, for every i, 1 ≤ ∣Vi∣ ≤ ∣V ∣ − 1.

We refer to the graphs Gi as subtrees hanging from the root . In general, a subtree H rooted
at v of rooted tree G = (V,E) consists of all the vertices u such that there exists a path in G
from u to v. Note that a subtree hanging from the root is simply a subtree that is rooted at a
child of the root. We often abbreviate and refer to rooted subtrees simply as subtrees.

The decomposition in Claim 4.7 enables us to design recursive algorithms on rooted trees.
Moreover, we can prove the correctness of such a recursive algorithm by induction on the number
of vertices in the rooted subtree. Note that the number of vertices in every subtree hanging
from the root is strictly smaller than ∣V ∣.
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G1 G2

r(G1) r(G2)

r(G)r

r1 r2

Figure 4.3: A decomposition of a rooted tree G in to two rooted trees G1 and G2.

Figure 4.3 depicts a decomposition in which a rooted tree G is decomposed in to two rooted
trees G1 and G2.

We can also obtained larger rooted trees by connecting disjoint rooted trees to a new root.

Claim 4.8 If Gi = (Vi,Ei) are disjoint rooted trees, for 1 ≤ i ≤ k, then the directed graph
G = (V,E) defined below is a rooted tree.

V
△

= V1 ⊍⋯⊍ Vk ∪ {r}, where ∀i ∶ r /∈ Vi. (4.1)

E
△

= E1 ⊍⋯⊍Ek ∪ {r(Gi)Ð→ r}ki=1. (4.2)

Proof: The out-degree of r is zero, and the out-degree of each ri is one. Finally, the out-degree
of each vertex v ∈ Vi ∖ {ri} equals its out-degree in Gi. Thus, G is a rooted tree, as required. ✷

Terminology. Given a rooted tree G = (V,E) that contains more than one vertex, we refer to
the rooted trees Gi = (Vi,Ei) in Claim 4.7 as the rooted trees hanging from r(G). We often refer
to sources in a rooted tree as leaves. Vertices that are not leaves are called interior vertices.
The arc that emanates from a vertex in V ∖{r}, points to its parent . We usually consider rooted
trees in which the maximum in-degree equals two.

The rooted trees hanging from r(G) are ordered. This ordering plays an important role
when we use rooted trees as parse trees.

Note that we orient the arcs of a rooted tree from the leaves towards the root. The justifi-
cation for this orientation is that we use rooted trees for modeling circuits in which the leaves
serve as inputs the root outputs the outcome of the circuit.

Examples

1. Recall that Theorem 4.6 states that if G = (V,E) is a rooted tree then there is a unique
path from every vertex v ∈ V to the root r(G).
Hence, the following terms are well defined. Let G = (V,E) denote a rooted tree. The
depth of a vertex v ∈ V is the length of the path from v to the root. The height of a rooted
tree G = (V,E) is maximum depth of a vertex in V .
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Note that a single isolated vertex is a rooted tree. Its height is zero.

2. Consider the special case of computing the longest path in a rooted tree. Clearly, Al-
gorithm 4.2 solves this problem. We present a simpler algorithm for rooted trees. One
justification for considering this special case are the circuits described in Chapter 12 that
have the topology of a tree.

A recursive algorithm for computing tree-height(V,E) is listed in Algorithm 4.3.

Algorithm 4.3 tree-height(V,E) - An algorithm for computing the height of a rooted tree.

(a) Base case: if ∣V ∣ = 1, then return 0.

(b) Reduction Rule:

i. Let k denote the number of subtrees hanging from the root r(G).
ii. For i = 1 to k do

d(r(Gi)) = tree-height(Vi,Ei)
iii. return d(r(G)) computed as follows:

d(r(G)) = 1 +max{d(r(Gi)) ∣ i ∈ {1, . . . , k}}.

The correctness of Algorithm 4.3 is formalized in the following claim.

Claim 4.9 Algorithm tree-height(V,E) computes the height of the rooted tree G = (V,E),
i.e., the length of the longest path ending in r(G).
Proof: The proof is by complete induction on the number of vertices. The induction
basis for ∣V ∣ = 1 holds since the algorithm outputs 0, as required.

The induction hypothesis states that the if ∣V ∣ ≤ n, then the output of tree-height(V,E)
is the height of the tree G = (V,E). Note that a longest path must end at a sink. Since
G is a rooted tree, the only sink is the root r. Hence, a longest path ends at the root.

We now prove the induction step. Assume ∣V ∣ = n+1. By Lemma 4.7, there are k subtrees
hanging from the root r(G) denoted by Gi, for 1 ≤ i ≤ k. Moreover, Lemma 4.7 implies
that ∣Vi∣ < n + 1, for 1 ≤ i ≤ k. Hence, the induction hypothesis implies that d(r(Gi)), for
1 ≤ i ≤ k, equals to the height of the tree Gi, for 1 ≤ i ≤ k. A longest path ends with an
arc (r(Gi), r(G)), hence the height of G equals 1 +max{d(r(Gi))}i. ✷

3. A topological sorting TREE-TS(V,E) of a rooted tree G = (V,E) can be computed re-
cursively as follows. Sort the vertices in each subtree hanging from the root, and order
the root last. (This is a simple depth-first search in the tree.)

Problems

4.1 The output of Algorithm TS(V,E) when input the DAG depicted in Figure 4.2 is listed in
Example 2 on page 46.

Give another permutation that is a valid output of the algorithm on the same input.
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4.2 Prove Corollary 4.2 directly without reducing it to Lemma 4.1.

4.3 Consider a graph G = (V,E) and a subset of vetrices U ⊆ V . Let Ev
△

= {e ∣ e enters v or emanates from v}.
The induced subgraph G[U] is the graph G′ = (U,E′), where the edge set E′ is defined by

E′ △= E ∖ ( ⋃
v∈V ∖V ′

Ev) .
Prove the following claim.

Claim 4.10 If a graph G = (V,E) is a DAG, then the induced graph G[U] is also a DAG.

4.4 Consider a DAG G = (V,E). Recall the reversed DAG G′ = (V,E′) mentioned in Corol-
lary 4.2, that is, given a DAG G = (V,E), the reversed DAG G′ = (V,E′), is defined by

E′ △= {(v,u) ∈ V × V ∣ (u, v) ∈ E}.
Prove the following claims.

Claim 4.11 A graph G = (V,E) is a DAG if and only if the graph G′ = (V,E′) is a DAG.

Claim 4.12 Let π denote a toplogical sorting of a DAG G. Then τ(v) △= (n − 1) − π(v) is a
topological sorting of the revered DAG G′.

4.5 Let G = (V,E) denote a directed graph. Prove that there exists a topological ordering of G
if and only if G is a DAG.

4.6 Assume that a directed graph G = (V,E) is not a DAG. What will happen if we execute
Algorithm TS on the input (V,E)? (Consider separately the case that ∣V ∣ = 1 and ∣V ∣ > 1.)

4.7 Suggest (simple) modifications to Algorithm TS so that: (i) if the input G is a DAG, then
the algorithm outputs a topological ordering of the vertices of G, and (ii) if the input G is not
a DAG, then the algorithm outputs “G is not a DAG”. Prove the correctness of the modified
algorithm.

4.8 Design a algorithm for topological sorting that recurses by removing a source rather than
sink. Prove the correctness of your algorithm.

4.9 Consider the algorithm described in Example 3.

1. Write a detailed recursive algorithm TS-TREE(V,E) that computes a topological sorting
of a rooted tree G = (V,E).

2. Execute your algorithm on the rooted tree depicted in Figure 6.1 on page 74.

3. Prove the correctness of your algorithm by induction.

4.10 Modify Algorithm longest-path-lengths(V,E) so that it outputs a longest path for each v
(rather than its length). Prove the correctness of your algorithm.
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4.11 Let G = (V,E) denote a DAG. Let Γv denote a path that ends in v ∈ V . Let ℓ denote the
length of the path Γv. Denote the vertices and edges in Γv by

u0
e0Ð→ u1

e1Ð→ u2⋯uℓ−1
eℓ−1Ð→ uℓ = v .

Let Γv(i) denote the prefix of Γv of length i, namely,

u0
e0Ð→ ⋯

ei−1Ð→ ui .

Prove the following claim.

Claim 4.13 If Γv is a longest path ending in v, then length of a longest path ending in ui is i.

Try to use Claim 4.13 for a different proof of Theorem 4.5.

4.12 Design an algorithm that satisfies the following specification. Prove the correctness of
your algorithm.

Input: A rooted tree G = (V,E), and a vertex v ∈ V .

Output: A path from v to the root of G.

Hint: see the proof of Theorem 4.6
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Perhaps the most natural use of computers is to perform arithmetic operations. Even a
simple calculator can add, subtract, multiply, and divide numbers. This leads to the following
question: how are numbers stored in a calculator?

You have probably heard the claim that “computers only manipulate zeros and ones”. In
particular, this claim implies that computers use only zeros and ones to represent numbers. In
other words, numbers (as well as everything else) are represented by sequences of zeros and
ones.

In this chapter we show how natural numbers (i.e., nonnegative integers) can be represented
by sequences of zeros and ones. The representation we use is called binary representation. Our
main goal in this chapter is to compute the binary representation of a given natural number.

5.1 Division and Modulo

In this section we consider the outcome of dividing a natural number a by a positive natural
number b. If a is divisible by b, then we obtain a quotient q that is a natural number. Namely,
a = q ⋅ b, with q ∈ N.

However, we also want to consider the case that a is not divisible by b. In this case, division
is defined as follows. Consider the two consecutive integer multiples of b that sandwich a,
namely:

q ⋅ b ≤ a < (q + 1) ⋅ b.
The quotient is defined to be q. The remainder is defined to be r

△

= a − q ⋅ b. Clearly, 0 ≤ r < b.
Note that the quotient q simply equals ⌊a

b
⌋.

57
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Notation. Let (a mod b) denote the remainder obtained by dividing a by b.

Examples

1. 3 mod 5 = 3 and 5 mod 3 = 2.

2. 999 mod 10 = 9 and 123 mod 10 = 3.

3. a mod 2 equals 1 if a is odd, and 0 if a is even. Indeed, if a is even, then a = 2x, and then
a − 2 ⋅ ⌊a

2
⌋ = a − 2 ⋅ ⌊2x

2
⌋ = a − 2x = 0.

If a is odd, then a = 2x + 1, and then a − 2 ⋅ ⌊a
2
⌋ = a − 2 ⋅ ⌊2x+1

2
⌋ = a − 2 ⌊x + 1

2
⌋ = a − 2x = 1.

4. a mod b ≥ 0. Indeed, b ⋅ ⌊a
b
⌋ ≤ b ⋅ a

b
= a. Therefore, a − b ⋅ ⌊a

b
⌋ ≥ a − a = 0.

5. a mod b ≤ b−1. Let q = ⌊a
b
⌋. This means that b ⋅q ≤ a < b ⋅q+ b. Hence, a− b ⋅ ⌊a

b
⌋ = a− b ⋅q <

a − (a − b) = b, which implies that a mod b < b. Since a mod b is an integer, we conclude
that a mod b ≤ b − 1.

5.2 Bits and Strings

In decimal numbers, the basic unit of information is a digit , i.e., a number in the set {0,1, . . . ,9}.
In digital computers, the basic unit of information is a bit .

Definition 5.1 A bit is an element in the set {0,1}.
Since bits are the basic unit of information, we need to represent numbers using bits. How is

this done? Numbers are represented in many ways in computers: binary representation, BCD,
floating-point, two’s complement, sign-magnitude, etc.. The most basic representation is binary
representation. To define binary representation, we first need to define binary strings.

Definition 5.2 A binary string is a finite sequence of bits.

There are many ways to denote strings: as a sequence {Ai}n−1i=0 , as a vector A[0 ∶ n − 1], or
simply by A⃗ if the indexes are known. We often use A[i] to denote Ai.

A basic operation that is applied to strings is called concatenation. Given two strings
A[0 ∶ n − 1] and B[0 ∶m − 1], the concatenated string is a string C[0 ∶ n +m − 1] defined by

C[i] △= ⎧⎪⎪⎨⎪⎪⎩
A[i] if 0 ≤ i < n,

B[i − n] if n ≤ i ≤ n +m − 1.

We denote the operation of concatenating string by ○, e.g., C⃗ = A⃗ ○ B⃗.

Examples

1. Let us consider the string {Ai}3i=0, where A0 = 1, A1 = 1, A2 = 0, A3 = 0. We often wish to
abbreviate and write A[0 ∶ 3] = 1100. This means that when we read the string 1100, we
assign the indexes 0 to 3 to this string from left to right.

2. Consider the string A[0 ∶ 5] = 100101. The string A⃗ has 6 bits, hence n = 6. The notation
A[0 ∶ 5] is zero based , i.e., the first bit in A⃗ is A[0]. Therefore, the third bit of A⃗ is A[2]
(which equals 0).
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3. We can define strings with arbitrary first and last indexes. For example, A[3 ∶ 5] = 110,
means that A⃗ is a 3-bit string A3A4A5, where A3 = 1, A4 = 1, and A5 = 0.

4. We can use a formula for the ith bit of a string. For example, let Bi equal 1 if i is odd,
and 0 if i is even. This means that B[0 ∶ 4] = 01010.

5. Examples of concatenation of strings. Let A[0 ∶ 2] = 111, B[0 ∶ 1] = 01, C[0 ∶ 1] = 10, then:

A⃗ ○ B⃗ = 111 ○ 01 = 11101 ,

A⃗ ○ C⃗ = 111 ○ 10 = 11110 ,

B⃗ ○ C⃗ = 01 ○ 10 = 0110 ,

B⃗ ○ B⃗ = 01 ○ 01 = 0101 .

5.3 Bit Ordering

So far, we have used the convention that the indexes of the bits of string increase from left to
right. For example, we wrote A[0 ∶ 3], meaning the sequence (A0,A1,A2,A3). In particular,
the first bit A0 appears to the left of the second bit A1, etc. This convention is natural for
text that is written left-to-right. When we write a number, we place the less significant digit
to the right. For example, in the number 123, the digit 3 is less significant than the digit 2
which is less significant than the digit 1. It seems natural to assign the index zero to the units
digits. Therefore, If we index the digits so that the index of the units digit is zero, then natural
numbers are written in descending index order, e.g., (A3,A2,A1,A0). In this text we continue
with habit of using both ascending indexes and descending indexes. Indeed, bit ordering can
be a very confusing issue; in Chapter 8 we discuss further examples of the problems caused by
different bit orderings.

Let i ≤ j. Since we allow bidirectionality, both A[i ∶ j] and A[j ∶ i] denote the same sequence{Ak}jk=i. However, when we write A[i ∶ j] as a string, the leftmost bit is A[i] and the rightmost
bit is A[j]. On the other hand, when we write A[j ∶ i] as a string, the leftmost bit is A[j] and
the rightmost bit is A[i].
We now define the least significant bit and the most significant bit of a string.

Definition 5.3 The least significant bit of the string A[i ∶ j] is the bit A[k], where k
△

=

min{i, j}. The most significant bit of the string A[i ∶ j] is the bit A[ℓ], where ℓ △=max{i, j}.
The abbreviations LSB and MSB are used to abbreviate the least significant bit and the most
significant bit, respectively.

Examples

1. The string A[3 ∶ 0] and the string A[0 ∶ 3] denote the same 4-bit string. However, when
we write A[3 ∶ 0] = 1100 it means that A[3] = A[2] = 1 and A[1] = A[0] = 0. When we
write A[0 ∶ 3] = 1100 it means that A[3] = A[2] = 0 and A[1] = A[0] = 1.

2. The least significant bit (LSB) of A[0 ∶ 3] = 1100 is A[0] = 1. The most significant bit
(MSB) of A⃗ is A[3] = 0.

3. The LSB of A[3 ∶ 0] = 1100 is A[0] = 0. The MSB of A⃗ is A[3] = 1.
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4. The least significant and most significant bits are determined by the indexes. In our
convention, it is not the case that the LSB is always the leftmost bit. Namely, LSB in
A[i ∶ j] is the leftmost bit, whereas in A[j ∶ i], the leftmost bit is the MSB.

5.4 Binary Representation

We are now ready to define the natural number represented by a binary string A[n − 1 ∶ 0].
Definition 5.4 The natural number, a, represented in binary representation by the binary
string A[n − 1 ∶ 0] is defined by

a
△

=
n−1
∑
i=0

A[i] ⋅ 2i.
In binary representation, each bit has a weight associated with it. The weight of the bit

A[i] is 2i.
Notation. Consider a binary string A[n − 1 ∶ 0]. We introduce the following notation:

⟨A[n − 1 ∶ 0]⟩ △= n−1
∑
i=0

A[i] ⋅ 2i.
To simplify notation, we often denote strings by capital letters (e.g., A, B, S) and we denote
the number represented by a string by a lowercase letter (e.g., a, b, and s).

Leading Zeros. Consider a binary string A[n − 1 ∶ 0]. Extending A⃗ by leading zeros means
concatenating zeros in indexes higher than n−1. Namely, (i) extending the length of A[n−1 ∶ 0]
to A[m − 1 ∶ 0], for m > n, and (ii) defining A[i] = 0, for every i ∈ [m − 1 ∶ n].

The following lemma states that extending a binary string by leading zeros does not change
the number it represents in binary representation.

Lemma 5.1 Let m > n. If A[m − 1 ∶ n] is all zeros, then ⟨A[m − 1 ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩.
Proof: We simply follow the definition of ⟨A[m − 1 ∶ 0]⟩ and the fact that A[m − 1 ∶ n] is all
zeros to obtain:

⟨A[m − 1 ∶ 0]⟩ △= m−1
∑
i=0

A[i] ⋅ 2i
=
n−1
∑
i=0

A[i] ⋅ 2i +m−1
∑
i=n

A[i] ⋅ 2i
= ⟨A[n − 1 ∶ 0]⟩ + 0.

✷

Representable Ranges. The following lemma bounds the value of a number represented by
a k-bit binary string.

Lemma 5.2 Let A[k − 1 ∶ 0] denote a k-bit binary string. Then, 0 ≤ ⟨A[k − 1 ∶ 0]⟩ ≤ 2k − 1.
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Proof: Since 0 ≤ A[i] ≤ 1 for 0 ≤ i ≤ k − 1 and since ∑k−1i=0 2i = 2k − 1, then

0 ≤ ⟨A[k − 1 ∶ 0]⟩ = k−1
∑
i=0

A[i] ⋅ 2i ≤ k−1
∑
i=0

2i = 2k − 1,

as required. ✷

Examples

1. Consider the strings: A[2 ∶ 0] △= 000,B[3 ∶ 0] △= 0001, and C[3 ∶ 0] △= 1000. The natural
numbers represented by the binary strings A,B and C are as follows.

⟨A[2 ∶ 0]⟩ = A[0] ⋅ 20 +A[1] ⋅ 21 +A[2] ⋅ 22 = 0 ⋅ 20 + 0 ⋅ 21 + 0 ⋅ 22 = 0 ,⟨B[3 ∶ 0]⟩ = B[0] ⋅ 20 +B[1] ⋅ 21 +B[2] ⋅ 22 +B[3] ⋅ 23 = 1 ⋅ 20 + 0 ⋅ 21 + 0 ⋅ 22 + 0 ⋅ 23 = 1 ,⟨C[3 ∶ 0]⟩ = C[0] ⋅ 20 +C[1] ⋅ 21 +C[2] ⋅ 22 +C[3] ⋅ 23 = 0 ⋅ 20 + 0 ⋅ 21 + 0 ⋅ 22 + 1 ⋅ 23 = 8 .

2. For A[5 ∶ 0] = 101001, ⟨A[5 ∶ 0]⟩ = 1 ⋅ 25 + 0 ⋅ 24 + 1 ⋅ 23 + 0 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 20 = 41. Note that
the rightmost bit has the “lightest” weight and the leftmost bit is the “heaviest” among
the six bits of A. Indeed, the rightmost bit is the LSB, and the leftmost bit the MSB.

3. For B[4 ∶ 0] = 11100, ⟨B[4 ∶ 0]⟩ = 0 ⋅ 20 + 0 ⋅ 21 + 1 ⋅ 22 + 1 ⋅ 23 + 1 ⋅ 24 = 28. Note that if the
LSB is 1, then the corresponding natural number is odd, and if the LSB is 0, then the
corresponding natural number is even.

4. Divisibility by powers of 2. Recall that the natural number represented by the binary
string A[n − 1 ∶ 0] is:

⟨A[n − 1 ∶ 0]⟩ △= n−1
∑
i=0

A[i] ⋅ 2i.
We already noticed that if the LSB of A is ‘0’ then ⟨A[n − 1 ∶ 0]⟩ is even, furthermore, if
both A[0] and A[1] equal ‘0’ then the number ⟨A[n − 1 ∶ 0]⟩ is divisible by 4 = 22, e.g. 100
represents the number 4, 1100 represents the number 12. We generalize this property in
the following lemma.

Lemma 5.3 Let A[n−1 ∶ 0] be a binary string, and let a
△

= ⟨A[n − 1 ∶ 0]⟩, then a is divisible
by 2k if A[i] = 0 for all 0 ≤ i ≤ k − 1.

Proof: The proof is as follows

a

2k
=
∑n−1i=0 A[i] ⋅ 2i

2k

=
∑n−1i=k A[i] ⋅ 2i

2k

=
∑n−1−ki=0 A[i + k] ⋅ 2i+k

2k

=
2k ⋅∑n−1−ki=0 A[i + k] ⋅ 2i

2k

=
n−1−k
∑
i=0

A[i + k] ⋅ 2i .
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Where the first line follows Definition 5.4. The second line follows from the assumption
that A[i] = 0 for all 0 ≤ i ≤ k − 1. The third line follows from changing the indices of the
summation. The fourth line follows simply by moving the 2k term out of the summation.

The lemma follows since summing natural numbers result in a natural number. ✷

5. What is the largest number representable by the following number of bits: (i) 8 bits, (ii) 10
bits, (iii) 16 bits, (iv) 32 bits, and (v) 64 bits?

Let A[k − 1 ∶ 0] denote a k bit string. Let ak
△

= ⟨A[k − 1 ∶ 0]⟩ then Lemma 5.2 states that,
0 ≤ ak ≤ 2k − 1. Hence,

(i) 0 ≤ a8 ≤ 28 − 1 = 255.

(ii) 0 ≤ a10 ≤ 210 − 1 = 1023.

(iii) 0 ≤ a16 ≤ 216 − 1 = 65535.

(iv) 0 ≤ a32 ≤ 232 − 1 = 4294967295.

(v) 0 ≤ a64 ≤ 264 − 1 = 18446744073709551615.

6. Now we can discuss a matter that is close to our hearts, that is the relation between word
length and memory size in a computer. A central processing unit (CPU) addresses its
memory modules by a fixed size bit string which is called a word. Nowadays it is typical
that the CPU’s word is 32 and 64 bits.

Let us define some units of measurement in this context: A byte (B) is 8 bit length word.
A kilo-bit (Kb) is 210 bits. Hence, a kilo-byte (KB) is 8 ⋅ 210 bits. A mega-bit (Mb) is
210 ⋅ 210 = 220 bits. Analogously, A mega-byte (MB) is 8 ⋅ 220 bits. A giga-bit (Gb) is
210 ⋅ 220 = 230 bits. Analogously, A giga-byte (GB) is 8 ⋅ 230 bits. If we consider words of ω
bits, then a giga-word (GW) is ω ⋅ 230 bits.

What is the size of single memory module in GW if the CPU’s word length is 32 bits?

Since a32 attains values in {0, . . . ,232−1} it implies that the CPU can address 232 different
values, i.e. to address 232 words. That means that if your personal computer (PC) has a
32-bit CPU, then there is no need to purchase more than 4 GW of memory. Note that
one should check whether the basic data-item accessible by the CPU is a word or a byte.
Here we assume that the memory is word addressable. In Part IV we consider the design
of such a CPU.

7. Consider C[6 ∶ 0] = 0001100 and D[3 ∶ 0] = 1100. Note that ⟨C⟩ = ⟨D⟩ = 12. Since
the leading zeros do not affect the value represented by a string, a natural number has
infinitely many binary representations.

8. Consider the string A[3 ∶ 0] = 0111. The extension of A[3 ∶ 0] by two leading zeros results
with the string A[5 ∶ 0] = 000111.

5.5 Computing a Binary Representation

Our goal in this section is to show how to compute a binary representation of a natural number.
In addition, we prove that every natural number has a unique binary representation.

An algorithm for computing a binary representation is listed as Algorithm 5.1. The algo-
rithm, called BR(x,k), is specified as follows:
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Inputs: x ∈ N and k ∈ N+, where x is a natural number for which a binary representation is
sought, and k is the length of the binary string that the algorithm should output.

Output: The algorithm outputs “fail” or a k-bit binary string A[k − 1 ∶ 0].
Functionality: The relation between the inputs and the output is as follows:

1. If 0 ≤ x < 2k, then the algorithm outputs a k-bit string A[k − 1 ∶ 0] that satisfies
x = ⟨A[k − 1 ∶ 0]⟩.

2. If x ≥ 2k, then the algorithm outputs “fail”.

The algorithm is recursive. This means that it is described using base cases and reduction
rules. The base cases deal with two cases: (i) x is too large, in which case a “fail” is returned,
and (ii) k = 1, in which case x ∈ {0,1}, and the binary representation of x is simply the bit x.

The reduction rules first compute the most-significant bit (MSB) of the binary representa-
tion. Next, the algorithm recursively computes the remaining k−1 bits. The output is the MSB
concatenated with the remaining k − 1 bits.

Algorithm 5.1 BR(x,k) - An algorithm for computing a binary representation of a natural
number a using k bits.

1. Base Cases:

(a) If x ≥ 2k then return (fail).

(b) If k = 1 then return (x).
2. Reduction Rule:

(a) If x ≥ 2k−1 then return (1 ○BR(x − 2k−1, k − 1)).
(b) If x ≤ 2k−1 − 1 then return (0 ○BR(x,k − 1)).

The correctness of algorithm BR(x,k) is summarized in the following theorem.

Theorem 5.4 If x ∈ N, k ∈ N
+, and x < 2k, then algorithm BR(x,k) returns a k-bit binary

string A[k − 1 ∶ 0] such that ⟨A[k − 1 ∶ 0]⟩ = x.
Proof: The proof is by induction on k. The induction basis, for k = 1 holds since x < 21

implies that x ∈ {0,1}. Hence x is represented by the 1-bit string A[0] = x.
The induction hypothesis states that for every x < 2k, algorithm BR(x,k) outputs a k-bit

binary string A[k − 1 ∶ 0] that ⟨A[k − 1 ∶ 0]⟩ = x.
We now prove the induction step for k + 1. Consider a number x such that x < 2k+1. We

need to prove that BR(x,k+1) returns a binary representation of x. We consider the two cases
of the reduction rules:

1. Assume x ≥ 2k. In this case, the reduction rule returns A[k] = 1 and A[k − 1 ∶ 0] is the
output of BR(x − 2k, k). Since x < 2k+1, it follows that x − 2k < 2k. Hence the induction
hypothesis when applied to BR(x − 2k, k) implies that

⟨A[k − 1 ∶ 0]⟩ = x − 2k. (5.1)
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Hence,

x = 2k + (x − 2k)
= A[k] ⋅ 2k + ⟨A[k − 1 ∶ 0]⟩
= ⟨A[k ∶ 0]⟩,

where the second line follows from A[k] = 1 and Eq. 5.1. The third line follows by the
definition of binary representation, and the induction step follows for this case.

2. Assume x ≤ 2k − 1. In this case, the reduction rule returns A[k] = 0 and A[k − 1 ∶ 0] is the
output of BR(x,k). Again, by applying the induction hypothesis to BR(x,k).

⟨A[k − 1 ∶ 0]⟩ = x.
Hence,

x = A[k] ⋅ 2k + ⟨A[k − 1 ∶ 0]⟩
= ⟨A[k ∶ 0]⟩,

and the induction step follows for this case.

This completes the induction step, and the theorem follows. ✷

One may ask the following question: How can we know for sure that none of the recursive
calls returns a “fail”? Is it possible to have x < 2k in the initial call of BR(x,k), but to have
x′ ≥ 2k

′

in one of the recursive calls? The proof of Theorem 5.4 indirectly shows that such an
“overflow” cannot happen. We can directly prove that such an “overflow” cannot happen by
induction on k. The induction basis, for k = 1 is trivial since there are no recursive calls. The
induction step is proven as follows. Assume that x < 2k. In the recursive call, if x is “large”,
then we subtract 2k−1 from x to make sure that x − 2k−1 < 2k−1 in the recursive call. By the
induction hypothesis, all recursive calls do not “overflow”. If x < 2k−1, then by the induction
hypothesis, the recursive calls do not overflow.

The following corollary states that every positive integer has a binary representation of
logarithmic length.

Corollary 5.5 Every positive integer x has a binary representation by a k-bit binary string if
k > log2(x).
Proof: By Theorem 5.4, if x < 2k, then BR(x,k) is a k-binary string that represents x. Take
a log to obtain log2(x) < k. ✷

Theorem 5.6 The binary representation function ⟨⟩k ∶ {0,1}k → {0, . . . ,2k − 1} defined by

⟨A[k − 1 ∶ 0]⟩k △= k−1
∑
i=0

A[i] ⋅ 2i
is a bijection (i.e., one-to-one and onto) from {0,1}k to {0, . . . ,2k − 1}.



5.5. COMPUTING A BINARY REPRESENTATION 65

Proof: Lemma 5.2 states that every k-bit string represents a number in {0, . . . ,2k − 1}, thus
the range of ⟨⟩k is indeed in {0, . . . ,2k − 1}. Corollary 5.5 states that every number in the set{0, . . . ,2k − 1} can be represented by a k-bit string. Hence ⟨BR(x,k)⟩k = x, and the binary
representation function ⟨⟩k ∶ {0,1}k → {0, . . . ,2k − 1} is onto.

The cardinality of the domain and the range of the function ⟨⟩k is 2k. By Lemma 2.10, the
function ⟨⟩k is also one-to-one, as required. ✷

Corollary 5.7 (unique binary representation) Every number in {0, . . . ,2k−1} has a unique
binary representation by a k-bit string.

Proof: Theorem 5.6 states that ⟨⟩k is one-to-one and onto. Since ⟨⟩k is onto, then every
x ∈ {0, . . . ,2k − 1} has at least one binary representation. Since ⟨⟩k is one-to-one, then every
x ∈ {0, . . . ,2k − 1} has at most one binary representation. The corollary follows. ✷

Examples

1. Computing a binary representation. Compute a binary representation by applying Algo-
rithm 5.1 on the following inputs: (i) (2,1) , and (ii) (7,3).
(a) Since 2 ≥ 21 the algorithm outputs “fail”.

(b) The full execution of the algorithm is as follows.

i. The input(7,3) does not match any of the bases, so we proceed to the reduction
rules.

ii. Since 7 ≥ 23−1 = 4 we apply the first reduction rule, i.e.,

return (1 ○BR(7 − 23−1 = 3,2)) .
A. The input (3,2) does not match any of the bases, so we proceed to the

reduction rules.

B. Since 3 ≥ 22−1 = 2 we apply the 1st reduction rule, i.e.,

return (1 ○BR(3 − 22−1 = 1,1)) .
• The input (1,1) matches the second base case, hence we return ‘1’.

C. The recursive call returns ‘11’.

iii. The last recursive call returns ‘111’.

Indeed, ⟨111⟩ = 7, as required.

2. We claim that when a natural number is multiplied by two, its binary representation is
“shifted left” while a single zero bit is padded from the right. That property is summarized
in the following lemma.

Lemma 5.8 Let a ∈ N. Let A[k − 1 ∶ 0] be a k-bit string such that a = ⟨A[k − 1 ∶ 0]⟩. Let

B[k ∶ 0] △= A[k − 1 ∶ 0] ○ 0, then
2 ⋅ a = ⟨B[k ∶ 0]⟩.
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Proof:

⟨B[k ∶ 0]⟩ =
k

∑
i=0
B[i] ⋅ 2i

=
k

∑
i=1
B[i] ⋅ 2i

=
k−1
∑
i=0

B[i + 1] ⋅ 2i+1
= 2 ⋅

k−1
∑
i=0

B[i + 1] ⋅ 2i
= 2 ⋅

k−1
∑
i=0

A[i] ⋅ 2i
= 2 ⋅ ⟨A[k − 1 ∶ 0]⟩
= 2 ⋅ a .

The first line follows from Definition 5.4 and by the definition of the concatenation opera-
tion. The second line follows since the LSB of the k+1-bit string B[k ∶ 0] is ‘0’. The third
line follows by index manipulation. The fourth line follows from the definition of B⃗. The
fifth line follows from, again, Definition 5.4. The last line follows from the assumption
that a = ⟨A[k − 1 ∶ 0]⟩. The lemma follows. ✷

3. We consider an additional algorithm BR′(x,k) for computing a binary representation.
The algorithm is listed as Algorithm 5.2. The algorithm’s specification is identical to the
BR(x,k) algorithm.

The base cases of this algorithm are identical to the base cases of the BR(x,k) algorithm.
The reduction rules of the BR′(x,k) algorithm first compute the LSB of the binary repre-
sentation. Next the algorithm recursively computes the remaining k − 1 bits. The output
is the LSB concatenated with the remaining k − 1 bits.

Algorithm 5.2 BR′(x,k) - An LSB-to-MSB algorithm for computing a binary representation
of a natural number a using k bits.

(a) Base Cases:

i. If x ≥ 2k then return (fail).

ii. If k = 1 then return (x).
(b) Reduction Rule:

i. If x is even then return (BR′(x/2, k − 1) ○ 0).
ii. If x is odd then return (BR′((x − 1)/2, k − 1) ○ 1).
The correctness of algorithm BR′(x,k) is summarized in the following theorem.

Theorem 5.9 If x ∈ N, k ∈ N
+, and x < 2k, then algorithm BR′(x,k) returns a k-bit

binary string A[k − 1 ∶ 0] such that ⟨A[k − 1 ∶ 0]⟩ = x.
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Proof: The proof is by induction on k. The induction basis, for k = 1 holds since x < 21

implies that x ∈ {0,1}. Hence x is represented by the 1-bit string A[0] = x.
The induction hypothesis states that for every x < 2k, algorithm BR′(x,k) outputs a k-bit
binary string A[k − 1 ∶ 0] that ⟨A[k − 1 ∶ 0]⟩ = x.
We now prove the induction step for k + 1. Consider a number x such that x < 2k+1. We
consider the two cases of the reduction rules:

(a) Assume x is even. In this case, the reduction rule returns A[0] = 0 and A[k ∶ 1]
is the output of BR′(x/2, k). Since x is even, it follows that x/2 ∈ N. Since x <
2k+1, it follows that x/2 < 2k. Hence the induction hypothesis when applied to
BR′(x/2, (k + 1) − 1) implies that

k−1
∑
i=0

A[i + 1] ⋅ 2i = x/2. (5.2)

Hence,

x = 2 ⋅ (x/2)
= 2 ⋅

k−1
∑
i=0

A[i + 1] ⋅ 2i
= ⟨A[k ∶ 0]⟩,

where the second line follows from Eq. 5.2. The third line follows from Lemma 5.8
and since A[0] = 0. The induction step follows for this case.

(b) Assume x is odd. In this case, the reduction rule returns A[0] = 1 and A[k ∶ 1] is
the output of BR′((x − 1)/2, k). Since x is odd, it follows that (x − 1)/2 ∈ N. Since
x < 2k+1, it follows that (x − 1)/2 < 2k.Hence the induction hypothesis when applied
to BR′((x − 1)/2, (k + 1) − 1) implies that

k−1
∑
i=0

A[i + 1] ⋅ 2i = (x − 1)/2. (5.3)

Hence,

x − 1 = 2 ⋅ ((x − 1)/2)
= 2 ⋅

k−1
∑
i=0

A[i + 1] ⋅ 2i
= ⟨A[k ∶ 1] ○ 0⟩ .

Where the second line follows from Eq. 5.3. The third line follows from Lemma 5.8.
This implies that x = ⟨A[k ∶ 1] ○ 1⟩. The induction step follows for this case.

This completes the induction step, and the theorem follows. ✷

4. Hexadecimal Representation. In binary representation the set of digits is {0,1}. In
decimal representation the set of digits is {0,1, . . . ,9}. We now present a representation,
called hexadecimal representation, in which the set of digits is {0,1, . . . ,15}. Accordingly,
the radix is 16. This means that the weight of the ith digit is 16i.
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In hexadecimal representation, a number is represented by a string of digits over the
set {0,1, . . . ,15}. One technicality, is that the digits above 9 require two letters. This
inconvenience is mitigated by using the letters A,B, . . . , F with the following meaning:
A = 10, B = 11, C = 12, D = 13, E = 14, and F = 15.

A hexadecimal digit is an element in {0,1, . . . ,9,A,B, . . . , F}. A hexadecimal string is a
finite sequence of hexadecimal digits.

Definition 5.5 The natural number, h, represented in hexadecimal representation by the
hexadecimal string H[n − 1 ∶ 0] is defined by

h
△

=
n−1
∑
i=0

H[i] ⋅ 16i .
Consider the following examples of hexadecimal representation.

(a) H[2 ∶ 0] = A02.
h =H[0] ⋅ 160 +H[1] ⋅ 161 +H[2] ⋅ 162 = 2 ⋅ 160 + 0 ⋅ 161 + 10 ⋅ 162 = 2 + 0 + 2560 = 2562 .

(b) H = FFF .

h =H[0] ⋅160+H[1] ⋅161+H[2] ⋅162 = 15 ⋅160+15 ⋅161+15 ⋅162 = 15+240+3840 = 4095.

(c) H = ABC.

h =H[0] ⋅160+H[1] ⋅161+H[2] ⋅162 = 12 ⋅160+11 ⋅161+10 ⋅162 = 12+176+2560 = 2748.

5. Computing a Hexadecimal Representation. Our goal in this example is to show how
to compute a hexadecimal representation of a natural number. Recall that in Section 5.5
and in Example 3 we showed how to compute the binary representation of a given natural
number. One could adapt these algorithms to compute the hexadecimal representation.
Instead, we show how to “convert” a binary string to a hexadecimal string such that both
strings represent the same natural number. The conversion in the other direction is done
similarly and is left as an exercise.

The conversion is as follows. Let X[n−1 ∶ 0] denote an n-bit binary string. For simplicity
assume that n = 4k for some k ∈ N (if n is not divisible by 4, simply add leading zeros).
Partition X[n−1 ∶ 0] into k disjoint blocks of 4 bits: X[3 ∶ 0],X[7 ∶ 4], etc. LetHX[k−1 ∶ 0]
denote a k-digit hexadecimal string in which HX[i] equals the number represented by the
ith 4-bit block of X[n − 1 ∶ 0]. Formally

HX[i] = ⟨X[4i + 3 ∶ 4i]⟩ ,
for every 0 ≤ i ≤ k − 1.

For example:

(a)

X[7 ∶ 0] = 0010 1010 ,

HX[1 ∶ 0] = 2 A .

Note that the hexadecimal digit ‘2’ corresponds to the binary string ‘0010’, and that
the hexadecimal digit ‘A’ corresponds to the binary string ‘1010’.
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(b)

X[15 ∶ 0] =116 ,
HX[3 ∶ 0] =FFFF .

Indeed, the natural number represented by the binary string X is 216 − 1, and the
natural number represented by HX is 164 − 1 = 216 − 1.

We claim that this conversion has the following property.

Lemma 5.10 The number represented by HX[k − 1 ∶ 0] is ⟨X[n − 1 ∶ 0]⟩.
Proof: Let h denote the number represented by HX[k − 1 ∶ 0], then:

h =
k−1
∑
i=0

HX[i] ⋅ 16i
=

k−1
∑
i=0
⟨X[4i + 3 ∶ 4i]⟩ ⋅ 16i

=
k−1
∑
i=0
(4i+3∑
ℓ=4i

X[ℓ] ⋅ 2ℓ−4i) ⋅ 16i
=

k−1
∑
i=0
(4i+3∑
ℓ=4i

X[ℓ] ⋅ 2ℓ ⋅ 2−4i) ⋅ 24i
=

n−1
∑
i=0

X[i] ⋅ 2i = ⟨X[n − 1 ∶ 0]⟩

where the first equality follows from Definition 5.5. The second equality follows from the
definition of HX . The third equality follows from Definition 5.4. The fifth equality follows
from the definition of HX . The last equality follows from Definition 5.4, as required. ✷

5.6 More on Unique Binary Representation∗

In the following theorem we present an alternative proof to Theorem 5.6 that every number
has a unique binary representation. This is, of course, false since we can add leading zeros to
a string without changing the number it represents. There are two ways to fix this problem.
First, we claim that if 0 ≤ a < 2k, then a has a unique binary representation by a k-bit string.
Second, we could claim that if two strings represent the same number, then one string is an
extension of the other by leading zeros.

We first prove two lemmas.

Lemma 5.11 If ai ∈ {−1,0,1} for every 0 ≤ i < n, then

−(2n − 1) ≤ n−1
∑
i=0

ai ⋅ 2
i ≤ 2n − 1.
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Proof: The upper bound follows from ai ≤ 1 and by bounding the sum of the geometric series

∑n−1i=1 2i. The lower bound follows from ai ≥ −1. Thus,

n−1
∑
i=0

ai ⋅ 2
i ≥ −

n−2
∑
i=0

2i

= −(2n − 1).
✷

Lemma 5.12 If ai ∈ {−1,0,1} for every 0 ≤ i < n, then

n−1
∑
i=0

ai ⋅ 2
i = 0 ⇐⇒ a0 = ⋯ = an−1 = 0.

Proof: If a0 = ⋯ = an−1 = 0, then clearly ∑n−1i=0 ai ⋅ 2
i = 0. To prove the converse direction,

assume that there exists an i such that ai ≠ 0. Let

i∗ △=max{i ∣ ai ≠ 0}.
Note that i∗ is well defined since there the set {i ∣ ai ≠ 0} is not empty.

Note that since ai = 0, for every i ≥ i∗, it follows that

n−1
∑
i=0

ai ⋅ 2
i =

i∗

∑
i=0
ai ⋅ 2

i

= ai∗ ⋅ 2
i∗
+

i∗−1
∑
i=0

ai ⋅ 2
i.

By Lemma 5.11,

−(2i∗ − 1) ≤ i∗−1
∑
i=0

ai ⋅ 2
i ≤ 2i

∗

− 1.

Now consider two cases:

1. If ai∗ = 1, then

n−1
∑
i=0

ai ⋅ 2
i = 2i

∗

+

i∗−1
∑
i=0

ai ⋅ 2
i

≥ 2i
∗

− (2i∗ − 1) > 0.

2. If ai∗ = −1, then

n−1
∑
i=0

ai ⋅ 2
i = −2i

∗

+

i∗−1
∑
i=0

ai ⋅ 2
i

≤ −2i
∗

+ (2i∗ − 1) < 0.

In both cases, ∑n−1i=0 ai ⋅ 2
i ≠ 0, as required, and the lemma follows. ✷

Theorem 5.13 Consider two binary strings A[n − 1 ∶ 0] and B[m − 1 ∶ 0], where m ≥ n. If⟨A⃗⟩ = ⟨B⃗⟩, then A[n − 1 ∶ 0] = B[n − 1 ∶ 0] and B[m − 1 ∶ n] is all zeros.
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Proof: The proof is by contradiction. Assume that ⟨A⃗⟩ = ⟨B⃗⟩, then
0 = ⟨A⃗⟩ − ⟨B⃗⟩ (5.4)

= (n−1∑
i=0

Ai ⋅ 2
i) − (m−1∑

i=0
Bi ⋅ 2

i)
= (n−1∑

i=0
(Ai −Bi) ⋅ 2i) + (m−1∑

i=n
(−Bi) ⋅ 2i) .

Since (Ai − Bi) ∈ {−1,0,1}, and (−Bi) ∈ {−1,0}, by Lemma 5.12, (1) Ai − Bi = 0 for every
0 ≤ i < n, and (2) Bi = 0 for every n ≤ i <m, and the theorem follows. ✷

Problems

5.1 Let a, c ∈ N and let b, d ∈ N+. Prove the following inequalities:

1. ⌈a
b
⌉ ≤ ⌊a

b
⌋ + 1.

2. b ⋅ ⌈a
b
⌉ ≥ a. Equality holds if and only of a is divisible by b.

3. ⌈a
b
+
c
d
⌉ ≤ ⌈a

b
⌉ + ⌈ c

d
⌉.

4. ⌈a⋅c
b
⌉ ≤ ⌈a

b
⌉ ⋅ c. Hint: prove by induction on c and use item 3.

5.2 What are the numbers represented by the following binary strings:

A[1 ∶ 0] = 10 ,

B[2 ∶ 0] = 110 ,

C[3 ∶ 0] = 1001 ,

D[3 ∶ 0] = 1110 .

5.3 Compute the binary representation by applying Algorithm 5.1 and 5.2 on the following
natural numbers: (i) 3, (ii) 8, and (ii) 15. Show a full execution of the Algorithm, including
the input you have chosen for every number, e.g., (3,2).

5.4 Generalize Lemma 5.8 as follows.

Lemma 5.14 Let B[k + ℓ − 1 ∶ 0] △= A[k − 1 ∶ 0] ○
ℓ zeros¬
0⋯0 , then

2ℓ ⋅ ⟨A[k − 1 ∶ 0]⟩ = ⟨B[k + ℓ − 1 ∶ 0]⟩.
5.5 Prove the other direction of Lemma 5.3, formulated as follows.

Lemma 5.15 Let A[n − 1 ∶ 0] be a binary string, and let a
△

= ⟨A[n − 1 ∶ 0]⟩, then a is divisible
by 2k only if A[i] = 0 for all 0 ≤ i ≤ k − 1.

5.6 This question deals with the conversion of a hexadecimal string to a binary string such that
both strings represent the same natural number. Let H[k − 1 ∶ 0] denote a k-digit hexadecimal
string. Let XH[n − 1 ∶ 0] denote an n-bit binary string. Answer the following questions:

1. Define the conversion, i.e., define the binary string XH as a function of the hexadecimal
string H.

2. Let h denote the number represented by the hexadecimal string H. Prove that

⟨XH⟩ = h .
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In this chapter we turn to a topic in mathematical logic called propositional logic. Proposi-
tional logic is a key tool in logical reasoning and is used to understand and even generate pre-
cise proofs. Our attraction to propositional logic is ignited by the ability to represent Boolean
functions by Boolean formulas. Some Boolean functions can be represented by short Boolean
formulas, thus offering a concise and precise way to describe Boolean functions.

6.1 Boolean Formulas

Building blocks. The building blocks of a Boolean formula are constants, variables, and
connectives.

1. A constant is either 0 or 1. As in the case of bits, we interpret a 1 as “true” and a 0
as a “false”. The terms constant and bit are synonyms; the term bit is used in Boolean
functions and in circuits while the term constants is used in Boolean formulas.

2. A variable is an element in a set of variables. We denote the set of variables by U . The
set U does not contain constants. Variables are usually denoted by upper case letters.

3. Connectives are used to build longer formulas from shorter ones. We denote the set of
connectives by C. We consider unary, binary, and higher arity connectives.

(a) There is only one unary connective called negation. Negation of a variable A is
denoted by not(A), ¬A, or Ā.
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and

X Y0

¬or

Figure 6.1: A parse tree that corresponds to the Boolean formula ((X or 0) and (¬Y )). The
rooted trees that are hanging from the root of the parse tree (the and connective) are bordered
by dashed rectangles.

(b) There are several binary connectives, the most common are and (denoted also by ∧ or
⋅) and or (denoted also by ∨ or +). A binary connective is applied to two formulas.
We later show the relation between binary connectives and Boolean functions B ∶{0,1}2 → {0,1}.

(c) A connective has arity j if it is applied to j formulas. The arity of negation is 1, the
arity of and is 2, etc.

To summarize we use the following notation:

U - the set of variables,

C - the set of connectives.

Parse trees. We use parse trees to define Boolean formulas.

Definition 6.1 A parse tree is a pair (G,π), where G = (V,E) is a rooted tree and π ∶ V →{0,1} ∪U ∪ C is a labeling function that satisfies:

1. A leaf is labeled by a constant or a variable. Formally, if v ∈ V is a leaf, then π(v) ∈{0,1} ∪U .

2. An interior vertex v is labeled by a connective whose arity equals the in-degree of v. For-
mally, if v ∈ V is an interior vertex, then π(v) ∈ C is a connective with arity degin(v).

We usually use only unary and binary connectives. Thus, unless stated otherwise, a parse tree
has an in-degree of at most two.

In Figure 6.1 a parse tree of a Boolean formula is depicted. The labels of the vertices are
written inside the vertices.

Boolean formulas. A Boolean formula is a string containing constants, variables, connec-
tives, and parenthesis. Every parse tree defines a Boolean formula. This definition is construc-
tive and the Boolean formula is obtained by an inorder traversal of the parse tree.

A listing of an inorder traversal that outputs the Boolean formula corresponding to a parse
tree is listed as Algorithm 6.1. The algorithm returns a string. In case the parse tree contains
a single node v, then the formula is simply π(v) (i.e., a constant or a variable). Otherwise,
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the formula is obtained by a applying a reduction rule. There are two cases depending on the
indegree of the root of the parse tree. (i) If the indegree of the root is one, then the root must
be labeled by a negation. In this case the output is the string (¬α), where α is the outcome of
a recursive call on the rooted subtree hanging from the root. Note that the parenthesis are part
of the output. Namely, in line 1 the algorithm returns a constant or a variable not delimited by
parenthesis. However, in lines 2(a)iv and 2(b)v, the output is delimited by parenthesis. (ii) If
the indegree of the root is two, then the root is labeled by a binary connective. The output in
this case is the string (α c β), where the root is labeled by the connective c, and α,β are the
outcomes of the recursive calls on the rooted trees hanging from the root.

Algorithm 6.1 INORDER(G,π) - An algorithm for generating the Boolean formula corre-
sponding to a parse tree (G,π), where G = (V,E) is a rooted tree with in-degree at most 2 and
π ∶ V → {0,1} ∪U ∪ C is a labeling function.

1. Base Case: If ∣V ∣ = 1 then Return π(v) (where v ∈ V is the only node in V )

2. Reduction Rule:

(a) If deg in(r(G)) = 1, then

i. Let G1 = (V1,E1) denote the rooted tree hanging from r(G).
ii. Let π1 denote the restriction of π to V1.

iii. α ← INORDER(G1, π1).
iv. Return (¬α).

(b) If deg in(r(G)) = 2, then

i. Let G1 = (V1,E1) and G2 = (V2,E2) denote the rooted subtrees hanging from
r(G).

ii. Let πi denote the restriction of π to Vi.

iii. α ← INORDER(G1, π1).
iv. β ← INORDER(G2, π2).
v. Return (α π(r(G)) β).

Notation. Let BF(U,C) denote the set of Boolean formulas over the set of variables U and
the set of connectives C. To simplify notation, we abbreviate BF(U,C) by BF when the sets of
variables and connectives are known.

Consider a Boolean formula ϕ defined by a parse tree (G,π), where G = (V,E) is a rooted
tree.

Definition 6.2 A subformula α of a Boolean formula ϕ induced by a vertex v ∈ V is the
Boolean formula defined by (G′, π′) where: (i) G′ is the subtree of G rooted at v, and (ii) π′ is
the restriction of π to the vertices of G′.
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Examples

1. Let us consider the parse tree G = (V,E) in Figure 6.1 and its corresponding Boolean
formula:

ϕ = ((X or 0) and (¬Y )) .
In this example we list the subformulas of ϕ.

First, we give “names” to the vertices in V , as follows: (i) The vertex labeled by ‘X’ is
v1, (ii) the vertex labeled by ‘0’ is v2, (iii) the vertex labeled by ‘or’ is v3, (iv) the vertex
labeled by ‘Y ’ is v4, (v) the vertex labeled by ‘¬’ is v5, and (vi) the vertex labeled by
‘and’ is v6.

Now, the subformula αi of ϕ induced by vi are:

α1 =X, α2 = 0, α3 = (X or 0),
α4 = Y, α5 = (¬Y ),
α6 = ϕ .

Note that every Boolean formula is a subformula of itself.

2. Inductive Definition of BF . We defined the set of Boolean formulas BF constructively
using parse trees. We now define the set of formulas inductively. We prove that these two
definitions are equivalent.

For the sake of simplicity, we focus on the case that the set of connectives is C = {¬,+, ⋅}.
We define a closure property of a set of strings F under the set of connectives C as follows.

Definition 6.3 A set of strings F is closed under the set of connectives C if it satisfies
the following condition:
If p, q ∈ F , then

(a) (¬p) ∈ F ,
(b) (p ⋅ q) ∈ F , and
(c) (p + q) ∈ F .
Definition 6.4 A set of strings F contains the atoms if {0,1} ⊆ F and U ⊆ F .

Let CF denote the set of all sets F that contain the atoms and are closed under the set
C. We define the set BF ′(U,C) of formulas as follows.

Definition 6.5

BF ′(U,C) △= ⋂
F∈CF

F .

The following lemma states that both definitions are equivalent.

Lemma 6.1

BF = BF ′ .
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Proof: We show that (i) BF ⊆ BF ′, and (ii) BF ⊇ BF ′ and conclude the proof. The
proof is as follows.

(i) We show that

∀F ∈ CF ∶ BF ⊆ F . (6.1)

That will conclude part (i) of the proof since Equation 6.1 implies that BF ⊆

⋂F∈CF F = BF ′, as required.
Let F be a set of strings in CF . Let f ∈ BF be a formula, and let (G,π) be its parse
tree. The proof is by complete induction on the number of vertices n in the rooted
tree G. The basis follows since for n = 1, the rooted tree corresponds to a constant
or a variable and since F contains the atoms, i.e., f ∈ {0,1} ∪U ⊆ F .
Now we prove the induction step, namely, that if a formula f has a parse tree of
n+1 vertices, then f ∈ F . We observe that the rooted trees G1, . . . ,Gk hanging from
the root r(G) correspond to subformulas f1, . . . , fk of f , furthermore the number of
vertices ni of Gi satisfies ni < n + 1 . For simplicity let us consider the case of k = 2,
the case of k = 1 is similar. By the induction hypothesis f1, f2 ∈ F . Since F is
closed under the set of connectives C, in particular the connective π(r(G)), then the
formula f = (f1 π(r(G)) f2) ∈ F , which concludes the induction step.

(ii) The proof is by contradiction. We assume by contradiction that

BF ′ ∖ BF ≠ ∅ , (6.2)

i.e., there is a formula f ∈ BF ′ ∖BF . Let f be the shortest formula in BF ′ ∖ BF .
Since {0,1} ∪ U ⊆ BF , then {0,1} ∪ U /⊆ BF ′ ∖ BF , i.e., The formula f is not a
constant or a variable.

Hence, we consider the following four cases:

i. f = (¬g),
ii. f = (g1 + g2),
iii. f = (g1 ⋅ g2),
iv. The formula f is none of the above, i.e., f /∈ {(¬g), (g1 + g2), (g1 ⋅ g2)}.
We consider Case i (Cases ii and iii are proven similarly). We consider two subcases:

i. If g /∈ BF ′, then the set F ′ △= BF ′ ∖ {f} is in CF ,i.e., the closure property holds.
Since BF ′ = ⋂F∈CF F , it implies that f /∈ BF ′ - a contradiction to the assumption
that f ∈ BF ′ ∖BF .

ii. Otherwise, if g ∈ BF ′, then g ∈ BF (since otherwise we have a contradiction to the
assumption that f is the shortest formula in BF ′ ∖BF). Hence, f = (¬g) ∈ BF ,
a contradiction to the assumption that f ∈ BF ′ ∖ BF .

We consider case iv and conclude. If f /∈ {(¬g), (g1 + g2), (g1 ⋅ g2)}, then the set

F ′ △= BF ′ ∖ {f} is in CF ,i.e., the closure property holds. Since BF ′ = ⋂F∈CF F , it
implies that f /∈ BF ′, a contradiction to the assumption that f ∈ BF ′ ∖ BF .
In all cases and subcases we arrived at a contradiction, hence BF ′ ∖ BF = ∅, i.e.,
BF ′ ⊆ BF , and the lemma follows.

✷
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3. The binary connective xor is also denoted by ⊕.

4. Some of the connectives have several notations. The following formulas are the same, i.e.
string equality.

(A +B) = (A ∨B) = (A or B) ,(A ⋅B) = (A ∧B) = (A and B) ,(¬B) = (not(B)) = (B̄) ,(A xor B) = (A⊕B) ,((A ∨C) ∧ (¬B)) = ((A +C) ⋅ (B̄)) .
We sometimes omit parentheses from formulas if their parse tree is obvious. When paren-
thesis are omitted, one should use precedence rules as in arithmetic, e.g., a ⋅ b + c ⋅ d =((a ⋅ b) + (c ⋅ d)).

6.2 Truth Assignments

We associate a Boolean function Bc ∶ {0,1}k → {0,1} with each connective c ∈ C of arity k. In
this section we show how each Boolean formula p over a set U of variables defines a Boolean
function Bp ∶ {0,1}∣U ∣ → {0,1}.

To simplify notation we usually use the same notation for a connective and the Boolean
function associated with it. For example, Band is the Boolean function that corresponds to
and, however, we denote the function Band simply by and. The same holds for the other
connectives. The Boolean function associated with negation is not. We also address the case
of constants and variables . The function BX associated with a variable X is the identity
function I ∶ {0,1} → {0,1} defined by I(b) = b. The function Bσ associated with a constant
σ ∈ {0,1} is the constant function whose value is always σ.

Consider a Boolean formula p generated by a parse tree (G,π). We now show how to
evaluate the truth value of p. First, we need to assign truth values to the variables.

Definition 6.6 An assignment is a function τ ∶ U → {0,1}, where U is the set of variables.

Our goal is to extend every assignment τ ∶ U → {0,1} to a function that assigns truth values
to every Boolean formula over the variables in U .

The extension τ̂ ∶ BF → {0,1} of an assignment τ ∶ U → {0,1} is defined as follows.

Definition 6.7 Let p ∈ BF be a Boolean formula generated by a parse tree (G,π). Then,

τ̂(p) △= EVAL(G,π, τ),
where EVAL is listed as Algorithm 6.2.

Examples

Recall the that we defined BF inductively in Definition 6.5. We rewrite the EVAL algorithm
while considering this inductive definition. The inductive version of the EVAL algorithm with
respect to the set of connectives C △= {+, ⋅,¬} is listed as Algorithm 6.3.
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Algorithm 6.2 EVAL(G,π, τ) - An algorithm for evaluating the truth value of the Boolean
formula generated by the parse tree (G,π), where (i) G = (V,E) is a rooted tree with in-degree
at most 2, (ii) π ∶ V → {0,1} ∪U ∪ C, and (iii) τ ∶ U → {0,1} is an assignment.

1. Base Case: If ∣V ∣ = 1 then

(a) Let v ∈ V be the only node in V .

(b) π(v) is a constant: If π(v) ∈ {0,1} then return (π(v)).
(c) π(v) is a variable: If π(v) ∈ U then return (τ(π(v)).

2. Reduction Rule:

(a) If deg in(r(G)) = 1, then (in this case π(r(G)) = not)

i. Let G1 = (V1,E1) denote the rooted tree hanging from r(G).
ii. Let π1 denote the restriction of π to V1.

iii. σ ← EVAL(G1, π1, τ).
iv. Return (not(σ)).

(b) If deg in(r(G)) = 2, then

i. Let G1 = (V1,E1) and G2 = (V2,E2) denote the rooted subtrees hanging from
r(G).

ii. Let πi denote the restriction of π to Vi.

iii. σ1 ← EVAL(G1, π1, τ).
iv. σ2 ← EVAL(G2, π2, τ).
v. Return (Bπ(r(G))(σ1, σ2)).
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Algorithm 6.3 EVAL(ϕ, τ) - An algorithm for evaluating the truth value of the Boolean
formula ϕ ∈ BF(U,{+, ⋅,¬}), where τ ∶ U → {0,1} is an assignment.

1. Base Cases:

(a) If ϕ = 0, then return 0.

(b) If ϕ = 1, then return 1.

(c) If ϕ = (X), where X ∈ U then, return τ(X).
2. Reduction Rules:

(a) If ϕ = (¬ψ), where ψ ∈ BF , then

i. σ ← EVAL(ψ, τ).
ii. Return (not(σ)).

(b) If ϕ = (ψ1 + ψ2), where ψi ∈ BF , then
i. σ1 ← EVAL(ψ1, τ).
ii. σ2 ← EVAL(ψ2, τ).
iii. Return (or(σ1, σ2)).

(c) If ϕ = (ψ1 ⋅ ψ2), where ψi ∈ BF , then
i. σ1 ← EVAL(ψ1, τ).
ii. σ2 ← EVAL(ψ2, τ).
iii. Return (and(σ1, σ2)).
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6.3 Satisfiability and Logical Equivalence

In the previous section, we fixed a set of variables U and an assignment τ ∶ U → {0,1}. We then
extended τ to every Boolean formula p ∈ BF over the variables U . In this section, we look at
things differently. Namely, we fix a Boolean formula p over a set U of variables, and consider
all possible assignments τ ∶ U → {0,1}.
Definition 6.8 Let p denote a Boolean formula.

1. p is satisfiable if there exists an assignment τ such that τ̂(p) = 1.

2. p is a tautology if τ̂(p) = 1 for every assignment τ .

Definition 6.9 Two formulas p and q are logically equivalent if τ̂(p) = τ̂(q) for every assign-
ment τ .

Examples

1. Let ϕ
△

= (X ⊕ Y ). Show that ϕ is a satisfiable.

Let τ(X) = 1 and τ(Y ) = 0, then τ̂(ϕ) = 1. We have shown an assignment τ such that
τ̂(p) = 1, hence ϕ is satisfiable.

2. Let ϕ
△

= (X ∨ ¬X). Show that ϕ is a tautology.

We show that τ̂(ϕ) = 1 for every assignment τ . We do that by enumerating all the
2∣U ∣ assignments and verifying that τ̂(ϕ) = 1 in every one of them. This enumeration is
depicted in Table 6.1. We later interpret Boolean formulas as Boolean functions, hence
Table 6.1 is the, already well known, truth table of that function.

τ(X) not(τ(X)) τ̂(X ∨ ¬X)
0 1 1
1 0 1

Table 6.1: There is one variable, hence the enumeration consists of two assignments. The first
assignment is τ(X) = 0 and the second one is τ(X) = 0. In both rows τ̂(ϕ) = 1, hence ϕ is a
tautology.

3. Let ϕ
△

= (X ⊕Y ), and let ψ
△

= (X̄ ⋅ Y +X ⋅ Ȳ ). Show that ϕ and ψ are logically equivalent.

We show that τ̂(ϕ) = τ̂(ψ) for every assignment τ . We do that by enumerating all the
2∣U ∣ assignments and verifying that τ̂(ϕ) = τ̂(ψ), in every one of them. This enumeration
is depicted in Table 6.2.

4. We claim that a Boolean formula ϕ is satisfiable if and only if the formula (¬ϕ) is not a
tautology. This claim is summarized in the following lemma.

Lemma 6.2 Let ϕ ∈ BF, then

ϕ is satisfiable⇔ (¬ϕ) is not a tautology .
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τ(X) τ(Y ) not(τ(X)) not(τ(Y )) and(not(τ(X)), τ(Y )) and(τ(X),not(τ(Y ))) τ̂(ϕ) τ̂(ψ)

0 0 1 1 0 0 0 0
1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 1
1 1 0 0 0 0 0 0

Table 6.2: There are two variables, hence the enumeration consists of 22 = 4 assignments. The
columns that correspond to τ̂(ϕ) and τ̂(ψ) are identical, hence ϕ and ψ are equivalent.

Proof: The proof is as follows.

ϕ is satisfiable ⇔ ∃τ ∶ τ̂(ϕ) = 1

⇔ ∃τ ∶ not(τ̂(ϕ)) = 0

⇔ ∃τ ∶ τ̂(¬(ϕ)) = 0

⇔ (¬ϕ) is not a tautology .

The first line follows from Definition 6.8. Note that the ‘∃’ symbol replaces the words
“there exists”. The second line follows from the definition of the not Boolean function.
The third line follows from the definition of the EVAL algorithm (see Item 2(a)ii in
Algorithm 6.3). The last line follows, again, by Definition 6.8 ✷

6.4 Interpreting a Boolean Formula as a Function

As in the previous section, fix a Boolean formula p over a set U of variables. Assume that
U = {X1, . . . ,Xn}.
Definition 6.10 Given a binary vector v = (v1, . . . , vn) ∈ {0,1}n, the assignment τv ∶ {X1, . . . ,Xn}→{0,1} is defined by τv(Xi) △= vi.

The following definition attaches a Boolean function Bϕ to each Boolean formula ϕ. The
input to Bϕ(v) is an assignment represented by a binary vector v. The output of Bϕ is the
truth value of ϕ under the assignment τv.

Definition 6.11 A Boolean formula p over the variables U = {X1, . . . ,Xn} defines the Boolean
function Bp ∶ {0,1}n → {0,1} by

Bp(v1, . . . vn) △= τ̂v(p).
Lemma 6.3 If ϕ = α1 ○ α2 for a binary connective ○, then

∀v ∈ {0,1}n ∶ Bϕ(v) = B○(Bα1
(v),Bα2

(v)).
Proof: The justifications of all the following lines are by the definition of evaluation:

Bϕ(v) = τ̂v(ϕ)
= B○(τ̂v(α1), τ̂v(α2))
= B○(Bα1

(v),Bα2
(v)),

and the lemma follows. ✷
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Examples

1. Prove that a Boolean formula p is a tautology if and only if the Boolean function Bp is
identically one, i.e., Bp(v) = 1, for every v ∈ {0,1}n.
Proof: The proof is as follows.

p is a tautology ⇔ ∀ τ ∶ τ̂(p) = 1

⇔ ∀ v ∈ {0,1}n ∶ τ̂v(p) = 1

⇔ ∀ v ∈ {0,1}n ∶ Bp(v) = 1 .

Where the first line follows by Definition 6.8. The second line follows by Definition 6.10.
The last line follows by Definition 6.11, as required. ✷

2. Prove that a Boolean formula p is satisfiable if and only if the Boolean function Bp is not
identically zero, i.e., there exists a vector v ∈ {0,1}n such that Bp(v) = 1.

Proof: The proof is as follows.

p is a satisfiable ⇔ ∃ τ ∶ τ̂(p) = 1

⇔ ∃ v ∈ {0,1}n ∶ τ̂v(p) = 1

⇔ ∃ v ∈ {0,1}n ∶ Bp(v) = 1 .

Where the first line follows by Definition 6.8. The second line follows by Definition 6.10.
The last line follows by Definition 6.11, as required. ✷

3. Prove that two Boolean formulas p and q are logically equivalent if and only if the Boolean
functions Bp and Bq are identical, i.e., Bp(v) = Bq(v), for every v ∈ {0,1}n.
Proof: The proof is as follows.

p and q are logically equivalent ⇔ ∀ τ ∶ τ̂(p) = τ̂(q)
⇔ ∀ v ∈ {0,1}n ∶ τ̂v(p) = τ̂v(q)
⇔ ∀ v ∈ {0,1}n ∶ Bp(v) = Bq(v) .

Where the first line follows by Definition 6.9. The second line follows by Definition 6.10.
The last line follows by Definition 6.11, as required. ✷

4. The implication connective. The implication connective is denoted by →. The truth
table and multiplication table of B→ ∶ {0,1}2 → {0,1} is depicted in Table 6.3. To
simplify notation, we denote the Boolean function B→ by the connective itself. Namely,
B→(X,Y ) is denoted by X → Y . The implication connective is not commutative, namely,(0 → 1) ≠ (1 → 0). This connective is called implication since it models the natural
language templates “Y if X” and “if X then Y ”. For example, let us consider the sentence
“if it is raining, then there are clouds”. This sentence guarantees clouds if it is raining. If
it is not raining, then the sentence trivially holds (regardless of whether there are clouds
or not). This explains why X → Y is always 1 if X = 0.
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X Y X → Y

0 0 1
1 0 0
0 1 1
1 1 1

→ 0 1

0 1 1
1 0 1

Table 6.3: The truth table representation and the multiplication table of the implication con-
nective.

X Y X nand Y

0 0 1
1 0 1
0 1 1
1 1 0

X Y X nor Y

0 0 1
1 0 0
0 1 0
1 1 0

nand 0 1

0 1 1
1 1 0

nor 0 1

0 1 0
1 0 0

Table 6.4: The truth table representation and the multiplication table of the nand and nor
connectives.

5. The connectives nand and nor. The connective nand can be considered as an abbre-
viation of not-and. Namely, (p nand q) means (not(p and q)).
Similarly the nor connective is an abbreviation of not-or. Namely, (p nor q) means(not(p or q)).
The Boolean functions that correspond to these functions are defined as follows.

Bnand(A,B) △

= not(Band(A,B)) ,
Bnor(A,B) △

= not(Bor(A,B)) .
To simplify notation, we denote a Boolean function Bc by its connective c. Thus,

nand(A,B) △

= not(and(A,B)) ,
nor(A,B) △

= not(or(A,B)) .
The truth tables and multiplication tables of Bnand ∶ {0,1}2 → {0,1} and Bnor ∶{0,1}2 → {0,1} are depicted in Table 6.4.

6. The equivalence connective. The equivalence connective is denoted by↔. The equiv-
alence connective can be considered as an abbreviation of two implications, namely,

(p↔ q) abbreviates ((p → q) and (q → p)).
The Boolean function that corresponds to equivalence is defined as follows:

B↔(A,B) △= (A → B) and (B → A) .
As before we denote B↔(A,B) by (A↔ B).
The truth table and multiplication table of B↔ ∶ {0,1}2 → {0,1} are depicted in Table 6.5.
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X Y X ↔ Y

0 0 1
1 0 0
0 1 0
1 1 1

↔ 0 1

0 1 0
1 0 1

Table 6.5: The truth table representation and the multiplication table of the equivalence con-
nective.

Note that,

(A↔ B) = ⎧⎪⎪⎨⎪⎪⎩
1 if A = B

0 if A ≠ B.

7. Prove that two Boolean formulas p and q are logically equivalent if and only if the formula(p↔ q) is a tautology.

Proof: The proof is as follows.

p and q are logically equivalent ⇔ ∀ τ ∶ τ̂(p) = τ̂(q)
⇔ ∀ v ∈ {0,1}n ∶ τ̂v(p) = τ̂v(q)
⇔ ∀ v ∈ {0,1}n ∶ Bp(v) = Bq(v)
⇔ ∀ v ∈ {0,1}n ∶ B↔(Bp(v),Bq(v)) = 1

⇔ ∀ v ∈ {0,1}n ∶ Bp↔q(v) = 1

⇔ ∀ v ∈ {0,1}n ∶ τ̂v(p↔ q) = 1

⇔ ∀ τ ∶ τ̂(p↔ q) = 1

⇔ (p↔ q) is a tautology .

Where the first line follows by Definition 6.9. The second line follows by Definition 6.10.
The third line follows by Definition 6.11, as required. The fourth line follows by the
definition of the Boolean function that corresponds to the equivalence connective (see
Example 6). The fifth line follows from Lemma 6.3. The last line follows from Example 1.

✷

8. Since not all connectives are commutative, the order of the hanging rooted trees is im-
portant, i.e., first subtree and second subtree. Let us set the convention that the hanging
trees are ordered from left to right. The arcs that enter a node in a rooted tree are ordered.
This order must be kept in the inorder traversal of the parse tree. For example, consider
the parse tree depicted in Figure 6.2 and the Boolean formula that corresponds to it. Set
τ(X) = τ(Y ) = 0. Hence, evaluating the parse tree from right to left will output a ’0’,
while the opposite order will output a ’1’.

9. A literal is a variable or its negation. For example, in the Boolean formula (X ⋅ (Y + X̄))
there are three literals: X,X̄ , and Y .
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or

X Y0

→

not

Figure 6.2: A parse tree that corresponds to the Boolean formula ((X or 0) → (¬Y )). The root
is labeled by an implication connective. The rooted trees hanging from the root are encapsulated
by dashed rectangles.

6.5 Substitution

In this section we use substitution to compose large formulas from smaller ones. For simplicity,
we deal with substitution in formulas over two variables; the generalization to formulas over
any number of variables is straightforward. We consider the following setting.

Throughout this section, let

1. ϕ ∈ BF({X1,X2},C),
2. α1, α2 ∈ BF(U,C).
3. (Gϕ, πϕ) (respectively (Gαi

, παi
)) denotes the parse tree of ϕ (respectively αi).

Definition 6.12 Substitution of αi in ϕ yields the Boolean formula ϕ(α1, α2) ∈ BF(U,C) that
is generated by the parse tree (G,π) defined as follows. For each leaf of v ∈ Gϕ that is labeled
by a variable Xi, replace the leaf v by a new copy of (Gαi

, παi
).

Figure 6.3 depicts a formula obtained by substitution.

Substitution can be obtain by applying a simple “find-and-replace”, where each instance of
variable Xi is replaced by a copy of the formula αi, for i ∈ {1,2}. One can easily generalize
substitution to formulas ϕ ∈ BF({X1, . . . ,Xk},C) for any k > 2. In this case, ϕ(α1, . . . , αk) is
obtained by replacing every instance of Xi by αi.

The following lemma allows us to treat a formula ϕ as a Boolean function Bϕ. This enables
us to evaluate the truth value after substitution (i.e., τ̂(ϕ(α1, α2))) using Bϕ and the truth
values τ̂(αi).
Lemma 6.4 For every assignment τ ∶ U → {0,1},

τ̂(ϕ(α1, α2)) = Bϕ(τ̂(α1), τ̂(α2)). (6.3)

Proof: The proof is by complete induction on the size of the parse tree (Gϕ, πϕ) of ϕ. We
begin with the induction basis: if Gϕ contains a single node, then it is labeled by a constant
σ ∈ {0,1} or by a variable Xi.



6.5. SUBSTITUTION 87

X2

+

X1

(a) ϕ

0

·

X

(b) α1

Y

not

(c) α2

not

Y0

·

+

X

(d) ϕ(α1, α2)

Figure 6.3: A substitution of α1, α2 ∈ BF({X,Y },{⋅,¬}) in ϕ ∈ BF({X1,X2},{+}) yields the
Boolean formula ϕ(α1, α2) ∈ BF({X,Y },{⋅,+,¬}). The parse trees of ϕ,α1, α2 are presented in
Figures 6.3a, 6.3b, and 6.3c respectively. The parse tree of ϕ(α1, α2) is depicted in Figures 6.3d.
Note that α1, α2 are encapsulated by dashed rectangles in this “final” parse tree.

1. If the root vertex is labeled by constant σ, then ϕ(α1, α2) = ϕ = σ. Since τ̂(σ) = σ, it
follows that τ̂(ϕ(α1, α2)) = σ.
On the other hand, the Boolean function Bϕ is the constant function whose value is always
σ. Thus, both sides of Eq. 6.3 are equal in this case.

2. If the root vertex is labeled by variable Xi, then ϕ(α1, α2) = αi. Hence, the left hand side
equals τ̂(ϕ(α1, α2)) = τ̂(αi). The Boolean function Bϕ(v1, v2) in this case outputs vi and
ignores the other argument. This implies that Bϕ(τ̂(α1), τ̂(α2)) = τ̂(αi), as required.

We now prove the induction step. Assume that ϕ = ϕ1 ○ϕ2, where ○ is a binary connective.
(The case that the root of Gϕ is labeled by a negation connective is similar.) By the induction
hypothesis, for i ∈ {1,2},

τ̂(ϕi(α1, α2)) = Bϕi
(τ̂(α1), τ̂ (α2)).

Thus we obtain,

τ̂(ϕ(α1, α2)) = B○(τ̂(ϕ1(α1, α2)), τ̂ (ϕ2(α1, α2))) (by Alg 6.2)

= B○(Bϕ1
(τ̂(α1), τ̂(α2)),Bϕ2

(τ̂(α1), τ̂(α2))) (induction hypothesis)

= Bϕ(τ̂(α1), τ̂(α2)) (by Lemma 6.3),

and the lemma follows. ✷

The next corollary shows that substitution preserves logical equivalence. Let ϕ ∈ BF({X1,X2},C),
α1, α2 ∈ BF(U,C), and let ϕ̃ ∈ BF({X1,X2}, C̃), and α̃1, α̃2 ∈ BF(U, C̃).
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Corollary 6.5 If αi and α̃i are logically equivalent, and ϕ and ϕ̃ are logically equivalent, then
ϕ(α1, α2) and ϕ̃(α̃1, α̃2) are logically equivalent.

Proof: To prove the corollary, we need to prove that, for every vector v ∈ {0,1}∣U ∣, the following
equality holds:

τ̂v(ϕ(α1, α2)) = τ̂v(ϕ̃(α̃1, α̃2)).
Indeed,

τ̂v(ϕ(α1, α2)) = Bϕ(τ̂v(α1), τ̂v(α2)) (by Lemma 6.4)

= Bϕ(τ̂v(α̃1), τ̂v(α̃2)) (since αi and α̃i are logically equivalent)

= Bϕ̃(τ̂v(α̃1), τ̂v(α̃2)) (by Example 3 on page 83)

= τ̂v(ϕ̃(α̃1, α̃2)) (by Lemma 6.4),

and the corollary follows. ✷

Examples

1. Recall that in Figure 6.3 substitution was made using parse trees. Substitution can be
applied directly without using a parse tree. Let us consider the Boolean formulas in
Figure 6.3.

ϕ = (X1 +X2) ,
α1 = (X ⋅ 0) ,
α2 = (¬Y ) .

We substitute α1 for X1, and α2 for X2, as follows. We apply a simple “find and replace”
procedure, i.e., we replace every symbol X1 in the string ϕ with the string (X ⋅ 0), and
every symbol X2 in the string ϕ with the string (¬Y ), as follows:
(a) The original formula: ϕ = (X1 +X2).
(b) Replacing X1 with α1 results with the formula: ((X ⋅ 0) +X2).
(c) Replacing X2 with α2 results with the formula: ((X ⋅ 0) + (¬Y )).
Indeed, the parse tree of the formula in the last item is the tree depicted in Figure 6.3d.

2. Prove that the following Boolean formulas are logically equivalent:

• β1
△

= (A → B)→ C, and

• β2
△

= (Ā +B)→ C.

Proof: Let

ϕ
△

=X1 → X2 ,

α1
△

= A → B ,

α2
△

= C ,

α̃1
△

= Ā +B, .
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We claim that α1 and α̃1 are logically equivalent(exercise).

Note that,

ϕ(α1, α2) = β1, and
ϕ(α̃1, α2) = β2 .

Corollary 6.5 implies that ϕ(α1, α2) and ϕ(α̃1, α2) are logically equivalent, as required. ✷

6.6 Complete Sets of Connectives

Every Boolean formula can be interpreted as Boolean function. In this section we deal with the
following question: Which sets of connectives enable us to express every Boolean function?

Definition 6.13 A Boolean function B ∶ {0,1}n → {0,1} is expressible by BF({X1, . . . ,Xn},C)
if there exists a formula p ∈ BF({X1, . . . ,Xn},C) such that B = Bp.

Definition 6.14 A set C of connectives is complete if every Boolean function B ∶ {0,1}n →{0,1} is expressible by BF({X1, . . . ,Xn},C).
The proof of the following theorem is by induction on n, the arity of the Boolean function

B ∶ {0,1}n → {0,1}. One of the main observations in the proof is as follows. Fixing one or more
of the inputs of a Boolean function B ∶ {0,1}n → {0,1} defines a restricted Boolean function.
In particular,

B(v1, . . . , vn−1, vn) = ⎧⎪⎪⎨⎪⎪⎩
B(v1, . . . , vn−1,0), if vn = 0,

B(v1, . . . , vn−1,1), if vn = 1.

The induction hypothesis can be used thanks to the ability to split a function over n bits to
two functions over n − 1 bits.

Theorem 6.6 The set C = {¬,and,or} is a complete set of connectives.

Proof: Consider a Boolean function B ∶ {0,1}n → {0,1}. We prove by induction on n that
there exists a Boolean formula p ∈ BF({X1, . . . ,Xn},C) such that Bp = B.

The induction basis, for n = 1 is proved as follows. There are four Boolean functions with
the domain {0,1}. The functions are B(x) = 0, B(x) = 1, the identity function B(X) = x, and
negation B(X) = not(x). The only connective we needed so far is negation, which is in C.

The induction step for n > 1 is proved as follows. Define the functions g,h ∶ {0,1}n−1 → {0,1}
as follows:

g(v1, . . . , vn−1) △= B(v1, . . . , vn−1,0),
h(v1, . . . , vn−1) △= B(v1, . . . , vn−1,1).

By the induction hypothesis, there are formulas q, r ∈ BF({X1, . . . ,Xn−1},C) such that
Bq = g and Br = h.

Define the formula p by

p
△

= (q ⋅ X̄n) + (r ⋅Xn)
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The formula p is obtained from the formulas q and r and the connectives not,and,or that
all belong to C. Thus, p ∈ BF({X1, . . . ,Xn},C). To complete the proof we need to show that
Bp = B.

Recall that τv(Xn) = vn. We consider the following two cases.

1. If vn = 1. We first evaluate the subformula (q ⋅ X̄n) as follows:
τ̂v(q ⋅ X̄n) = τ̂v(q) ⋅ τ̂v(X̄n)

= τ̂v(q) ⋅ τ̂v(Xn)
= τ̂v(q) ⋅ 1̄
= τ̂v(q) ⋅ 0
= 0.

We now evaluate the subformula (r ⋅Xn) as follows:
τ̂v(r ⋅Xn) = τ̂v(r) ⋅ τv(Xn)

= τ̂v(r) ⋅ 1
= τ̂v(r).

It follows that the evaluation of p is

τ̂v(p) = τ̂v(q ⋅ X̄n) + τ̂v(r ⋅Xn)
= 0 + τ̂v(r)
= τ̂v(r). (6.4)

Since Br = h and Br is the function induced by r, it follows that

h(v1, . . . , vn−1) = Br(v1, . . . , vn−1) = τ̂v(r).
It follows that

Bp(v1, . . . , vn−1,1) = τ̂v(p) (by definition)

= τ̂v(r) (By Eq.6.4)

= Br(v1, . . . , vn−1) (by definition)

= h(v1, . . . , vn−1) (since Br = h)

= B(v1, . . . , vn−1,1) (by definition).

2. If vn = 0. The evaluation of p gives

τ̂v(p) = τ̂v(q ⋅ X̄n) + τ̂v(r ⋅Xn)
= τ̂v(q). (6.5)

Since Bq = g and Bq is the function induced by q, it follows that

g(v1, . . . , vn−1) = Bq(v1, . . . , vn−1) = τ̂v(q).
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It follows that

Bp(v1, . . . , vn−1,0) = τ̂v(p) (by definition)

= τ̂v(q) (By Eq.6.5)

= Bq(v1, . . . , vn−1) (by definition)

= g(v1, . . . , vn−1) (since Bq = g)

= B(v1, . . . , vn−1,0) (by definition).

In both cases we proved that Bp = B, and the theorem follows. ✷

See Example 2 for an example of the following theorem.

Theorem 6.7 If the Boolean functions in {not,and,or} are expressible by formulas in BF({X1,X2}, C̃),
then C̃ is a complete set of connectives.

Proof: By Theorem 6.6, every Boolean function B ∶ {0,1}n → {0,1} is expressible by a
Boolean formula β ∈ BF({X1, . . . ,Xn},C), where C = {not,and,or}. This means that it
suffices to prove that, for every Boolean formula β ∈ BF({X1, . . . ,Xn},C), there exists a logically
equivalent formula β̃ ∈ BF({X1, . . . ,Xn}, C̃).

We prove this statement by induction on the size of the parse tree (Gβ , πβ) that generates
β. The induction basis in case β is constant or a variable is trivial by setting β̃ = β.

We now prove the induction step for Gβ that contains more than one vertex. Let ○ ∈ C
denote the label of the root of Gβ . Since ○ is expressible by BF({X1,X2}, C̃), let ϕ̃(X1,X2)
denote a formula in BF({X1,X2}, C̃) that is logically equivalent to (X1 ○X2).

Let α1 and α2 denote the two subformulas of β, namely, β = (α1 ○ α2). By the induction
hypothesis, there exist formulas α̃1, α̃2 ∈ BF({X1, . . . ,Xn}, C̃) such that αi and α̃i are logically
equivalent.

By Coro. 6.5, the formulas (α1○α2) and ϕ̃(α̃1, α̃2) are logically equivalent. Set β̃ = ϕ̃(α̃1, α̃2).
Since β̃ ∈ BF({X1, . . . ,Xn}, C̃), the theorem follows. ✷

Examples

1. In this example we clarify some of the notations given in this chapter, in particular
τ(ϕ), τ̂ (ϕ), τv(ϕ), τ̂v(ϕ). A formula ϕ ∈ BF(U,C) is a string, i.e., a sequence of char-
acters. The way we give it a “meaning”, i.e., semantics, is as follows. First, we consider a
truth assignment τ ∶ U → {0,1} to the variables of the formula ϕ. Since we are interested
in the meaning of the formula, we extended the assignment τ to τ̂ ∶ BF → {0,1}. The
extension is based on the EVAL algorithm (see Algorithm 6.2). Note that τ̂(Xi) = τ(Xi)
for every Xi ∈ U (otherwise it would not be a valid extension).

Every assignment τ can be specified by a binary vector v. We define the assignment τv,
defined as follows. Given a binary vector v ∈ {0,1}n, define τv(Xi) △= vi. The extension of
τv to Boolean formulas BF is done, as before, using the EVAL algorithm. Again, given a
vector v we can evaluate the truth value of ϕ. Note that there is a one-to-one and onto
mapping between the set of assignments over n variables and the set {0,1}n.

2. Let C = {and,xor}. We wish to find a formula β̃ ∈ BF({X,Y,Z},C) that is logically
equivalent to the formula

β
△

= (X ⋅ Y ) +Z.
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First, we find a formula ϕ̃ ∈ BF({X1,X2},C) that is logically equivalent to (X1 +X2). It
is easy to verify that ϕ̃ defined as follows is logically equivalent to (X1 +X2).

ϕ̃
△

=X1 ⊕X2 ⊕ (X1 ⋅X2).
We parse the formula β so that β = α1 + α2, where

α1
△

= (X ⋅ Y ) α2
△

= Z.

Note that in this example, αi ∈ BF({X,Y,Z},C), thus we need not “translate” these
subformulas.

We apply substitution to define β̃
△

= ϕ̃(α1, α2), thus
β̃
△

= ϕ̃(α1, α2)
= α1 ⊕ α2 ⊕ (α1 ⋅ α2)
= (X ⋅ Y )⊕Z ⊕ ((X ⋅ Y ) ⋅Z)

It is left to verify that indeed, ϕ̃(α1, α2) is logically equivalent to β.

3. The formulas (X + 0), and (X ⋅ 1) are logically equivalent to the formula X.

6.7 Important Tautologies

In this section we present a short list of important tautologies. Each of these tautologies can be
validated by exhaustive testing of all possible assignments. We leave the proofs as an exercise.

Theorem 6.8 The following Boolean formulas are tautologies.

1. law of excluded middle: X + X̄

2. double negation: X ↔ (¬¬X)
3. modus ponens: (((X → Y ) ⋅X)→ Y )
4. contrapositive: (X → Y )↔ (Ȳ → X̄)
5. material implication: (X → Y )↔ (X̄ + Y ).
6. distribution: X ⋅ (Y +Z)↔ (X ⋅ Y +X ⋅Z).
The following lemma enables us to create a “new” tautology from an “old” one. Let ϕ ∈

BF({X1,X2},C) and α1, α2 ∈ BF(U,C).
Lemma 6.9 If a Boolean formula ϕ is a tautology, then ϕ(α1, α2) is a tautology.

Proof: To prove that ϕ(α1, α2) is a tautology, all we need to prove is that, for every assignment
τ ∶ U → {0,1}, the following equality holds:

τ̂(ϕ(α1, α2)) = 1 .

Indeed,

τ̂(ϕ(α1, α2)) = Bϕ(τ̂(α1), τ̂ (α2)) (by Lemma 6.4)

= 1 (since ϕ is a tautology, and Example 1 on page 83) ,

and the lemma follows. ✷
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v1 v2 τ̂v(X + Y ) τ̂v(ϕ1)
0 0 0 1
1 0 1 1
0 1 1 1
1 1 1 1

v1 v2 τ̂v(X ⋅ Y ) τ̂v(ϕ2)
0 0 0 1
1 0 0 1
0 1 0 1
1 1 1 1

Table 6.6: The truth tables of the addition and the simplification tautologies.

v1 τ̂v(¬X → 0) τ̂v(ϕ3)
0 0 1
1 1 1

Table 6.7: The truth table of the “proof by contradiction” tautology.

Examples

1. Prove that the following formulas are tautologies: (i) addition: ϕ1
△

= (X → (X + Y )), and
(ii) simplification: ϕ2

△

= ((X ⋅ Y )→X).
Proof: We prove this claim by truth tables. Table 6.6 depicts the tables of both formulas.
Note that the column that represents τ̂v(ϕi) is all ones.

✷

2. Proof by contradiction. Prove that the following formula is a tautology:

ϕ3
△

= ((¬X → 0)→X) .
Proof: We prove this claim by truth tables. Table 6.7 depicts the table of the formula.
Note that the column that represents τ̂v(ϕ3) is all ones.

✷

3. Prove that the following formula is a tautology:

ϕ4
△

= (((A ∧ ¬B)→ 0)→ (A → B)) .
Proof: As in the two previous examples, one can prove that ϕ4 is a tautology using
truth tables. Instead, we prove that ϕ4 is a tautology by using substitution, as follows.

Let

ψ
△

= ((X1 → 0)→X2) ,
α1

△

= ¬(A → B) ,
α2

△

= A → B ,

α̃1
△

= A ∧ ¬B .
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The formulas α1 and α̃1 are logically equivalent. Corollary 6.5 implies that ψ(α1, α2) is
logically equivalent to ψ(α̃1, α2). Note that ϕ4 = ψ(α̃1, α2), hence it suffices to prove that
ψ(α1, α2) is a tautology. Note that

ψ(α1, α2) = ((¬(A → B)→ 0) → (A → B))
= ϕ3(A → B) ,

Indeed, Example 2 and Lemma 6.9 imply that ϕ3(A → B) = ψ(α1, α2) is a tautology, as
required. ✷

We have already applied this tautology, while proving by contradiction that “A implies
B”. The proof scheme is as follows: (1) Add the assumption ¬B, (2) derive a contradiction
, i.e., 0, (3) hence, by tautology ϕ4, the statement “A implies B” is correct.

4. Suppose we are given a (very) long Boolean formula ϕ with “lots” of variables. Sometimes,
if we are very lucky, we can decide if it is a tautology without working hard. Lemma 6.9
implies that all we need is to recognize whether the formula ϕ is obtained by a substitution
of subformulas instead of the variables in a tautology ψ. This means that a tautology
(and formulas in general) can be regarded as “template” waiting for substitution. In this
case ψ is the template, and ϕ is an “instance” obtained by applying substitution.

6.8 De Morgan’s Laws

In this section we show how to simplify a Boolean formula so that negations are only applied
to variables. This technique is based on two tautologies called De Morgan’s Laws.

Theorem 6.10 (De Morgan’s Laws) The following two Boolean formulas are tautologies:

1. (¬(X + Y ))↔ (X̄ ⋅ Ȳ ).
2. (¬(X ⋅ Y ))↔ (X̄ + Ȳ ).
We use De Morgan’s laws to compute the dual of Boolean formula. In Algorithm 6.4 a

listing of DM(ϕ) is presented. The algorithm is recursive and uses the inductive definition of
a Boolean formula (see Definition 6.5).

The idea of a De Morgan dual is that, given a Boolean formula ϕ ∈ BF(U,{¬,∨,∧}), the De
Morgan dual is obtained by the following simultaneous replacements: replace each instance of
a ∧ by a ∨, each instance of a ∨ by a ∧, a 0 by a 1, a 1 by a 0, a X̄i by Xi, and an Xi by a
X̄i. Note that these replacements can be either applied to the labels in the parse tree of ϕ or
directly to the “characters” of the string ϕ.

The following theorem states that the De Morgan dual formula is logically equivalent to the
negated formula.

Theorem 6.11 For every Boolean formula ϕ, DM(ϕ) is logically equivalent to (¬ϕ).
Proof: The proof is by complete induction on the length of ϕ (i.e., number of vertices in the
parse tree of ϕ). The induction basis, for a parse tree consisting of a single node or two nodes is
immediate because of the base cases. We now proceed to prove the induction step. We consider
three cases:
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Algorithm 6.4 DM(ϕ) - An algorithm for evaluating the De Morgan dual of a Boolean formula
ϕ ∈ BF({X1, . . . ,Xn},{¬,or,and}).

1. Base Cases: (parse tree of size 1 or 2)

(a) If ϕ = 0, then return 1.

(b) If ϕ = 1, then return 0.

(c) If ϕ =Xi, then return (¬Xi).
(d) If ϕ = (¬0), then return 0.

(e) If ϕ = (¬1), then return 1.

(f) If ϕ = (¬Xi), then return Xi.

2. Reduction Rules: (parse tree of size at least 3)

(a) If ϕ = (¬ϕ1), then return (¬DM(ϕ1)).
(b) If ϕ = (ϕ1 ⋅ ϕ2), then return (DM(ϕ1) +DM(ϕ2)).
(c) If ϕ = (ϕ1 + ϕ2), then return (DM(ϕ1) ⋅DM(ϕ2)).

1. ϕ = (¬ϕ1). In this case, DM(ϕ) = (¬DM(ϕ1)). By the induction hypothesis, DM(ϕ1) is
logically equivalent to ¬ϕ1. By substitution (i.e., Coro. 6.5), DM(ϕ) is logically equivalent
to (¬(¬ϕ1)). Thus, DM(ϕ) is logically equivalent to (¬ϕ), as required.

2. ϕ = ϕ1 ⋅ ϕ2. In this case, DM(ϕ) = (DM(ϕ1) + DM(ϕ2)). By the induction hypothesis,
DM(ϕi) is logically equivalent to ¬ϕi. By substitution (i.e., Coro. 6.5), DM(ϕ) is logically
equivalent to ((¬ϕ1) + (¬ϕ2)). By De Morgan’s Law, Lemma 6.9 and Example 7 on
page 85, ((¬ϕ1) + (¬ϕ2)) is logically equivalent to (¬ϕ), as required.

3. ϕ = ϕ1 + ϕ2. The proof of this case is similar to the previous case.

✷

Corollary 6.12 For every Boolean formula ϕ, DM(DM(ϕ)) is logically equivalent to ϕ.

6.8.1 Negation Normal Form

A formula is in negation normal form if negation is applied only directly to variables.

Definition 6.15 A Boolean formula ϕ ∈ BF({X1, . . . ,Xn},{¬,or,and}) is in negation normal
form if the parse tree (G,π) of ϕ satisfies the following condition. If a vertex in G is labeled by
negation (i.e., π(v) = ¬), then v is a parent of a leaf labeled by a variable.

For example, the formula (¬X) ⋅ (¬Y ) is in negation normal form. However, the formulas(¬0), ¬(A ⋅B), not(not(X)) are not in negation normal form.

Lemma 6.13 If ϕ is in negation normal form, then so is DM(ϕ).
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Proof: The proof is by induction on the length of ϕ. The base cases deal with parse trees with
one or two vertices. In the induction step, note that the case ϕ = ¬ϕ1 cannot occur. Indeed,
ϕ = ¬ϕ1 where the length of ϕ is at least 3, implies that ϕ is not in negation normal form, a
contradiction. Thus, we are left only with the two cases in which ϕ = ϕ1 ⋅ ϕ2 and ϕ = ϕ1 + ϕ2,
the proof of which is straightforward. ✷

In this section we present an algorithm that transforms a Boolean formula into a logically
equivalent formula in negation normal form. The algorithm NNF (ϕ) is listed as Algorithm 6.5.

Algorithm 6.5 NNF(ϕ) - An algorithm for computing the negation normal form of a Boolean
formula ϕ ∈ BF({X1, . . . ,Xn},{¬,or,and}).

1. Base Cases: (parse tree of size 1 or 2)

(a) If ϕ ∈ {0,1,Xi, (¬Xi)}, then return ϕ.

(b) If ϕ = (¬0), then return 1.

(c) If ϕ = (¬1), then return 0.

2. Reduction Rules: (parse tree of size at least 3)

(a) If ϕ = (¬ϕ1), then return DM(NNF(ϕ1)).
(b) If ϕ = (ϕ1 ⋅ ϕ2), then return (NNF(ϕ1) ⋅NNF(ϕ2)).
(c) If ϕ = (ϕ1 + ϕ2), then return (NNF(ϕ1) +NNF(ϕ2)).

Theorem 6.14 Let ϕ ∈ BF({X1, . . . ,Xn},{¬,or,and}). Then, NNF (ϕ) is logically equiva-
lent to ϕ and in negation normal form.

Proof: The proof is by induction on the length of ϕ. The base cases deal with parse trees
with one or two vertices. We proceed to prove the induction step. The cases that the root of
the parse tree of ϕ is in {⋅,+} is standard. We focus on the case that ϕ = (¬ϕ1). Since ϕ1 is

shorter than ϕ, the induction hypothesis implies that ψ
△

= NNF(ϕ1) is logically equivalent to
ϕ1 and in negation normal form. Hence, by Lemma 6.13, DM(ψ) is in negation normal form.
By Theorem 6.11, DM(ψ) is logically equivalent to ¬ψ. This implies that DM(ψ) is logically
equivalent to ϕ, as required. ✷

Examples

1. We show an execution of the DM(ϕ) algorithm on the input ϕ = (X ⋅ Y ). The execution
is as follows.

(a) Since ϕ is not one of the base cases, we proceed to the reduction rules.

(b) Since ϕ is of the form (ϕ1 ⋅ϕ2), we apply the first reduction rule, i.e., ϕ1 =X, ϕ2 = Y ,
and DM(ϕ) returns (DM(X) +DM(Y )).
i. Since X (and Y ) matches the third base case, both recursive calls return (¬X),

and (¬Y ) respectively.
(c) Thus, DM(ϕ) returns ((¬X) + (¬Y )).
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2. Prove that DM(ϕ) ∈ BF .
Proof: We prove that the string DM(ϕ) is defined by a parse tree (F,π).
The proof is by complete induction on the size of the parse tree (G,π) of the Boolean
formula ϕ.

The induction basis for a parse tree G consisting of a one or two nodes is immediate
because of the four base cases. We now proceed to prove the induction step. We consider
three cases:

(a) ϕ = (¬ϕ1). In this case, DM(ϕ) = (¬DM(ϕ1)). By the induction hypothesis,
DM(ϕ1) ∈ BF . Hence, F is simply the parse tree of DM(ϕ1) hanging from a new
root labeled by the not connective.

(b) ϕ = ϕ1 ⋅ϕ2. In this case, DM(ϕ) = (DM(ϕ1)+DM(ϕ2)). By the induction hypothesis,
DM(ϕi) ∈ BF . Hence, F is simply constructed by the parse trees of DM(ϕi) hanging
from a new root labeled by the or connective.

(c) ϕ = ϕ1 + ϕ2. The proof of this case is similar to the previous case.

✷

3. Recall that the De-Morgan’s law states that for sets A,B,

U ∖ (A ∪B) = Ā ∩ B̄ .

We depicted this law using Venn diagrams in Example 27 on page 9. We now prove this
law, formally, using propositional logic.

Proof: We need to show: (a) U ∖ (A ∪B) ⊆ Ā∩ B̄, and (b) Ā ∩ B̄ ⊆ U ∖ (A ∪B). (a) To
prove U ∖ (A ∪B) ⊆ Ā ∩ B̄ we need to show that every x ∈ U ∖ (A ∪B) is also x ∈ Ā ∩ B̄.

x ∈ U ∖ (A ∪B) ⇒ x ∈ U and x /∈ (A ∪B)
⇒ x ∈ U and not(x ∈ A or x ∈ B)
⇒ x ∈ U and (x /∈ A and x /∈ B)
⇒ x ∈ U and (x ∈ Ā and x ∈ B̄)
⇒ x ∈ U and x ∈ (Ā ∩ B̄)
⇒ x ∈ Ā ∩ B̄ .

Where the first line follows from the definition of the difference of sets A and B. The
second line follows from the definition of the union of sets A and B. Let X = 1 iff x ∈ A,
and let Y = 1 iff x ∈ B, then the third line follows from De-Morgan’s law applied on the
formula (¬(X + Y )). The fifth line follows from the definition of the intersection of sets
Ā and B̄. The last line follows since Ā ∩ B̄ ⊆ U .
(b) Ā∩ B̄ ⊆ U ∖ (A∪B): i.e., we need to show that every x ∈ Ā∩ B̄ is also x ∈ U ∖ (A∪B).
The same proof holds since each implication holds also in the reverse direction. ✷

4. Prove that the following Boolean formulas are logically equivalent:

• β2
△

= (Ā +B)→ C, and

• β3
△

= (A ⋅ B̄) +C.
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Proof: Let

ϕ
△

=X1 →X2 ,

ϕ̃
△

= ¬X1 +X2 ,

α1
△

= Ā +B ,

α2
△

= C ,

α̃1
△

= ¬(A ⋅ B̄) .
Theorem 6.8 and Example 7 on page 85 imply that ϕ and ϕ̃ are logically equivalent. We
claim that α1 and α̃1 are logically equivalent (exercise).

Note that,

ϕ(α1, α2) = β2 ,
ϕ̃(α̃1, α2) = ¬¬(A ⋅ B̄) +C, and

NNF (ϕ̃(α̃1, α2)) = NNF (¬¬(A ⋅ B̄)) +C = β3 .

Corollary 6.5 implies that ϕ(α1, α2) and ϕ̃(α̃1, α2) are logically equivalent. Theorem 6.14
implies that NNF (ϕ̃(α̃1, α2)) is logically equivalent to ϕ̃(α̃1, α2), hence ϕ(α1, α2) is log-
ically equivalent to NNF (ϕ̃(α̃1, α2)), as required. ✷

Problems

6.1 Recall the closure property of a set of strings as formalized in Definition 6.3 on
page 76. Also recall that a set of strings F contains the atoms if {0,1} ⊆ F and U ⊆ F
(see Definition 6.4 on page 76). Give an example of a set F that is closed under the set
of connectives C, includes the atoms but, it is not BF(U,C).
6.2 Let ϕ be a formula in BF and let (G,π) be its parse tree. Let G1, . . . ,Gk be the rooted
trees hanging from the root r(G). Assume that π(r(G)) is an associative connective (but
not commutative). Show that G1, . . . ,Gk are parse trees of formulas ϕ1, . . . , ϕk ∈ BF , such
that (ϕ1 π(r(G)) ϕ2 π(r(G)) ⋯ π(r(G)) ϕk) = ϕ .
6.3 Show that the set of Boolean formulas BF({X,Y },{+, ⋅,¬}) satisfies the closure prop-
erty defined in Definition 6.3, i.e., show that the set BF is closed under the set of con-
nectives {+, ⋅,¬}. Your proof should not rely on the fact that BF ′ = BF .

6.4 Prove that (A → B)↔ ((¬A) or B) is a tautology in two ways: (i) show that the
truth table of the Boolean function corresponding to the formula is the truth table of the
constant function, that is ∀A,B ∈ {0,1} ∶ f(A,B) = 1, (ii) show that the truth tables of(A → B) and ((¬A) or B) are the same.

6.5 Let ϕ
△

= (X + Y ⋅X). Show that ϕ is a satisfiable.

6.6 Let ϕ
△

= (¬X ∧X). Show that ϕ is a tautology.
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6.7 Let ϕ and α be any Boolean formulas.

(a) Consider the Boolean formula ψ
△

= ϕ+not(ϕ). Prove or refute that ψ is a tautology.

(b) Consider the Boolean formula ψ
△

= (ϕ → α)↔ (not(ϕ) + α). Prove or refute that ψ
is a tautology.

6.8 Let C = {and,or}. Prove that C is not a complete set of connectives.

6.9 Prove Theorem 6.8.

6.10 Let ϕ
△

= (X ⋅ (Y +Z)), and let ψ
△

= (X ⋅ Y +X ⋅Z). Prove that ϕ and ψ are logically
equivalent.

6.11 Let p, q, r ∈ BF . Prove that if p is logically equivalent to q, and q is logically
equivalent to r, then p is logically equivalent to r.

6.12 Definition 6.16 Let ϕ ∈ BF, then ϕ is a contradiction if τ̂(ϕ) = 0 for every
assignment τ .

Prove the following claim.

Lemma 6.15

ϕ is a contradiction⇔ (¬ϕ) is a tautology .

6.13 Let L′(ϕ) denote the number of vertices in the parse tree of ϕ that are not labeled
by negation.

Example: L′(A +B + ¬C) = 5.

Prove that L′(DM(ϕ)) = L′(ϕ), for every Boolean formula ϕ ∈ BF(U,{¬,∨,∧}).
6.14 Prove Theorem 6.10.

6.15 Let C = {¬,∨,∧,xor,nxor}. Add the following two reduction rules to Algorithm
DM(ϕ):

• If ϕ = (ϕ1 xor ϕ2), then return (DM(ϕ1) nxor DM(ϕ2)).
• If ϕ = (ϕ1 nxor ϕ2), then return (DM(ϕ1) xor DM(ϕ2)).

Prove that, even after this modification, DM(ϕ)↔ ¬ϕ is a tautology.

6.16 Let

ϕk
△

=

k times³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
¬¬ . . .¬X.

That is, in ϕk, the variable X is negated k times.

Run algorithm NNF (ϕk). What is the outcome? Prove your result.

Hint: distinguish between an even k and an odd k.
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6.17 Let ϕ
△

= Ā +B, and let ψ
△

= ¬(A ⋅ B̄). Prove that ϕ and ψ are logically equivalent in
two ways: (i) by using truth tables, (ii) without using truth tables. Hint: apply the NNF
algorithm.

6.18 Let ϕ
△

= (A → B) → C, and let ψ
△

= (A ⋅ B̄) + C. Prove that ϕ and ψ are logically
equivalent in two ways: (i) by using truth tables, (ii) without using truth tables. Hint:
apply the NNF algorithm.
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In this chapter we study the rate of growth of positive sequences. We introduce a formal
definition that enables us to say that one sequence does not grow faster than another sequence.
Suppose we have two sequences {xi}∞i=1 and {yi}∞i=1. We could say that xi does not grow faster
than yi if xi ≤ yi, for every i. However, such a restricted definition is rather limited, as suggested
by the following examples:

1. The sequence xi is constant: xi = 1000, for every i, while the sequence yi is defined by
yi = i. Clearly, we would like to say that yi grows faster than xi even though y100 < x100.

2. The sequences satisfy xi = yi + 5 or xi = 2 ⋅ yi, for every i. In this case, we would like to
say that the two sequences grow at the same rate even though xi > yi.

Thus, we are looking for a definition that is insensitive to the values of finite prefixes of
the sequence. In addition, we are looking for a definition that is insensitive to addition or
multiplication by constants. This definition is called the asymptotic behavior of a sequence.

7.1 Order of Growth Rates

Consider the Fibonacci sequence {g(n)}∞n=0 defined on page 25. The exact value of g(n), or an
analytic equation for g(n) is interesting, but sometimes, all we need to know is how “fast” does
g(n) grow? Does it grow faster than f(n) = n, f(n) = n2, f(n) = 2n? The following definition
captures the notion of “g(n) does not grow faster than f(n)”.

Recall that the set of nonnegative real numbers is denoted by R
≥ (see Section 1.1 on page 6).

Definition 7.1 Let f, g ∶ N→ R
≥ denote two functions.

1. We say that g(n) = O(f(n)), if there exist constants c1, c2 ∈ R
≥ such that, for every n ∈ N,

g(n) ≤ c1 ⋅ f(n) + c2.
101
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2. We say that g(n) = Ω(f(n)), if there exist constants c3 ∈ R
+, c4 ∈ R

≥ such that, for every
n ∈ N,

g(n) ≥ c3 ⋅ f(n) + c4.
3. We say that g(n) = Θ(f(n)), if g(n) = O(f(n)) and g(n) = Ω(f(n)).
These definitions should be interpreted as follows.

• If g(n) = O(f(n)), then g(n) does not grow faster than f(n).
• If g(n) = Ω(f(n)), then g(n) grows as least as fast as f(n).
• If g(n) = Θ(f(n)), then g(n) grows as fast as f(n).
We read:

• g(n) = O(f(n)) as “g(n) is big-O of f(n)”,
• g(n) = Ω(f(n)) as “g(n) is big-Omega of f(n)”,
• g(n) = Θ(f(n)) as “g(n) is big-Theta of f(n)”.

Examples

1. f(n) = O(g(n)) does not imply that g(n) = O(f(n)).
2. The notation f(n) = O(1) means that ∃ c ∀ n ∶ f(n) ≤ c.
3. Let g(n) △= 2 ⋅ n. We claim that g(n) = Θ(n).

Proof: First we show that 2 ⋅ n = O(n). We need to show that there exist constants
c1, c2 ∈ R

≥ such that, for every n ∈ N,

2 ⋅ n ≤ c1 ⋅ n + c2 . (7.1)

That is accomplished by setting c1 ← 2 and c2 ← 0.

Now we show that 2 ⋅n = Ω(n). We need to show that there exist constants c3 ∈ R
+, c4 ∈ R

≥

such that, for every n ∈ N,

2 ⋅ n ≥ c3 ⋅ n + c4 . (7.2)

That is accomplished, again, by setting c3 ← 2 and c4 ← 0.

We have shown that 2 ⋅n = O(n) and 2 ⋅n = Ω(n), hence 2 ⋅n = Θ(n), and the claim follows.
✷

4. Let g(n) △= n2 + n + 1. We claim that g(n) = O(n2).
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Proof: We need to prove that there exist constants c1, c2 ∈ R
≥ such that, for every n ∈ N,

n2 + n + 1 ≤ c1 ⋅ n
2
+ c2 . (7.3)

Let us find such constant c1 and c2. Since n
2 ≥ n for every n ∈ N, then

n2 + n + 1 ≤ n2 + n2 + 1

= 2 ⋅ n2 + 1 .

Hence, c1 = 2 and c2 = 1. The claim follows since, we found c1, c2 ∈ R such that Eq. 7.3
holds. ✷

5. Let g(n) △= nlog2 c. We claim that g(n) = Θ(clog2 n).
Proof: We prove the following stronger claim.

nlog2 c = clog2 n . (7.4)

That will conclude the proof, since for every two functions f, g ∶ N → R
≥, if f = g then

f(n) = Θ(g(n)) and g(n) = Θ(f(n)) (see Exercise 7.6).

Let us apply the log2 function on the left-hand side and the right-hand side of Eq. 7.4.
We get

log2(nlog2 c) ?
= log2(clog2 n)⇔

log2 c ⋅ log2 n = log2 n ⋅ log2 c , (7.5)

where the second line follows from the fact that log(ab) = b ⋅ log(a). Since Eq. 7.5 holds
with equality, and since the log function is one-to-one, then their arguments are equal as
well, i.e., nlog2 c = clog2 n, as required. ✷

6. Let g(n) △= log3 n. We claim that g(n) = Θ(log2 n)
Proof: Recall that for every a, b, c ∈ R, a, c ≠ 1,

loga b =
logc b

logc a
. (7.6)

Hence, log3 n =
log2 n

log2 3
. Since, 3/2 < log2 3 < 8/5 is a constant, then c1 = 2/3, c2 = 0, c3 =

5/8, c4 = 0 satisfy the conditions in Definition 7.1. ✷

7. Example 6 shows that when considering the order of growth of log functions with a
constant base, that is logc n and logd n where c, d are constants, we may omit the base
and simply refer the order of growth of these functions as O(logn), Ω(logn) and Θ(logn).

8. Prove that (i) n = O(n), (ii) n2 ≠ O(n).
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Proof: The first item is trivial, since n ≤ 1 ⋅ n2 + 0, for every n ∈ N.

To prove that g(n) ≠ O(f(n)) we need to show that

∀c1, c2 ∈ R
≥

∃n ∈ N ∶ g(n) > c1 ⋅ f(n) + c2 .
Hence, to prove Item (ii) we set g(n) = n2 and f(n) = n. Let c1, c2 ∈ R≥, it suffices to find
an n ∈ N such that

n2 >max{c1,1} ⋅ n + c2. (7.7)

Indeed, n = ⌈max{c1,1} + c2⌉ satisfies the above inequality. ✷

9. Let us consider the following alternative definition of order of growth.

Definition 7.2 Let f, g ∶ N→ R
≥ denote two functions.

(a) We say that g(n) = O(f(n)), if there exist constants c ∈ R≥ and N ∈ N, such that,
n ∈ N,

∀n > N ∶ g(n) ≤ c ⋅ f(n) .
(b) We say that g(n) = Ω(f(n)), if there exist constants d ∈ R≥ and N ∈ N, such that,

∀n > N ∶ g(n) ≥ d ⋅ f(n) .
(c) We say that g(n) = Θ(f(n)), if g(n) = O(f(n)) and g(n) = Ω(f(n)).
Prove that Definitions 7.1 and 7.2 are equivalent if f(n) ≥ 1, g(n) ≥ 1 for every n.

Proof: We show equivalence with respect to Item (a). A similar proof shows the equiv-
alence of Item (b) of both definitions. Item (c) is the same in both definitions.

We need to show that for every f, g ∶ N → R
≥: (i) if g(n) = O(f(n)) by Definition 7.1,

then g(n) = O(f(n)) by Definition 7.2, and (ii) if g(n) = O(f(n)) by Definition 7.2, then
g(n) = O(f(n)) by Definition 7.1.

Let f, g ∶ N→ R
≥ such that g(n) = O(f(n)) by Definition 7.1 Hence, there exist constants

c1, c2 ∈ R
≥ such that, for every n ∈ N,

g(n) ≤ c1 ⋅ f(n) + c2.
Since f(n) ≥ 1, then

g(n) ≤ c1 ⋅ f(n) + c2 ⋅ f(n)
= (c1 + c2) ⋅ f(n) .

Hence, g(n) = O(f(n)) by Definition 7.2 with c
△

= (c1 + c2) and N △

= 0.

We now prove the second direction, let f, g ∶ N → R
≥ such that g(n) = O(f(n)) by

Definition 7.2. Hence, there exist constants c ∈ R≥ and N ∈ N, such that,

∀n > N ∶ g(n) ≤ c ⋅ f(n) .
Let c1

△

= c and c2
△

=max0≤n≤N{g(n)}, then
∀n ∈ N ∶ g(n) ≤ c1 ⋅ f(n) + c2 .

We showed that both directions hold, as required. ✷



7.1. ORDER OF GROWTH RATES 105

10. Consider two functions f, g ∶ N→ R
≥. Let

h(n) △= ⎧⎪⎪⎨⎪⎪⎩
g(n) if n ≤ n1

f(n) if n > n1

Prove that h(n) = Θ(f(n)).
Proof: The lemma follows from Definition 7.2, by plugging c

△

= 1, d
△

= 1, and N
△

= n1. ✷

11. Exercise 10 implies that we can consider the order of growth of functions whose domain
is N∖{n0, n0+1, . . . , n1}. We simply extend the function arbitrarily in the range {n0, n0+
1, . . . , n1}, and apply Definition 7.2.

12. Prove that log2 n + log2(log2 n) = Θ(logn).
Proof: We prove that log2 n + log2(log2 n) = O(logn) using Definition 7.2. The other
direction is similar. Since, log2 n + log2(log2 n) ≤ 2 ⋅ log2 n for every n > 2, it follows that
log2 n + log2(log2 n) = O(logn), as required. ✷

13. Recall that in Lemma 2.6 we proved that the Fibonacci sequence g(n) is bounded by
ϕn−1. This implies that g(n) = O(ϕn).

14. Arithmetic of functions. Suppose f(n) = O(h(n)) and g(n) = O(h(n)). Then,
f(n) + g(n) = O(h(n)) (add the constants)

max{f(n), g(n)} = O(h(n)) (take the maximum of the constants)

f(n) ⋅ g(n) = O(h2(n)) (take the product of the constants).

A similar property holds for f(n) = Ω(h(n)) and g(n) = Ω(h(n)). Namely,

f(n) + g(n) = Ω(h(n)) (add the constants)

min{f(n), g(n)} = Ω(h(n)) (take the minimum of the constants)

f(n) ⋅ g(n) = Ω(h2(n)) (take the product of the constants).

15. Transitivity of big-Oh. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).
Indeed, multiply the constants for f and g.

16. Addition of a small function. If f(n) = O(g(n)) and h(n) = O(f(n)), then f(n) + h(n) =
O(g(n)). Indeed, if f(n) ≤ c1 ⋅ g(n) and h(n) ≤ c2 ⋅ f(n), then

f(n) + h(n) ≤ (c1 + c2 ⋅ c1) ⋅ g(n).
One could also prove this as follows. First apply transitivity to obtain h(n) = O(g(n)).
Now apply the for addition of function to obtain f(n) + h(n) = O(g(n)).
Now, use this observation to prove that

xk + xk−1 +⋯+ x + 1 = O(xk).
Moreover, consider any polynomial p(x) = ∑ki=0 pi ⋅ xi, where pk > 0. We can now prove
that p(x) = O(xk).
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17. Suppose that limn→∞ ∣g(n)∣/f(n) = 0. (Note that g(n) may be negative.) Then, f(n) −
g(n) = Θ(f(n)). Indeed, for a large enough n, it holds that f(n)− g(n) ≥ f(n)/2. Hence,
f(n) − g(n) = Ω(f(n)). On the other hand, for a large enough n, f(n) − g(n) ≤ 2f(n).
Hence f(n) − g(n) = O(f(n)).
Note that if k > i then limn→∞ x

i/xj = 0. We can now prove that

xk − xk−1 −⋯− x − 1 = Ω(xk).
Moreover, consider any polynomial p(x) = ∑ki=0 pi ⋅ xi, where pk > 0. We can now prove
that p(x) = Ω(xk).

18. Suppose f ≠ 0. Then, f(n) = O(g(n)) if and only if g(n) = Ω(f(n)). Indeed, f(n) ≤ c⋅g(n)
if and only if g(n) ≥ f(n)/c.

7.2 Recurrence Equations

In this section we deal with the problem of solving or bounding the rate of growth of functions
f ∶ N+ → R that are defined recursively. We consider the typical cases that we will encounter
later.

Recurrence 1. Consider the recurrence

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
1 if n = 1

n + f (⌊n
2
⌋) if n > 1.

(7.8)

Lemma 7.1 The rate of growth of the function f(n) defined in Eq. 7.8 is Θ(n).
Proof: Clearly, f(n) > 0, for every n, therefore, by the definition of f(n) we obtain

f(n) = n + f (⌊n
2
⌋) > n.

Thus we proved that f(n) = Ω(n).
The proof that f(n) = O(n) is divided into two parts. First, we deal with powers of 2 to

get an intuition of the constant we need. In the second part, we use this intuition to prove the
bounds.

We claim that f(2k) = 2k+1 − 1. The proof is by induction on k ∈ N. The induction basis for
k = 0 holds by the definition of f(1). The induction step is proved as follows:

f(2k+1) = 2k+1 + f(2k) (by definition)

= 2k+1 + 2k+1 − 1 (induction hypothesis)

= 2k+2 − 1.

This part gives us the intuition that f(n) < 2n.
We now claim that f(n) < 2n. The proof is by complete induction on n. The induction

basis for n = 1 is immediate. The induction step is proved as follows:

f(n) = n + f (⌊n
2
⌋)

< n + 2 ⋅ (n
2
) = 2n.
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✷

In the following lemma we show that, under reasonable conditions, it suffices to consider
powers of two when bounding the rate of growth.

Lemma 7.2 Assume that:

1. The functions f(n) and g(n) are both monotonically nondecreasing.

2. The constant ρ satisfies, for every k ∈ N,

ρ ≥
g(2k+1)
g(2k) .

If f(2k) = O(g(2k)), then f(n) = O(g(n)).
Proof: Since f(2k) = O(g(2k)) Let c denote a constant such that for every k > K it holds
that f(2k) ≤ c ⋅ g(2k). We claim that, for every n > 2K ,

f(n) ≤ ρ ⋅ c ⋅ g(n).
Indeed, let 2k ≤ n < 2k+1. Then,

f(n) ≤ f(2k+1) (since f is monotone)

≤ c ⋅ g(2k+1)
=
g(2k+1)
g(2k) ⋅ c ⋅ g(2k)

≤ ρ ⋅ c ⋅ g(n). (by definition of ρ and since g is monotone)

Thus we obtain that f(n) = O(g(n)), as required. ✷

An analogous lemma that states that f(n) = Ω(g(n)) can be proved if g(2k+1)
g(2k) ≥ ρ, for a

constant ρ The lemma is as follows.

Lemma 7.3 Assume that:

1. The functions f(n) and g(n) are both monotonically nondecreasing.

2. The constant ρ satisfies, for every k ∈ N,

ρ ≤
g(2k+1)
g(2k) .

If f(2k) = Ω(g(2k)), then f(n) = Ω(g(n)).
We leave the proof of Lemma 7.3 as an exercise.

Recurrence 2. Consider the recurrence

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
1 if n = 1

n + 2 ⋅ f(⌊n
2
⌋) if n > 1.

(7.9)

Lemma 7.4 The rate of growth of the function f(n) defined in Eq. 7.9 is Θ(n logn).
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Proof: The proof proceeds as follows. We deal with powers of 2 and then apply Lemma 7.2
and Lemma 7.3.

We claim that f(2k) = 2k ⋅ (k + 1). The proof is by induction on k ∈ N. The induction basis
for k = 0 holds by the definition of f(1). The induction step is proved as follows:

f(2k+1) = 2k+1 + 2 ⋅ f(2k) (by definition)

= 2k+1 + 2 ⋅ 2k ⋅ (k + 1) (induction hypothesis)

= 2k+1 ⋅ (k + 2).
We have proved that for n = 2k, where k ∈ N, recurrence 7.9 satisfies that f(n) = n ⋅(log(n)+1) =
Θ(n logn).

To complete the proof we need to apply Lemma 7.2 and Lemma 7.3. First, the functions,
f(n) and g(n) = n ⋅ (log(n) + 1) are both monotonically nondecreasing. Second, in order to

apply Lemma 7.2 and Lemma 7.3, we also need to prove that ρ1 ≤
2k+1 ⋅(k+2)
2k ⋅(k+1) ≤ ρ2, such that

ρ1, ρ2 = O(1) for every k ∈ N. Indeed,
2k+1 ⋅ (k + 2)
2k ⋅ (k + 1) =

2 ⋅ (k + 2)(k + 1)
=
2 ⋅ (k + 1) + 2(k + 1)

= 2 +
2(k + 1) ≤ 4, for every k ∈ N .

Obviously, 2 + 2
(k+1) ≥ 2, for every k ∈ N. The lemma follows. ✷

Recurrence 3. Consider the recurrence

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
1 if n = 1

n + 3 ⋅ f(⌊n
2
⌋) if n > 1.

(7.10)

Lemma 7.5 The rate of growth of the function f(n) defined in Eq. 7.10 is Θ(nlog2 3).
Proof: The proceeds as follows. We deal with powers of 2 and then apply Lemma 7.2 and
Lemma 7.3.

We claim that f(2k) = 3 ⋅ 3k − 2 ⋅ 2k. The proof is by induction on k ∈ N. The induction basis
for k = 0 holds by the definition of f(1). The induction step is proved as follows:

f(2k+1) = 2k+1 + 3 ⋅ f(2k) (by definition)

= 2k+1 + 3 ⋅ (3 ⋅ 3k − 2 ⋅ 2k) (induction hypothesis)

= 3 ⋅ 3k+1 − 2 ⋅ 2k+1.

We have proved that for n = 2k, where k ∈ N, recurrence 7.10 satisfies f(n) = 3 ⋅ 3log2 n − 2 ⋅ n =
Θ(nlog2 3).

To complete the proof we need to apply Lemma 7.2 and Lemma 7.3. First, the functions,
f(n) and g(n) = nlog2 3 are both monotonically nondecreasing. Second, in order to apply
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Lemmas 7.2 and Lemma 7.3, we also need to find constants ρ1, ρ2 such that ρ1 ≤
g(2k+1)
g(2k) ≤ ρ2,

for every k ∈ N. Indeed,

2(k+1)⋅log2 3

2k⋅log2 3
=
3k+1

3k

= 3 .

The lemma follows. ✷

Examples

1. Consider the recurrence

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
c if n = 1

a ⋅ n + b + f(⌊n
2
⌋) if n > 1,

(7.11)

where a, b, c are constants.

Lemma 7.6 The rate of growth of the function f(n) defined in Eq. 7.11 is Θ(n).
Proof: The proceeds as follows. We deal with powers of 2 and then apply Lemma 7.2
and Lemma 7.3.

We claim that f(2k) = 2a ⋅ 2k + b ⋅ k + c − 2a. The proof is by induction on k ∈ N. The
induction basis for k = 0 holds by the definition of f(1). The induction step is proved as
follows:

f(2k+1) = a ⋅ 2k+1 + b + f(2k) (by definition)

= a ⋅ 2k+1 + b + (2a ⋅ 2k + b ⋅ k + c − 2a) (induction hypothesis)

= 2a ⋅ 2k+1 + b ⋅ (k + 1) + c − 2a.

We have proved that for n = 2k, where k ∈ N, recurrence 7.11 satisfies f(n) = 2a ⋅ n + b ⋅
log2 n + c − 2a = Θ(n).
To complete the proof we need to apply Lemma 7.2 and Lemma 7.3. First, the functions,
f(n) and g(n) = n are both monotonically nondecreasing. Second, in order to apply
Lemma 7.2 and Lemma 7.3, we also need to prove that there exist constants ρ1, ρ2 such

that ρ1 ≤
g(2k+1)
g(2k) ≤ ρ2, for every k ∈ N. Indeed,

2(k+1)

2k
=
2k+1

2k

= 2 .

The lemma follows. ✷

2. Consider the recurrence

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
c if n = 1

a ⋅ n + b + 2 ⋅ f(⌊n
2
⌋) if n > 1,

(7.12)

where a, b, c = O(1).
Lemma 7.7 The rate of growth of the function f(n) defined in Eq. 7.12 is Θ(n logn).
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Proof: The proceeds as follows. We deal with powers of 2 and then apply Lemma 7.2
and Lemma 7.3.

We claim that f(2k) = a ⋅ k2k + (b + c) ⋅ 2k − b. The proof is by induction on k ∈ N. The
induction basis for k = 0 holds by the definition of f(1). The induction step is proved as
follows:

f(2k+1) = a ⋅ 2k+1 + b + 2 ⋅ f(2k) (by definition)

= a ⋅ 2k+1 + b + 2 ⋅ (a ⋅ k2k + (b + c) ⋅ 2k − b) (induction hypothesis)

= a ⋅ (k + 1)2k+1 + (b + c) ⋅ 2k+1 − b.
We have proved that for n = 2k, where k ∈ N, recurrence 7.11 satisfies that f(n) =
a ⋅ n log2 n + (b + c) ⋅ n − b = Θ(n ⋅ [log(n) + 1])) = Θ(n logn).
To complete the proof we need to apply Lemma 7.2 and Lemma 7.3. First, the functions,
f(n) and g(n) = n ⋅(log(n)+1) are both monotonically nondecreasing. Second, in order to
apply Lemma 7.2 and Lemma 7.3, we also need to prove that there exist constants ρ1, ρ2

such thatρ1 ≤
g(2k+1)
g(2k) ≤ ρ2, for every k ∈ N. Indeed,

2k+1 ⋅ (k + 2)
2k ⋅ (k + 1) =

2 ⋅ (k + 2)(k + 1)
=
2 ⋅ (k + 1) + 2(k + 1)

= 2 +
2(k + 1) ≤ 4, for every k ∈ N .

Obviously, 2 + 2
(k+1) ≥ 2, for every k ∈ N. The lemma follows. ✷

3. Consider the recurrence

F (k) △= ⎧⎪⎪⎨⎪⎪⎩
1 if k = 0

2k + 2 ⋅ F (k − 1) if k > 0,
(7.13)

Lemma 7.8 F (k) = (k + 1) ⋅ 2k.
Proof: One may repeat the same technique as in the last examples. Instead, we reduce
the recurrence to one that we already solved. Define f(n) △= F (⌈log2 n⌉). Observe that

f(2x) △= F (x). The function f satisfies the recurrence

f(2k) = 2k + 2 ⋅ f(2k/2).
Hence, for powers of two, the function f satisfies the recurrence in Eq. 7.9. In Lemma 7.4
we proved that f(2k) = (k + 1) ⋅ 2k. Therefore, F (k) = f(2k) = (k + 1) ⋅ 2k, and the lemma
follows. ✷
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Problems

7.1 Prove that n3 + 2 ⋅ n2 = O(n3).
7.2 Recall the harmonic series Hn

△

= ∑ni=1
1
i
. Prove that Hn = Θ(logn).

7.3 Prove that the Fibonacci sequence g(n) is Θ(ϕn).
Hint: Recall Question 2.13 on page 29.

7.4 Prove that Definitions 7.1 and 7.2 are equivalent definitions for g(n) = Ω(f(n)) if f(n) ≥ 1.

7.5 Consider the following alternative definition of g(n) = Θ(f(n)).
Definition 7.3 Let f, g ∶ N → R denote two functions. We say that g(n) = Θ(f(n)), if there
exist constants c1, c2, c4 ∈ R

≥,c3 ∈ R+ such that, for every n ∈ N,

c3 ⋅ f(n) + c4 ≤ g(n) ≤ c1 ⋅ f(n) + c2 .
Prove that this definition and Item 3 in Definition 7.1 are equivalent.

7.6 Prove that for every two functions f, g ∶ N → R, if f = g then f(n) = Θ(g(n)) and
g(n) = Θ(f(n)).
7.7 Prove or refute the following claim. For every two functions f, g ∶ N

+ → R if f(n) =
Θ(g(n)) and g(n) = Θ(f(n)), then f = g.
7.8 Prove that for every two functions f, g ∶ N+ → R

f(n) = Θ(g(n))⇔ g(n) = Θ(f(n)) .
7.9 Prove that logn + log logn = Θ(logn).
7.10 Prove Lemma 7.3.

7.11 Solve the following recurrences.

1.

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
1 if n = 1

log2 n + f(⌊n2 ⌋) if n > 1.

2. (*)

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
d if n = 1

an + b + c ⋅ f(⌊n
c
⌋) if n > 1,

where a, b, c, d = O(1), and c > 2.

3.

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
1 if n = 1

1 + f(⌊n
2
⌋) if n > 1.

4.

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
1 if n = 1

n + f(⌊n
2
⌋) + f(⌈n

2
⌉) if n > 1.
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Chapter 8

Computer Stories: Big Endian vs.
Little Endian∗ 1

A long standing source of confusion is the order of bits in binary strings. This issue is very
important when strings of bits are serially communicated or stored in memories. Consider the
following two scenarios.

In the first setting Alice wishes to send to Bob a binary string a[n−1 ∶ 0]. The channel that
Alice and Bob use for communication is a serial channel. This means that Alice can only send
one bit at a time. Now Alice has two “natural” choices:

• She can send a[n − 1] first and a[0] last. Namely, she can send the bits in descending
index order. This order is often referred to as most significant bit first or just MSB first.

• She can send a[0] first and a[n−1] last. Namely, she can send the bits in ascending index
order. This order is often referred to as least significant bit first or just LSB first.

In the second setting computer words are stored in memory. A memory is a vector of storage
places. We denote this vector by M[0],M[1], . . .. Suppose that each storage place is capable
of storing a byte (i.e., 8 bits). The typical word size in modern computers is 32 bits (and even
64 bits). This means that a word is stored in 4 memory slots. The question is how do we store
a word a[31 ∶ 0] in 4 memory slots?

Obviously, it is a good idea to store the word in 4 consecutive slots, say M[i ∶ i + 3]. There
are two “natural” options. In the first option storage is as follows:

M[i] ← a[31 ∶ 24]
M[i + 1]← a[23 ∶ 16]
M[i + 2]← a[15 ∶ 8]
M[i + 3]← a[7 ∶ 0].

This option is referred to as Big Endian.

In the second option storage is as follows:

1Danny Cohen coined the terms Big Endian and Little Endian in the treatise “On holy wars and a plea for
peace” [1].
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M[i]← a[0 ∶ 7]
M[i + 1]← a[8 ∶ 15]
M[i + 2]← a[16 ∶ 23]
M[i + 3]← a[24 ∶ 31].

This option is referred to as Little Endian. Note that, for the sake of aesthetics, we used
increasing bit indexes in the second option.

Each of these options has certain advantages and disadvantages. For example, if an archi-
tecture supports multiple word lengths, then it is convenient to have the most significant bit
(MSB) stored in a fixed position relative to the address of the word (in our example we can
see that in Big Endian the MSB is stored in M[i] regardless of the number of bytes in a⃗.) On
the other hand, if multiple word lengths are supported and we wish to add a half word (i.e.,
two-byte string) with a word (i.e., four-byte string), then Little Endian may simplify the task
of aligning the two words (i.e., making sure that bits of the same weight are placed in identical
offsets).

It is of no surprise that both conventions are used in commercial products. Architectures
from the X86 family (such as Intel processors) use Little Endian byte ordering, while Motorola
68000 CPUs follow the Big Endian convention. Interestingly, the Power-PC supports both!
Nevertheless, operating systems also follow different conventions: Microsoft operating systems
follow Little Endian and Apple operating systems follow Big Endian. So a MAC with a Power-
PC CPU that runs an Apple operating system runs in Big Endian mode.

This confusion spreads beyond hardware to software (e.g., Java uses Big Endian) and to file
formats (e.g., GIFF uses Little Endian and JPEG uses Big Endian).

What does this story have to do with us? You might have noticed that we use both ascending
indexes and descending indexes (e.g. a[n − 1 ∶ 0] vs. a[0 ∶ n − 1]) to denote the same string.
These two conventions are simply an instance of the Big Endian vs. Little Endian controversy.

Following Jonathan Swift (at the risk of not obeying Danny Cohen’s plea), we use both
ascending and descending bit orders according to the task we are considering. When consider-
ing strings that represent integers in binary representation, descending indexes are used (i.e.,
leftmost bit is the MSB). However in many parts of this chapter ascending indexes are used; the
reason is to simplify handling of indexes in the text. We can only hope that this simplification
does not lead to confusion.
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Combinational Circuits
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In Chapter 6, we used Boolean formulas to represent Boolean functions. The idea was to
write a Boolean formula over a set of n variables, and then assign 0-1 values to each variable.
This assignment induces a truth value to the formula, and thus we have a Boolean function over
n bits. In fact, any Boolean function can be represented by a Boolean formula if the the set of
connectives is complete. In Section 6.6 we proved that the set {¬,and,or} is a complete set of
connectives.

In this chapter we consider special representations of functions that are often called normal
forms. Boolean formulas in a normal form are restricted forms of formulas.

Given a Boolean function, one may want to find a shortest representation of the function
by a Boolean formula. This question is not well defined because one needs to specify how a
Boolean function is represented. Suppose the function is described by its truth table. In this
case, the truth table has 2n entries, where n denotes the number of bits in the domain of the
function. Obviously, we can only read or write truth tables for rather small values of n. If
n ≥ 100, then all the atoms in the universe would not suffice!

Nevertheless, we present a method by Quine and McCluskey to find a shortest representation
of a function by a Boolean formula in a normal form called sum of products. This method is
input the truth table of the function and outputs a shortest Boolean formula in sum of products
form. We describe this algorithm using a graph defined over the implicants.

9.1 Sum of Products

The first normal form we consider is called disjunctive normal form (DNF) or sum of products
(SOP).

We recall the definition of a literal.

Definition 9.1 A variable or a negation of a variable is called a literal.

Recall that the and connective is associative. Thus we may apply it to multiple arguments
without writing parenthesis. To simplify notation, we use the ⋅ notation for the and connective
so that

X ⋅ Y ⋅Z (9.1)

simply means (X and Y and Z). We often refer to such an and as a product.

Definition 9.2 A formula that is the and of literals is called a product term.

We say that a variable X appears in a product term p if either X or X̄ is an argument of
the and in p. Of course, a variable might appear more than once in a term. For example, X
appears three times in the product term (X ⋅ Y ⋅ X̄ ⋅X). Recall that X ⋅ X̄ is always false and
that X ⋅X is equivalent to X. Similarly, X̄ ⋅ X̄ is equivalent to X̄. Thus, any product in which
a variable appears more than once can be simplified either to the constant zero or to a product
term in which every variable appears at most once.

Definition 9.3 A product term p is simple if every variable appears at most once in p.
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Notation. With each product term p, we associate the set of variables that appear in p. The
set of variables that appear in p is denoted by vars(p). Let vars+(p) denote the set of variables
that appear in p that appear without negation. Let vars−(p) denote the set of variables that
appear in p that with negation. Let literals(p) denote the set of literals that appear in p.

For example, let p = X1 ⋅ X̄2 ⋅X3, then vars(p) = {X1,X2,X3}, vars+(p) = {X1,X3} and
vars−(p) = {X2}, and literals(p) = {X1, X̄2,X3}.
Definition 9.4 A simple product term p is a minterm with respect to a set U of variables if
vars(p) = U .

A minterm is a simple product term, and therefore, every variable in U appears exactly once in
p.

Lemma 9.1 A minterm p attains the truth value 1 for exactly one truth assignment.

Proof: Consider the assignment τ ∶ U → {0,1} defined by

τ(Xi) △= ⎧⎪⎪⎨⎪⎪⎩
1 if Xi ∈ vars

+(p)
0 if Xi ∈ vars

−(p).
By definition, for every literal ℓ in p, we have τ̂(ℓ) = 1. Therefore, τ̂(p) = 1.

To complete the proof we need to show that this is the only assignment that satisfies the
minterm p. Namely, if an assignment γ satisfies γ̂(p) = 1, then γ = τ .

Suppose that γ̂(p) = 1. This implies that γ̂(ℓ) = 1, for every literal ℓ in p. If ℓ =Xi, then this
implies that γ(Xi) = 1. If ℓ = X̄i, then this implies that γ(Xi) = 0. Therefore, Xi ∈ vars

+(p)
implies γ(Xi) = 1. Similarly, Xi ∈ vars−(p) implies γ(Xi) = 0. We conclude that γ = τ , as
required. ✷

Recall that the or connective is also associative. We use the + to denote the or connective.
The or of multiple arguments is written as a “sum”. For example,

X + Y +Z (9.2)

simply means (X or Y or Z). We often refer to such an or as a sum. Substitution allows
us to replace each occurrence of a variable by a product. This leads us to the terminology
sum-of-products.

Definition 9.5 For a v ∈ {0,1}n, define the minterm pv to be pv
△

= (ℓv1 ⋅ ℓv2⋯ℓvn), where:
ℓvi

△

=

⎧⎪⎪⎨⎪⎪⎩
Xi if vi = 1

X̄i if vi = 0.

Definition 9.6 Let f−1(1) denote the set

f−1(1) △= {v ∈ {0,1}n ∣ f(v) = 1}.
Definition 9.7 The set of minterms of f is defined by

M(f) △= {pv ∣ v ∈ f−1(1)}.
Theorem 9.2 Every Boolean function f ∶ {0,1}n → {0,1} that is not a constant zero is repre-
sented by the sum of the minterms in M(f).
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Proof: Every minterm p ∈ M(f) equals pv for a vector v ∈ f−1(1). We associate the ith
argument vi of f(v) with the Boolean variable Xi. Let f

−1(1) = {v1, . . . , vk}. We claim the the
formula

ϕ
△

= pv1 + pv2 +⋯+ pvk

represents the function f , namely, Bϕ = f .

To prove that Bϕ = f , we consider two cases:

1. If f(v) = 1, then v = vi for some 1 ≤ i ≤ k. The minterm pvi is satisfied by the assignment
τv, namely, τ̂v(pvi) = 1. This implies that τ̂v(ϕ) = 1. Therefore, Bϕ(v) = 1.

2. If f(v) = 0, then every minterm pvi is not satisfied by τv, namely, τ̂v(pvi) = 0, for every
1 ≤ i ≤ k. This implies that τ̂v(ϕ) = 0, and therefore, Bϕ(v) = 0.

We proved that f(v) = Bϕ(v), for every v ∈ {0,1}n, and the theorem follows. ✷

Definition 9.8 A Boolean formula is called a sum-of-products (SOP) if it is a constant or an
or of product terms.

Consider the constant Boolean function f ∶ {0,1}n → {0,1} that is defined by f(v) = 1, for
every v. The sum-of-minterms that represents f is the sum of all the possible minterms over
n variables. This sum contains 2n minterms. On the other hand, f can be represented by
the constant 1. The question of finding the shortest sum-of-products that represents a given
Boolean formula is discussed in more detail later in this chapter.

Examples

1. The following formulas are product terms.

(a) p1 =X ⋅ Y ,

(b) p2 = Ā and B and C,

(c) p3 = L,

(d) p4 = G ∧ (¬H) ∧G.
The variables A,B and C appear in p2. The product term in p4 is not simple, since the
the variable G appears twice. On the other hand, the product term in p1 is simple, since
both X and Y appear once. Moreover,

• vars(p1) = {X,Y },
• vars(p2) = {A,B,C},
• vars(p3) = {L},
• vars(p4) = {G,H},
• vars+(p1) = {X,Y },
• vars+(p2) = {B,C},
• vars+(p3) = {L},
• vars+(p4) = {G},
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a b max{a, b}
0 0 0
1 0 1
0 1 1
1 1 1

Table 9.1: The truth table of the max Boolean function.

• vars−(p1) = ∅,
• vars−(p2) = {A},
• vars−(p3) = ∅,
• vars−(p4) = {H}.

2. The following formulas are not product terms.

(a) X + Y ,

(b) A or B and C.

3. Each of the following formulas is a sum-of-products.

(a) ϕ1 =X ⋅ Y +X ⋅ Y ,

(b) ϕ2 = (Ā and B and C) or (A and B̄ and C) or D̄,

(c) ϕ3 = L.

4. Each of the following formulas is not a sum-of-products.

(a) (X + Y ) ⋅Z,
(b) (A or B) and (C or D).

5. Represent the following Boolean functions as an SOP formula: (i)f(a, b) = max{a, b},
(ii) g(a, b) =min{a, b}.
Recall Theorem 9.2. The proof of Theorem 9.2 is constructive, i.e., it algorithmically
builds the sum of minterms.

(i) First, we need to find f−1(1). Let us write down the truth table of f , depicted in
Table 9.1. Now, the task of finding f−1(1) is quite easy, all we need to do is to look
for the rows in which f attains the value ‘1’. Hence, f−1(1) = {(0,1), (1,0), (1, 1)}.
Finally, we construct the sum of minterms formula ϕf . The minterm that corre-
sponds to the vector v1 = (0,1) is pv1 = X̄1 ⋅X2. The minterm that corresponds to
the vector v2 = (1,0) is pv2 = X1 ⋅ X̄2. The minterm that corresponds to the vector
v3 = (1,1) is pv2 =X1 ⋅X2. Hence,

ϕf = (X̄1 ⋅X2) + (X1 ⋅ X̄2) + (X1 ⋅X2) .
We observe that the truth table of ϕf is equivalent to the or Boolean function,
i.e., this method of constructing a sum of minterms not necessarily produces the
“shortest” representation.

(ii) The set g−1(1) contains only one ordered pair, i.e., (1,1). Hence the SOP formula
for g is ϕg =X1 ⋅X2, and g is simply the and function.
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9.2 Product of Sums

The second normal form we consider is called conjunctive normal form (CNF) or product of
sums (POS) .

Definition 9.9 A formula that is the or of literals is called a sum term.

As in the case of product terms, we say that a variable X appears in a sum term p if X or
X̄ is one of the arguments of the or in p. A sum term is simple if every variables appears at
most once in it.

We use the notation vars(p) also for a sum term p. As in the case of a product term, it
means the set of variables that appear in p. The notation vars+(p) and vars−(p) is used as well.

Definition 9.10 A simple sum term p is a maxterm with respect to a set U of variables if
vars(p) = U .

As in the case of a minterm, each variable appears at most once in a maxterm since it is a
simple sum term.

Recall that DM(ϕ) is the De Morgan dual of the formula ϕ.

Observation 9.1 (1) If p is a minterm, then the formula DM(p) is a maxterm. (2) If p is a
maxterm, then the formula DM(p) is a minterm.

Proof: An and becomes an or, An or becomes an and, and the De Morgan dual of a literal
is a literal. ✷

Lemma 9.3 A maxterm p attains the truth value 0 for exactly one truth assignment.

Proof: Consider a maxterm p. Let q = DM(p). By Observation 9.1, q is a minterm. By
Lemma 9.1, τ̂(q) = 1 for exactly one assignment τ . By Theorem 6.11, q is logically equivalent
to ¬p. This implies that τ̂(q) ≠ τ̂(p), for every assignment τ . Hence, τ̂(p) = 0 for exactly one
assignment τ , and the lemma follows. ✷

Theorem 9.4 Every Boolean function f ∶ {0,1}n → {0,1} that is not a constant one can be
represented by a product of maxterms.

Proof: Define g(v) △= not(f(v)). Since f is not constant one, the function g is not constant
zero. By Theorem 9.2, g can be represented by a sum-of-minterms p. Since f(v) = not(g(v)),
it follows that f is represented by DM(p). By Example 5i on Page 124, DM(p) is a product-
of-sums formula.

To complete the proof, we need to show that each sum in DM(p) is a maxterm. Indeed,
each sum in DM(p) is the De Morgan dual of a minterm in p. By Observation 9.1, it follows
that each sum in DM(p) is a maxterm, as required. ✷

Definition 9.11 A Boolean formula is called a product-of-sums (POS) if it is a constant or
an and of sum terms.

The following observation extends Observation 9.1

Observation 9.2 (1) If p is a sum-of-products, then the formula DM(p) is a product-of-sums.
(2) If p is a product-of-sums, then the formula DM(p) is a sum-of-products.
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Examples

1. The following formulas are sum terms.

(a) p1 =X + Y ,

(b) p2 = Ā or B or C,

(c) p3 = L,

(d) p4 = G ∨ (¬H) ∨G.
The variables A,B and C appear in p2. The sum term in p4 is not simple, since the the
variable G appears twice. On the other hand, the sum term in p1 is simple, since both X
and Y appear once. Moreover,

• vars(p1) = {X,Y },
• vars(p2) = {A,B,C},
• vars(p3) = {L},
• vars(p4) = {G,H},
• vars+(p1) = {X,Y },
• vars+(p2) = {B,C},
• vars+(p3) = {L},
• vars+(p4) = {G},
• vars−(p1) = ∅,
• vars−(p2) = {A},
• vars−(p3) = ∅,
• vars−(p4) = {H}.

2. The following formulas are not sum terms.

(a) X ⋅ Y ,

(b) A and B or C.

3. Each of the following formulas is a product-of-sums.

(a) ϕ1 = (X + Y ) ⋅ (X + Y ),
(b) ϕ2 = (Ā or B or C) and (A or B̄ or C) and D̄,

(c) ϕ3 = L.

4. Each of the following formulas is not a product-of-sums.

(a) (X ⋅ Y ) +Z,
(b) (A and B) or (C and D).

5. Represent the following Boolean functions as an POS formula: (i) f(a, b) = min{a, b},
(ii) h(a, b) =max{a, b}.
Recall Theorem 9.4. The proof of Theorem 9.4 is, also, constructive, i.e., it algorithmically
builds the product of maxterms. Note that the proof of Theorem 9.4 “uses” Theorem 9.2
as a subroutine.
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a b not(min{a, b})
0 0 1
1 0 1
0 1 1
1 1 0

Table 9.2: The truth table of the not(max) Boolean function.

(i) First, let f denote the negation of the Boolean formula g, that is f(v) = not(g(v)).
Second, we need to find f−1(1). Let us write down the truth table of f , depicted in
Table 9.2. Now, the task of finding f−1(1) is quite easy, all we need to do is to look
for the rows in which f attains the value ‘1’. Hence, f−1(1) = {(0,0), (0,1), (1, 0)}.
Third, we construct the sum of minterms formula ϕf . The minterm that corresponds
to the vector v1 = (0,0) is pv1 = X̄1 ⋅X̄2. The minterm that corresponds to the vector
v1 = (0,1) is pv1 = X̄1 ⋅X2. The minterm that corresponds to the vector v2 = (1,0)
is pv2 =X1 ⋅ X̄2. Hence,

ϕf = (X̄1 ⋅ X̄2) + (X̄1 ⋅X2) + (X1 ⋅ X̄2) .
Finally, the required POS ψf formula is ψf =DM(ϕf), that is

ψg = (X1 +X2) ⋅ (X1 + X̄2) ⋅ (X̄1 +X2) .
We observe that the truth table of ψf is equivalent to the and Boolean function,
i.e., this method of constructing a sum of maxterms not necessarily produces the
“shortest” representation.

(ii) Let f denote the negation of the Boolean formula h, that is f(v) = not(h(v)). The
set f−1(1) contains only one ordered pair, i.e., (0,0). Hence the POS formula for g
is ϕg =X1 +X2, and H is simply the or function.

9.3 The Finite Field GF (2)

In this section we consider the set {0,1} with the Boolean functions xor,and. We regard this
triple as a special structure called the Galois Field of two elements. This structure is often
denoted by GF (2).
Definition 9.12 The Galois Field GF (2) is defined as follows.

1. Elements: the elements of GF (2) are {0,1}. The zero is called the additive unity and one
is called the multiplicative unity.

2. Operations:

(a) addition which is simply the xor function, and

(b) multiplication which is simply the and function.

In the context of GF (2) we denote multiplication by ⋅ and addition by ⊕.
We are used to infinite fields like the rationals (or reals) with regular addition and multipli-

cation. In these fields, 1 + 1 ≠ 0. However, in GF (2), 1⊕ 1 = 0.
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Observation 9.3 X ⊕X = 0, for every X ∈ {0,1}.
A minus sign in a field means the additive inverse.

Definition 9.13 The element −X stands for the element Y such that X ⊕ Y = 0.

Observation 9.4 In GF (2), the additive inverse of X is X itself, namely −X = X, for every
X ∈ {0,1}.
Thus, we need not write minus signs, and adding an X is equivalent to subtracting an X.

The distributive law holds in GF (2), namely:

Observation 9.5 (X ⊕ Y ) ⋅Z =X ⋅Z ⊕ Y ⋅Z, for every X,Y,Z ∈ {0,1}.
Proof: Consider two cases: 1. If Z = 0, then both sides equal zero. 2. If Z = 1, then (X⊕Y )⋅Z =
X ⊕ Y , and X ⋅Z ⊕ Y ⋅Z =X ⊕ Y , as required. ✷

Let Xk denote the product

Xk △=

k times³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
X ⋅ ⋯ ⋅X .

We define X0 = 1, for every X ∈ {0,1}. The following observation proves that multiplication is
idempotent .

Observation 9.6 Xk =X, for every k ∈ N+ and X ∈ {0,1}.
Proof: By induction on k. The induction basis for k = 1 is immediate. The induction basis is
proved as follows:

Xk+1 =Xk
⋅X

=X ⋅X

=X.

The first line follows by associativity, the second line by the induction hypothesis, and the last
line holds since XandX =X. ✷

The structure of a field allows us to solve systems of equations. In fact, Gauss elimination
works over any field. The definition of a vector space over GF (2) is just like the definition of
vector spaces over the reals. Definitions such as linear dependence, dimension of vector spaces,
and even determinants apply also to vector spaces over GF (2).
Examples

1. Consider the equation

X1 ⊕X2 = 0. (9.3)

If we add X2 to both sides of Eq. 9.3, we obtain

X1 ⊕X2 ⊕X2 =X2.

But X2 ⊕X2 = 0. Thus we conclude that

X1 ⊕X2 = 0 ⇔ X1 =X2.
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2. On the other hand, if we add (−X2) to both sides of Eq. 9.3, we obtain

X1 ⊕X2 ⊕ (−X2) = −X2.

Since X2 ⊕ (−X2) = 0. We obtain,

X1 = −X2.

Finally, since −X2 =X2, we conclude that

X1 ⊕X2 = 0 ⇔ X1 =X2.

3. We show how to solve a simple systems of equalities over GF (2) using Gauss elimination.
Consider the following system of equations

X1 ⊕ X2 ⊕ X3 = 0 ,
X1 ⊕ X3 = 0 ,

X2 ⊕ X3 = 1 .

This system of equations corresponds to following matrix, where columns 1-3 correspond
to X1-X3, and column 4 corresponds to their sum.

A =
⎛⎜⎝
1 1 1 0
1 0 1 0
0 1 1 1

⎞⎟⎠
Let ri denote the ith row. We now apply a sequence of row operations as follows. The
first operation r1 ← r1 ⊕ r2 results with matrix A1, as follows.

A1 =
⎛⎜⎝
0 1 0 0
1 0 1 0
0 1 1 1

⎞⎟⎠
The second operation r3 ← r1 ⊕ r3 results with matrix A2, as follows.

A2 =
⎛⎜⎝
0 1 0 0
1 0 1 0
0 0 1 1

⎞⎟⎠
The third operation r2 ← r2 ⊕ r3 results with matrix A3, as follows.

A3 =
⎛⎜⎝
0 1 0 0
1 0 0 1
0 0 1 1

⎞⎟⎠
Every row of A3 has a single nonzero entry in the columns corresponding to variables.
Hence, A3 corresponds to the following system of equations.

X2 = 0 ,

X1 = 1 ,

X3 = 1 .

Note that the solution of this system over reals R with the well known addition ‘+’ and
multiplication ‘×’, is quite different, e.g.,

X1 = −1 ,

X2 = 0 ,

X3 = 1 .
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9.3.1 Polynomials over GF (2)

Definition 9.14 A monomial in GF (2) over the variables in the set U is a finite product of
the elements in U ∪ {0,1}.
For example, X1, X1 ⋅X3, X1 ⋅X2 ⋅X3 ⋅X1, are all monomials in GF (2). If a variable appears
more than once in a product, then by commutativity we may write an exponent to signify the
number of times the variables appears in the product. Thus, the products X1 ⋅X2 ⋅X3 ⋅X1 and
X2

1 ⋅X2 ⋅X3 are equal.

By Observation 9.6, positive exponents can be reduced to one. For example, X2
1 ⋅X2 ⋅X3

equals X1 ⋅X2 ⋅X3. Moreover, if the constant ‘1’ appears in a product, then we may remove it
(since X ⋅ 1 = X). If the constant ‘0’ appears in a product, then we may remove the product
entirely (since X ⋅ 0 = 0 and since x⊕ 0 = x). We conclude with following observation.

Observation 9.7 Every monomial p in GF (2) over the variables in U can be reduced to a
product of variables in p.

Definition 9.15 A polynomial in GF (2) over the variables in the set U is a finite sum of
monomials.

We denote the set of all polynomials in GF (2) over the variables in U by GF (2)[U]. Just
as multivariate polynomials over the reals can be added and multiplied, so can polynomials in
GF (2)[U].

Clearly, every polynomial p ∈ GF (2)[U] is a Boolean function fp ∶ {0,1}∣U ∣ → {0,1}. The
converse is also true.

Theorem 9.5 Every Boolean function f ∶ {0,1}n → {0,1} can be represented by a polynomial
in GF (2)[U], where U = {X1, . . . ,Xn}.
Proof: With out loss of generality, f is not a constant zero (if it is then the polynomial ‘0’
represents it).

We associate the ith argument vi of f(v) with the variable Xi ∈ U . Consider the set

f−1(1) △= {v ∈ {0,1}n ∣ f(v) = 1}.
Since f is not constant zero, the set f−1(1) is not empty. For each v ∈ f−1(1), we define the

product pv
△

= (ℓv1 ⋅ ℓv2⋯ℓvn) as follows:
ℓvi

△

=

⎧⎪⎪⎨⎪⎪⎩
Xi if vi = 1(1⊕Xi) if vi = 0.

Denote the elements of f−1(1) by {v1, . . . , vk}.
The polynomial p ∈ GF (2)[U] is defined as follows.

p
△

= pv1 ⊕ pv2 ⊕⋯⊕ pvk

We claim the the polynomial p represents the function f , namely, p = f .

To prove that p = f , we consider two cases:
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1. If f(v) = 1, then v = vi for some 1 ≤ i ≤ k. The product pvi(vi) = 1, and ∀j ≠ i ∶ pvj(vi) = 0.
This implies that p(vi) = 1.

2. If f(v) = 0, then ∀i ∶ pvi = 0. This implies that p(v) = 0.

We proved that f(v) = p(v), for every v ∈ {0,1}n, moreover p is a polynomial in GF (2)[U].
Indeed, by the distributive law (see Observation 9.5) p is a finite sum of monomials in U , and
the theorem follows. ✷

Corollary 9.6 The set of connectives {xor,and} is complete.

9.4 Satisfiability

The problem of satisfiability of Boolean formulas is defined as follows.

Input: A Boolean formula ϕ.

Output: The output should equal “yes” if ϕ is satisfiable. If ϕ is not satisfiable, then the
output should equal “no”.

Note that the problem of satisfiability is quite different if the input is a truth table of a
Boolean function. In this case, we simply need to check if there is an entry in which the
function attains the value 1.

9.5 Relation to P vs. NP

The main open problem in Computer Science since 1971 is whether P = NP . We will not define
the classes P and NP , but we will phrase an equivalent question in this section.

Consider a Boolean formula ϕ. Given a truth assignment τ , it is easy to check if τ̂(ϕ) = 1.
We showed how this can be done in Algorithm EVAL on page 80. In fact, the running time of
the EVAL algorithm is linear in the length of ϕ.

On the other hand, can we find a satisfying truth assignment by ourselves (rather than check
if τ is a satisfying assignment)? Clearly, we could try all possible truth assignments. However,
if n variables appear in ϕ, then the number of truth assignments is 2n.

We are ready to formulate a question that is equivalent to the question P = NP .

Satisfiability in polynomial time. Does there exist a constant c > 0 and an algorithm Alg
such that:

1. Given a Boolean formula ϕ, algorithm Alg decides correctly whether ϕ is satisfiable.

2. The running time of Alg is O(∣ϕ∣c), where ∣ϕ∣ denotes the length of ϕ.

Note, that the naive algorithm that tries all possible truth assignments has a running time
that is at least 2n, where n is the number of variables in ϕ. By a simple reduction that introduces
new variables without changing the satisfiability, it can be assumed that ∣ϕ∣ < 5n. But 2n grows
faster than any polynomial in n, namely, for every constant c, 2n = Ω(nc+1). Therefore, the
naive algorithm does not meet the requirement of deciding satisfiability in polynomial time.

This seemingly simple question turns out to be a very deep problem about what can be
easily computed versus what can be easily proved. It is related to the question whether there
is a real gap between checking that a proof is correct and finding a proof.
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X Y Z f(X,Y,Z)
0 0 0 1
1 0 0 0
0 1 0 1
1 1 0 0
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 1

Table 9.3: The truth table of f ∶ {0,1}3 → {0,1}.
9.6 Minimization Heuristics∗

In this section we consider the problem of finding a shortest representation of a Boolean function.
This problem captures also the problem of satisfiability, hence do not expect us to present an
algorithm whose running time is polynomial in the number of variables. We refer to an algorithm
with an exponential running time as a heuristic to make sure that the reader understands that
such an algorithm cannot be used in practice for functions with many variables.

We consider the following minimization problem.

Input: A truth table of a Boolean function f ∶ {0,1}n → {0,1}.
Output: An SOP Boolean formula ψ such that the Boolean function Bψ defined by ψ satisfies:

f = Bψ.

Goal: Find a shortest SOP ψ such that Bψ = f .

If f is a constant function, then the minimization problem is easy. So we assume that f is
not a constant function. By Theorem 9.2, f can be represented as a sum of minterms. Let ϕf
denote the sum of minterms that represents f . Thus, our goal is to find a shortest SOP formula
ψ that is logically equivalent to ϕf .

We remark that there might be more than one shortest SOP formula that is logically equiva-
lent to ϕf . For example, let f ∶ {0,1}3 → {0,1}, defined by the truth table depicted in Table 9.3.
In this case,

ϕf = X̄ ⋅ Ȳ ⋅ Z̄ + X̄ ⋅ Y ⋅ Z̄ +X ⋅ Ȳ ⋅Z + X̄ ⋅ Y ⋅Z +X ⋅ Y ⋅Z .

There are two shortest SOP formulas ϕ1, ϕ2 that are logically equivalent to ϕf , as follows.

ϕ1 = X̄ ⋅ Z̄ +X ⋅Z + X̄ ⋅ Y ,

ϕ2 = X̄ ⋅ Z̄ +X ⋅Z + Y ⋅Z .

9.6.1 Basic Terminology and Properties

Throughout this section, f denotes a Boolean function and ϕf is a Boolean formula that rep-
resents f (i.e., ϕf is the sum of the minterms of f). We assume that the Boolean function f is
not a constant function. Therefore, ϕf is satisfiable and not a tautology.

Definition 9.16 A satisfiable product term p is an implicant of f if (p → ϕf) is a tautology.



130 CHAPTER 9. REPRESENTATION BY FORMULAS

We denote the set of implicants of f by I(f). Note that an implicant must be satisfiable, and
hence an implicant cannot contain both a variable and its negation as literals.

Claim 9.7 Every minterm pv ∈M(f) is a implicant of f , hence M(f) ⊆ I(f).
Proof: We need to prove that, for every assignment τ , if τ̂(pv) = 1, then τ̂(ϕf) = 1. By
Lemma 9.1, the minterm pv is satisfied by a unique assignment. In fact, this satisfying assign-
ment is τv (i.e., τv(Xi) △= vi). By definition, v ∈ f−1(1), therefore f(v) = 1, and τ̂(ϕf) = 1, as
required. ✷

Claim 9.8 The sum (or) of the implicants of f is logically equivalent to ϕf .

Proof: Let σ(f) denote the sum of implicants of f . We need to prove that σ(f) ↔ ϕf is a
tautology. We first prove that ϕf → σ(f) is a tautology. By Claim 9.7, M(f) ⊆ I(f). This
implies that ϕf → σ(f) is a tautology, as required.

We now prove that σ(f)→ ϕf is a tautology. Let τ be an assignment such that τ̂(σ(f)) = 1,
then there exists an implicant p ∈ I(f) such that τ̂(p) = 1. Therefore (p → ϕf) is a tautology.
Hence, τ̂(ϕf ) = 1, as required. ✷

The following claim shows that I(f) is closed under “subsets” in the sense that removing
part of the literals from an implicant keeps it an implicant.

Claim 9.9 Let p ∈ I(f). If q is a satisfiable product and literals(p) ⊆ literals(q), then q ∈ I(f).
Proof: We show that (q → ϕf) is a tautology. Let τ be an assignment such that τ̂(q) = 1. We
need to show that τ̂(ϕf) = 1. Since τ̂(q) = 1, then τ̂(p) = 1. Since p is an implicant, then by
Definition 9.16 it follows that τ̂(ϕf ) = 1, as required. ✷

Claim 9.10 For every two satisfiable products p, q, the following holds:

(p→ q) is a tautology ⇔ (literals(q) ⊆ literals(p)).
Proof: We prove the following two directions:

1. (p → q) is a tautology ⇒ (literals(q) ⊆ literals(p)),
2. (literals(q) ⊆ literals(p))⇒ (p→ q) is a tautology .

The first direction. We assume that (p → q) is a tautology. Assume, for the sake of con-
tradiction, that (literals(q) /⊆ literals(p)), that is there exists a literal ℓ such that ℓ ∈ literals(q)
and ℓ /∈ literals(p). Let τ be an assignment that satisfies:

τ̂(b) = ⎧⎪⎪⎨⎪⎪⎩
0, if b = ℓ,

1, if b ∈ (literals(p) ∪ literals(q)) ∖ {ℓ} .
Since both τ̂(p) = 1 and τ̂(q) = 0, it follows that τ̂(p→ q) = 0. A contradiction to the assumption
that (p → q) is a tautology. Hence, literals(q) ⊆ literals(p).

The second direction. We assume that literals(q) ⊆ literals(p). Let τ be an assignment,
such that τ̂(p) = 1. Since literals(q) ⊆ literals(p), it follows that τ̂(q) = 1. Hence, (q → p) is a
tautology, as required. ✷

A prime implicant is an implicant that is minimal with respect to containment.
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Definition 9.17 An implicant p ∈ I(f) is a prime implicant of f if the following holds:

∀q ∈ I(f) ∶ literals(q) ⊆ literals(p)⇒ (literals(q) = literals(p)).
We denote the set of prime implicants of f by I ′(f).
Definition 9.18 Let p, q ∈ I(f). We say that p is an immediate predecessor of q if: (i) literals(q) ⊆
literals(p), and (ii) literals(p) ∖ literals(q) contains a single literal.

9.6.2 The Implicants’ Graph

One usually defines a partial order over the implicants of a Boolean function by containment
of the set of literals. We represent this partial order by a directed graph which we call the
implicants’ graph.

Definition 9.19 The implicants’ graph Gf = (V,E) of a Boolean function f is a directed graph
defined as follows.

1. V
△

= I(f).
2. E

△

= {(p, q) ∈ V × V ∣ p is an immediate predecessor of q}.
Claim 9.11 The implicants’ graph is a acyclic.

Proof: If (p, q) ∈ E, then ∣literals(p)∣− ∣literals(q)∣ = 1. Therefore, if p belongs to a cycle, then∣literals(p)∣ < ∣literals(p)∣, a contradiction. ✷

Lemma 9.12 An implicant p ∈ I(f) is a prime implicant iff it is a sink in Gf .

Proof: Assume, for the sake of contradiction, that p ∈ I ′(f) is not a sink. Let (p, r) denote
an arc emanating from p in Gf . Since r is an implicant such that literals(r) is a proper subset
of literals(p), it follows that p is not a prime implicant, a contradiction.

If p ∈ I(f) is a not prime implicant, then there exists an implicant q ∈ I(f) such that
literals(q) is a proper subset of literals(p). Let r denote a product obtained from p by removing
one of the literals in literals(p) ∖ literals(q). By Claim 9.9, Since literals(q) ⊆ literals(r), it
follows that r is an implicant in I(f). By Definition, p is an immediate predecessor of r,
therefore, (p, r) ∈ E, and p is not a sink, as required. ✷

Claim 9.13 If p ∈ I(f) ∖ I ′(f), then the following two statements hold: (i) There exists an
implicant q ∈ I(f) such that p is an immediate predecessor of q. (ii) There exists a prime
implicant q ∈ I ′(f) such that literals(q) ⊂ literals(p).
Proof: Proof of Item (i). Lemma 9.12 implies that p is not a sink in Gf . Hence, there exists
a q ∈ V such that (p, q) ∈ E, i.e., there exists an implicant q ∈ I(f) such that p is an immediate
predecessor of q, as required.

Proof of Item (ii). Since p is not a sink in Gf , and since Gf is acyclic, it follows that there
is a path that emanates from p that reaches a sink q:

p = a0 Ð→ a1 Ð→ . . . Ð→ ak = q.
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Definition 9.19 implies that

literals(p) ⊃ literals(a1) ⊃ . . . ⊃ literals(q).
Lemma 9.12 implies that q is a prime implicant. Therefore, there exists a prime implicant
q ∈ I ′(f) such that literals(q) ⊂ literals(p), as required. ✷

9.6.3 Essential Prime Implicants

We now define a covering relation between minterms and prime implicants. Recall that M(f)
denotes the set of minterms of f , and I ′(f) denotes the set of prime implicants of f .

Definition 9.20 The covering relation Cf ⊆M(f) × I ′(f) is the set

Cf
△

= {(r, p) ∈M(f) × I ′(f) ∣ r → p is a tautology}.
Observation 9.8 Let (r, p) ∈M(f) × I ′(f). Then, (r, p) ∈ Cf iff there exists a path from r to
p in the implicants’ graph Gf .

Proof: By Claim 9.10, r → p is a tautology iff literals(p) ⊆ literals(r), and this equivalent to
the existence of path from r to p in Gf . ✷

We say that a prime implicant p covers r if (r, p) ∈ Cf .
Definition 9.21 A prime implicant p ∈ I ′(f) is an essential prime implicant if there exists
minterm r such that p is the only prime implicant that covers r.

We denote the set of essential prime implicants of f by Ie(f).
Observation 9.9 A prime implicant p ∈ I ′(f) is an essential prime implicant iff there exists
a minterm r such that every path in Gf from r to a prime implicant ends in p.

Proof: If a product p is an essential prime implicant, then there exists a minterm r that is
covered only by p. By Observation 9.8, any path from r to a prime implicant ends in a prime
implicant that covers r. Since p is the only prime implicant that covers r, we conclude that
every maximal path from r ends in p.

If every maximal path that begins in r ends in p, then by Observation 9.8, p is the only
prime implicant that covers r. This implies that p is an essential prime implicant. ✷

Claim 9.14 A prime implicant p ∈ I ′(f) is an essential prime implicant iff there exists a truth
assignment τ such that (i) τ̂(p) = 1, and (ii) τ̂(q) = 0, for every q ∈ I ′(f) ∖ {p}.
Proof: We assume that p ∈ Ie(f), we need to find an assignment that satisfies the two
conditions. Let r be a minterm that is covered only by p. By Lemma 9.1, there exists a unique
assignment that satisfies r. Denote this assignment by τ . Clearly, τ̂(p) = 1.

Consider a prime implicant q ≠ p. Since q does not cover r, it follows that r → q is not a
tautology. Since τ is the only assignment that satisfies r, it follows that τ̂(q) = 0.

To prove the other direction, we need to find a minterm that is covered only by p. Suppose
the assignment τ satisfies the two conditions. Let r denote the minterm that is satisfied by
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τ . We prove the following: (i) r ∈ M(f), (ii) (r, p) ∈ Cf , and (iii) for every q ∈ I ′(f) ∖ {p},(r, q) ∉ Cf .
Proof of (i). Let v denote the binary vector defined by vi = τ(Xi). Since τ̂(p) = 1, it follows

that f(v) = 1. The minterm r corresponds to v (i.e., r = pv), and therefore, r ∈M(f).
Proof of (ii). Since r is a minterm, it is satisfied only by τ . Since τ̂(p) = 1, it follows that

r → p is a tautology, hence (r, p) ∈ Cf .
Proof of (iii). Since τ̂(q) = 0, it follows that r → q is not a tautology, as required. ✷

9.6.4 Optimality Conditions

The following claim provides an SOP representation of f using only prime implicants. This is
the first step towards finding a shortest SOP representation.

Claim 9.15 The sum (i.e., or) of the prime implicants of f is logically equivalent to ϕf .

Proof: Let us denote the sum of implicants of f by σ(f). Let us denote the sum of prime
implicants of f by σ′(f). Claim 9.8 states that σ(f) is logically equivalent to ϕf . Thus, we
need to prove that σ(f)↔ σ′(f) is a tautology.

First we show that σ′(f)→ σ(f) is a tautology. Let τ be an assignment such that τ̂(σ′(f)) =
1. Since I ′(f) ⊆ I(f), it follows that τ̂(σ(f)) = 1.

Now we show that σ(f)→ σ′(f) is a tautology. Let τ be an assignment such that τ̂(σ(f)) =
1, then there exists an implicant p such that τ̂(p) = 1. If p ∈ I ′(f), then we are done. If
p ∈ I(f) ∖ I ′(f), then by Claim 9.13 there exists a prime implicant q such that literals(q) is a
proper subset of literals(p). Claim 9.10 implies that the Boolean formula (p → q) is a tautology,
hence τ̂(q) = 1. It follows that τ̂(σ′(f)) = 1, as required. ✷

Suppose that f is represented by an SOP that contains an implicant that is not prime.
Can this SOP be shortened? The following claim shows that we can substituting a non-prime
implicant by a prime implicant (that covers the non-prime implicant) to make the SOP shorter.

Claim 9.16 Let p ∈ I(f) ∖ I ′(f). Let ϕ ∈ BF, such that (ϕ ∨ p) is equivalent to ϕf . Then,
there exists q ∈ I ′(f) such that: (i) literals(q) is a proper subset of literals(p), and (ii) (ϕ ∨ q)
is equivalent to ϕf .

Proof: By Claim 9.13 there exists a prime implicant q such that literals(q) is a proper subset
of literals(p). We claim that (ϕ ∨ p) and (ϕ ∨ q) are logically equivalent.

Let τ be an assignment such that τ̂(ϕ ∨ p) = 1. We need to show that τ̂(ϕ ∨ q) = 1. If
τ̂(ϕ) = 1 then clearly τ̂(ϕ ∨ q) = 1. If τ̂(p) = 1 then, by Claim 9.10 (p → q) is a tautology, hence
τ̂(q) = 1. Therefore, τ̂(ϕ ∨ q) = 1, as required.

Let τ be an assignment such that τ̂(ϕ ∨ q) = 1. We need to show that τ̂(ϕ ∨ p) = 1. If
τ̂(ϕ) = 1, then τ̂(ϕ ∨ p) = 1. Otherwise, τ̂(ϕ) = 0 and τ̂(q) = 1. Since q ∈ I(f), the Boolean
formula (q → ϕf) is a tautology. Since ϕf and (ϕ ∨ p) are equivalent, it follows that τ̂(p) = 1,
as required. ✷

Corollary 9.17 If ψ is a shortest SOP formula that is logically equivalent to ϕf , then every
product term in ψ is a prime implicant of f .
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Proof: Let us assume in contrary that there exists a product term p ∈ I(f)∖I ′(f) in ψ. Since
ψ is a SOP formula, then ψ = (ϕ ∨ p) for some ϕ ∈ BF . Claim 9.16 implies that there exists a
shorter q ∈ I ′(f), such that (ϕ∨ q) is equivalent to ϕf . This contradicts the assumption that ψ
is a shortest SOP formula that is equivalent to ϕf . Hence every product term in ψ is a prime
implicant of f , as required. ✷

Claim 9.18 Suppose that (i) ψ is the sum of a subset of the prime implicants of f , and (ii) ψ is
logically equivalent to ϕf . Then, every essential prime implicant p ∈ I ′(f) appears as a product
term in ψ.

Proof: Let E ⊆ I ′(f) denote the subset of the prime implicants of f , such that ψ is the sum
of products in E . Assume, for the sake of contradiction, that p ∈ Ie(f) ∖ E .

Claim 9.14 implies that there is a truth assignment τ such that τ̂(p) = 1, and τ̂(q) = 0, for
every q ∈ I ′(f) ∖ {p}.

Since E ⊆ I ′(f) ∖ {p}, it follows that τ̂(ψ) = 0. On the other hand, τ̂(ϕf) = 1, since p is an
implicant of f . Thus, ϕf and ψ are not logically equivalent, a contradiction. ✷

We remark that there exist Boolean functions f such that f is not logically equivalent to the
sum of the essential prime implicants of f . For example, consider the function f represented by
the Boolean formula ϕf(X,Y,Z) = X̄ ⋅Z +Y ⋅Z +X ⋅Y +X ⋅ Z̄ + Ȳ ⋅ Z̄. Since Ie(f) = ∅, it follows
that f is not logically equivalent to the sum of its essential prime implicants, as required.

Claim 9.18 suggests the following heuristic for finding a shortest SOP ψ that represents f .

1. Compute I ′(f) and Ie(f).
2. Add every product in Ie(f) to ψ.
3. Find a shortest subset A ⊆ I ′(f) ∖ Ie(f) such that adding the products in A to ψ makes
ψ logically equivalent to ϕf .

In the sequel, we discuss how to compute I ′(f) and Ie(f). For Boolean functions with very
small domains, the last task of finding A is done by exhaustive search.

9.6.5 The Quine-McCluskey Heuristic

In this section we present an algorithm for computing the prime implicants and the essential
prime implicants of formula ϕ. The algorithm simply constructs the implicants’ graph of f .
The specification of the algorithm is as follows.

Input: A truth table Tf of a nonconstant Boolean function f ∶ {0,1}n → {0,1}.
Output: The sets I ′(f) and Ie(f) where I ′(f) and Ie(f) are the sets of prime implicants and

essential prime implicants of f , respectively.

The algorithm uses the following terminology.

Definition 9.22 The symmetric difference of two sets A,B is the set (A ∖B) ∪ (B ∖A).
We denote the symmetric difference by A△B.

Definition 9.23 Let p and q denote two satisfiable product terms.
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q

In In−1 I1

p ∩ qp

Figure 9.1: The implicants’ graph.

1. The product term p ∩ q is the product of the literals in literals(p) ∩ literals(q).
2. If vars(p) = vars(q), then the distance between p and q is defined by

dist(p, q) △= ∣{i ∶ {Xi, X̄i} ⊆ literals(p)△ literals(q)}∣ .
If vars(p) ≠ vars(q), then define dist(p, q) △=∞.

The Quine-McCluskey algorithm for computing the prime implicants of a Boolean function
is listed as Algorithm 9.1. The input is a truth table Tf of Boolean function f ∶ {0,1}n → {0,1}.
The algorithm constructs a layered directed graph G whose vertex set is the set of implicants
of f . The graph has n layers, where layer Ik consists of the implicants that contain k literals.
Layer In consists of all the minterms of f . There are arcs from layer Ik to layer Ik−1. Once Ik
is constructed, the algorithm constructs layer Ik−1 and the arcs from Ik to Ik−1 as follows. For
each pair of implicants p, q ∈ Ik such that dist(p, q) = 1, the algorithm adds the implicant p ∩ q
to Ik−1. Note that the product p ∩ q may have been already added to Ik−1. In this case the
union operator does not modify Ik−1. It also adds arcs from p and q to the new implicant p∩ q,
as depicted in Figure 9.1. Finally, the algorithm returns the set of sinks in the graph G.

The following claim justifies the addition of p∩ q to Ik−1 in Line (1(b)iiA) of the algorithm.
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Algorithm 9.1 QM(Tf) - An algorithm for computing the prime implicants of f ∶ {0,1}n →{0,1} given its truth table Tf .

1. Construct the implicants’ graph Gf over implicants of f as follows:

(a) In ← {p ∣ p is a minterm of f}.
(b) For k = n downto 2 do:

i. Ik−1 ← ∅.

ii. For each pair of implicants p, q ∈ Ik such that dist(p, q) = 1 do

A. Ik−1 ← Ik−1 ∪ {p ∩ q}
B. add the arcs: pÐ→ (p ∩ q) and q Ð→ (p ∩ q) to G.

2. Return {p ∣ p is a sink in G}.

Claim 9.19 If p, q ∈ I(f) and dist(p, q) = 1, then p ∩ q ∈ I(f).
Proof: Let r denote p ∩ q. Then, without loss of generality, p = r ⋅ Xi and q = r ⋅ X̄i. By
the tautologies of distribution and the law of excluded middle (see Theorem 6.8 on page 92),
it follows that r is logically equivalent to (p + q). Since p, q ∈ I(f), it follows that r ∈ I(f), as
required. ✷

The correctness of Algorithm 9.1 follows from the following theorem.

Theorem 9.20 Each set Ik constructed by algorithm QM(Tf) equals the set of implicants of
f that contain k literals.

Proof: The proof is by induction on n− k (so that, in fact, we are doing induction from k = n
down to k = 1). The induction basis, for n − k = 0, holds because In is the set of minterms.
Assume the theorem holds for n − k, we need to prove it for n − k + 1 = n − (k − 1). Namely, we
assume that Ik equals the set of implicants of f that contain k literals, and we need to prove
that Ik−1 equals the set of implicants of f that contain (k − 1) literals.

We first show that Ik−1 ⊆ I(f). A product term r is added to Ik−1 only if there exist two
product terms p, q ∈ Ik such that dist(p, q) = 1 and r = p ∩ q. By Claim 9.19, it follows that
r ∈ I(f), and therefore, Ik−1 ⊆ I(f). By construction each r ∈ Ik−1 contains k − 1 literals.

Consider an implicant r ∈ I(f) that contains k − 1 literals. We need to show that r ∈ Ik−1.

Since k < n, there exists a variable Xi such that Xi ∉ vars(r). Consider the products p
△

= r ⋅Xi

and q
△

= r ⋅ X̄i. By Claim 9.10, p → r and q → r are tautologies. By transitivity (see Example 1
on page 137), p→ ϕf and q → ϕf are tautologies. Therefore, both p and q are implicants of f .

Since p and q contain k literals, the induction hypothesis implies that p, q ∈ Ik. Since
dist(p, q) = 1, it follows that p∩ q ∈ Ik−1. However, r = p∩ q, and therefore, r ∈ Ik−1, as required.
This completes the proof of the induction step, and the theorem follows. ✷

We now prove that the algorithm computes the arcs of the implicants’ graph.

Claim 9.21 Algorithm QM(Tf) constructs the implicants’ graph Gf .
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Proof: By Theorem 9.20, Algorithm QM(Tf) constructs all the implicants, so we only need
to prove that all the arcs are computed as well. If the arc (p, p∩q) is computed by the algorithm,
then (p, p ∩ q) ∈ E. Indeed, by Theorem 9.20, p and p ∩ q are implicants and p is an immediate
predecessor of p ∩ q.

On the other hand, if (p, r) ∈ E, then p = r ⋅Xi or p = r ⋅ X̄i. Assume that p = r ⋅Xi (the

other case is proved similarly). Let p′
△

= r ⋅ X̄i. Since r is an implicant, by Claim 9.9, p′ is also
an implicant. Since p and p′ belong to the same layer, the algorithm will consider the pair p, p′,
add the vertex r = p ∩ p′ and add the arcs (p, r) and (p′, r), as required. ✷

Algorithm QM(Tf) computes the implicants’ graph. By Observation 9.9, the essential prime
implicants can be computed as follows.

1. For each minterm r, compute the set of sinks in Gf that are reachable from r.

2. If this set contains a single sink p, then add p to Ie(f).
3. After all minterms have been scanned, return Ie(f).

9.6.6 Karnaugh Maps

A tabular method to obtain the prime implicants and the essential prime implicants is called
Karnaugh Maps. This method works reasonably well for Boolean functions f ∶ {0,1}n → {0,1}
where n ≤ 4. The idea is as follows:

1. Write the multiplication table of f . It useful to order the columns and rows in a Gray
code order.

2. Identify a × b “generalized” maximal rectangles of all-ones in the table where both a and
b are powers of 2.

3. Each such maximal rectangle corresponds to a prime implicant.

4. If a “1” is covered only by one such rectangle, then this rectangle corresponds to an
essential prime implicant.

See Example 3 for a demonstration of this method.

Examples

1. Prove the following lemma.

Lemma 9.22 Let τ be an assignment. Let ϕ1
△

= (x → y), ϕ2
△

= (y → z), and ϕ3
△

= (x → z),
then

(τ̂(ϕ1) = 1) and (τ̂(ϕ2) = 1)⇒ (τ̂(ϕ3) = 1) ,
where x, y, z are Boolean formulas over the same set of variables and connectives.
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Proof: Let us assume in contrary that τ̂(ϕ3) = 0. It follows, that τ̂(x) = 1 and τ̂(z) = 0.
Since τ̂(ϕ2) = 1, then τ̂(y) = 0. Since τ̂(x) = 1 and τ̂(y) = 0, it follows that τ̂(ϕ1) = 0, a
contradiction to the assumption that τ̂(ϕ1) = 0. ✷

Note that Lemma 9.22 implies that

((x → y) ∧ (y → z)) → z

is a tautology.

2. Quine-McCluskey Heuristic example. Let f1 ∶ {0,1}3 → {0,1}, defined by the truth table
depicted in Table 9.4.

X Y Z f1(X,Y,Z)
0 0 0 1
1 0 0 1
0 1 0 0
1 1 0 1
0 0 1 1
1 0 1 0
0 1 1 1
1 1 1 1

Table 9.4: The truth table of f1 ∶ {0,1}3 → {0,1}.
In this case, f1 can be represented as a SOP of minterms as follows.

ϕf1 = X̄ ⋅ Ȳ ⋅ Z̄ +X ⋅ Ȳ ⋅ Z̄ +X ⋅ Y ⋅ Z̄ + X̄ ⋅ Ȳ ⋅Z + X̄ ⋅ Y ⋅Z +X ⋅ Y ⋅Z .

Figure 9.2 depicts the implicants’ graph Gf1 that the Quine-McCluskey heuristic calculates
during its execution. Since all minterms are covered by more than one sink, then Ie(f) =
∅.

Now, we should find a shortest subset A ⊆ I ′(f) such that adding the products in A to ψ
makes ψ logically equivalent to ϕf .

For example:
ψf1(X,Y,Z) =X ⋅ Z̄ + X̄ ⋅ Ȳ + Y ⋅Z .

Note that since Ie(f) = ∅, then the Boolean functions f1 is not logically equivalent to the
sum of its essential prime implicants.

3. Karnaugh Maps example. In the following example, we demonstrate the method as
well as the terms: Gray code order, generalized maximal rectangles, and the correspon-
dence between a rectangle and an implicant.

Let f2 ∶ {0,1}3 → {0,1}, defined by the truth table depicted in Table 9.5. In this case, f2
can be represented as a SOP of minterms as follows.

ϕf2 = X̄ ⋅ Ȳ ⋅ Z̄ +X ⋅ Ȳ ⋅ Z̄ + X̄ ⋅ Y ⋅ Z̄ +X ⋅ Y ⋅ Z̄ +X ⋅ Ȳ ⋅Z + X̄ ⋅ Y ⋅Z .

The Karnaugh Map of f2 is depicted in Table 9.6. The columns correspond to the variable
Y and Z. The rows correspond to the variable X.
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X · Y · Z̄

I3 I2

X̄ · Ȳ · Z

X̄ · Y · Z

X · Y · Z Y · Z

X̄ · Z

X̄ · Ȳ

X · Y

X · Z̄

Ȳ · Z̄

X · Ȳ · Z̄

X̄ · Ȳ · Z̄

Figure 9.2: The implicants’ graph Gf1 .

X Y Z f2(X,Y,Z)
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 0

Table 9.5: The truth table of f2 ∶ {0,1}3 → {0,1}.
Note that the columns’ labels are ordered by a Gray code, that is two consecutive labels
differ by a single bit (if n = 4, then the rows’ labels are coded in the same way).

We now identify the prime implicants of f2. There are 3 prime implicants. These impli-
cants are depicted in Table 9.7. The implicants are depicted as a maximal generalized gray
rectangles. Note that the dimensions of these rectangles are powers of two, furthermore
they are maximal, i.e., one cannot extend the rectangle in a way that its dimensions are
powers of two and that it covers only values of ‘1’.
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Y Z
X

00 01 11 10

0 1 0 1 1

1 1 1 0 1

Table 9.6: The Karnaugh Map of f2 ∶ {0,1}3 → {0,1}.
Y Z
X

00 01 11 10

0 1 0 1 1

1 1 1 0 1

Y Z
X

00 01 11 10

0 1 0 1 1

1 1 1 0 1

Y Z
X

00 01 11 10

0 1 0 1 1

1 1 1 0 1

Table 9.7: The prime implicants of f2. Note that the leftmost implicant is, in fact, a 2 × 2
rectangle. In this case all prime implicants are essential.

The minimized SOP formula ψf2 is as follows.

ψf2 = Z̄ + X̄ ⋅ Ȳ +X ⋅ Ȳ .

Problems

9.1 Prove that every nonconstant Boolean function has a unique representation as a sum of
(distinct) minterms.

9.2 Represent the following Boolean functions as SOP: (i) The parity function p ∶ {0,1}3 →{0,1} (see Example 6 on page 15), (ii) The majority function m ∶ {0,1}3 → {0,1} (see Example 7
on page 15).

9.3 Represent the following Boolean functions as POS: (i) The parity function p ∶ {0,1}3 →{0,1} (see Example 6 on page 15), (ii) The majority function m ∶ {0,1}3 → {0,1} (see Example 7
on page 15).

9.4 Represent the following Boolean functions as polynomials in GF (2)[{X,Y,Z}]: (i) The
parity function p ∶ {0,1}3 → {0,1} (see Example 6 on page 15), (ii) The majority function
m ∶ {0,1}3 → {0,1} (see Example 7 on page 15).

9.5 Let p ∈ I ′(f). Let τ be an assignment, such that τ̂(p) = 1. Prove that there exists a
minterm r such that τ̂(r) = 1.

9.6 Minimize the following Boolean formulas using (i) the Quine-McCluskey heuristic, (ii) Kar-
naugh Maps, and (iii) a software tool.

1. ϕ1 = X̄ ⋅ Ȳ ⋅ Z̄ + X̄ ⋅ Y ⋅Z + X̄ ⋅ Y ⋅ Z̄ +X ⋅ Ȳ ⋅ Z̄ +X ⋅ Ȳ ⋅Z +X ⋅ Y ⋅ Z̄.

2. ϕ2 = X̄ ⋅ Ȳ ⋅ Z̄ + X̄ ⋅ Ȳ ⋅Z +X ⋅ Ȳ ⋅Z +X ⋅ Y ⋅ Z̄.

In (i) draw the implicants’ graph and mark the essential implicants vertices in it.

9.7 What is the maximum height of a parse tree of a CNF or DNF formula?

9.8 Let (G,π) denote the parse tree of a Boolean formula ϕ. Define sufficient and necessary
conditions for T so that ϕ is a DNF formula. Repeat this task for a CNF formula.
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The term a digital circuit refers to a device that works in a binary world. In the binary
world, the only values are zeros and ones. In other words, the inputs of a digital circuit are zeros
and ones, and the outputs of a digital circuit are zeros and ones. Digital circuits are usually
implemented by electronic devices and operate in the real world. In the real world, there are no
zeros and ones; instead, what matters is the voltages of inputs and outputs. Since voltages refer
to energy, they are continuous (unless Quantum Physics is used). So we have a gap between the
continuous real world and the two-valued binary world. One should not regard this gap as an
absurd. Digital circuits are only an abstraction of electronic devices. In this chapter we explain
this abstraction, called the digital abstraction.

In the digital abstraction one interprets voltage values as binary values. The advantages of
the digital model cannot be overstated; this model enables one to focus on the digital behavior
of a circuit, to ignore analog and transient phenomena, and to easily build larger more complex
circuits out of small circuits. The digital model together with a simple set of rules, called design
rules, enable logic designers to design complex digital circuits consisting of millions of gates
that operate as expected.

10.1 Transistors

The basic building blocks of digital electronic circuits are transistors. The hierarchy starts with
transistors, from which gates are built. Gates are then used for building bigger circuits. The
most common technology used in digital electronics these days is called CMOS. In CMOS there
are only two types of transistors: N-type and P-type. From these two types of transistors all
digital designs can be built!

Each transistor has three connections to the outer world, called the gate, source, and drain.
Figure 10.1 depicts diagrams describing these transistors. Although inaccurate, we will refer,

gate gate

N−transistor

drain

drainsource

P−transistor

source

Figure 10.1: Schematic symbols of an N-transistor and a P-transistor

for the sake of simplicity, to the gate and source as inputs and to the drain as an output. An
overly simple specification of an N-type transistor in CMOS technology is as follows.

Notation. Let Vg denote the voltage of the gate of a transistor. Let Rsd denote the resistance
between the source and a drain of a transistor. We use RNsd(Vg) to denote the resistance Rsd in
an N-type transistor as a function of the voltage Vg. Similarly, RPsd(Vg) denotes the resistance
Rsd in a P-type transistor as a function of Vg. Let Vlow < Vhigh denote two threshold voltages
(the values of Vlow and Vhigh depend on the technology).
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The resistance Rsd behaves in an ideal setting as follows:

RNsd(Vg) △= ⎧⎪⎪⎨⎪⎪⎩
∞ if Vg < Vlow

0 if Vg > Vhigh

RPsd(Vg) △= ⎧⎪⎪⎨⎪⎪⎩
0 if Vg < Vlow

∞ if Vg > Vhigh

In reality, zero resistance means a very small resistance, and infinite resistance means a very
high resistance.

The voltages in an electronic circuit change when the circuit is engaged in some computation.
Nevertheless, we distinguish between the changes (or transitions) that are supposed to be very
fast, and the periods between transitions that are called the steady state. For example, consider
two players X and Y passing a ball to each other. We regard the travel from one player to the
other as a transition. We regard the state of the ball as steady if the ball is held by one of the
players. Thus, we say that the ball alternates between the states X and Y .

Let us focus on the steady state of an N-type transistor. If the voltage of the gate is
high (Vg > Vhigh), then there is no resistance between the source and the drain. Such a small
resistance causes the voltage of the drain to equal the voltage of the source. If the voltage of the
gate is low (Vg < Vlow), then there is a very high resistance between the source and the drain.
Such a high resistance means that the voltage of the drain is unchanged by the transistor. The
voltage of the drain may be changed by another transistor, if the drains of the two transistors
are connected. A P-type transistor behaves in a dual manner: the resistance between drain and
the source is low if the gate voltage is below Vlow. If the voltage of the gate is above Vhigh, then
the source-to-drain resistance is very high.

Note that this description of transistor behavior implies that transistors are highly non-
linear. (Recall that a linear function f(x) satisfies f(a ⋅ x) = a ⋅ f(x).) See Fig 10.2 for a graph
of Rsd as a function of Vg in N- and P-type transistors.
Specifically, Rsd(Vg) is not a linear function of Vg. Namely,

Vg > Vhigh ⇒ RNsd(1.1 ⋅ Vg) ≈ Rsd(Vg) ≈ 0.

Vg < Vlow ⇒ RPsd(0.9 ⋅ Vg) ≈ Rsd(Vg) ≈ 0.

However, for V = 0.5 ⋅ (Vlow + Vhigh), we have

Vg > V ⇒
RPsd(1.1 ⋅ V )
RP
sd
(V ) ≫ 1.1, and

Vg < V ⇒
RNsd(1.1 ⋅ V )
RN
sd
(V ) ≪ 1/1.1.

The absolute value of the derivative ∂Rsd/∂Vg for Vg ≈ V is often referred to as the gain of a
transistor.

10.2 A CMOS inverter

Figure 10.3 depicts a CMOS inverter. If the input voltage is above Vhigh, then the source-
to-drain resistance in the P-transistor is very high and the source-to-drain resistance in the
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Figure 10.2: A qualitative graph of Rsd as a function of Vg in N- and P-type transistors. The
y-axis is the resistance between the source and the drain Rsd. The x-axis is the voltage of the
gate Vg. The dashed line depicts RNsd(vg). The solid line depicts RPsd(vg).

N-transistor is very low. Since the source of the N-transistor is connected to low voltage (i.e.,
ground), the output of the inverter is low.

If the input voltage is below Vlow, then the source-to-drain resistance in the N-transistor is
very high and the source-to-drain resistance in the P-transistor is very low. Since the source of
the P-transistor is connected to high voltage, the output of the inverter is high.

We conclude that the voltage of the output is low when the input is high, and vice-versa,
and the device is indeed an inverter.

OUTIN

0 volts

5 volts

N−transistor

P−transistor

Figure 10.3: A CMOS inverter

The qualitative description of a CMOS inverter hopefully conveys some intuition about how
gates are built from transistors. A quantitative analysis of such an inverter requires precise
modeling of the functionality of the transistors in order to derive the input-output voltage rela-
tion. One usually performs such an analysis by computer programs (e.g. SPICE). Quantitative
analysis is relatively complex and inadequate for designing large systems like computers. (This
would be like having to deal with the chemistry of ink when using a pen.)
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10.3 From analog signals to digital signals

An analog signal is a real function f ∶ R → R that describes the voltage of a given point in a
circuit as a function of the time. We ignore the resistance and capacities of wires. Moreover, we
assume that signals propagate through wires immediately1. Under these assumptions, it follows
that, in every moment, the voltages measured along different points of a wire are identical.
Since a signal describes the voltage (i.e., derivative of energy as a function of electric charge),
we also assume that a signal is a continuous function.

A digital signal is a function g ∶ R→ {0,1,non-logical}. The value of a digital signal describes
the logical value carried along a wire as a function of time. To be precise there are two logical
values: zero and one. The non-logical value simply means that the signal is neither zero or one.

How does one interpret an analog signal as a digital signal? The simplest interpretation is
to set a threshold V ′. Given an analog signal f(t), the digital signal dig(f(t)) can be defined
as follows.

dig(f(t)) △= ⎧⎪⎪⎨⎪⎪⎩
0 if f(t) < V ′
1 if f(t) > V ′ (10.1)

According to this definition, a digital interpretation of an analog signal is always 0 or 1, and
the digital interpretation is never non-logical.

There are several problems with the definition in Equation 10.1. One problem with this
definition is that all the components should comply with exactly the same threshold V ′. In
reality, devices are not completely identical; the actual thresholds of different devices vary
according to a tolerance specified by the manufacturer. This means that instead of a fixed
threshold, we should consider a range of thresholds.

Another problem with the definition in Equation 10.1 is caused by perturbations of f(t)
around the threshold t. Such perturbations can be caused by noise or oscillations of f(t) before
it stabilizes. We will elaborate more on noise later, and now explain why oscillations can occur.
Consider a spring connected to the ceiling with a weight w hanging from it. We expect the
spring to reach a length ℓ that is proportional to the weight w. Assume that all we wish to
know is whether the length ℓ is greater than a threshold ℓt. Sounds simple! But what if ℓ is
rather close to ℓt? In practice, the length only tends to the length ℓ as time progresses; the
actual length of the spring oscillates around ℓ with a diminishing amplitude. Hence, the length
of the spring fluctuates below and above ℓt many times before we can decide. This effect may
force us to wait for a long time before we can decide if ℓ < ℓt. If we return to the definition of
dig(f(t)), it may well happen that f(t) oscillates around the threshold V ′. This renders the
digital interpretation defined in Eq. 10.1 useless.

Returning to the example of weighing weights, assume that we have two types of objects:
light and heavy. The weight of a light (resp., heavy) object is at most (resp., at least) w0 (resp.,
w1). The bigger the gap w1 − w0, the easier it becomes to determine if an object is light or
heavy (especially in the presence of noise or oscillations).

Now we have two reasons to introduce two threshold values instead of one, namely, different
threshold values for different devices and the desire to have a gap between values interpreted
as logical zero and logical one. We denote these thresholds by Vlow and Vhigh, and require that
Vlow < Vhigh. An interpretation of an analog signal is depicted in Figure 10.4. Consider an analog

1This is a reasonable assumption if wires are short.
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signal f(t). The digital signal dig(f(t)) is defined as follows.

dig(f(t)) △=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if f(t) < Vlow
1 if f(t) > Vhigh
non-logical otherwise.

(10.2)

Vhigh

logical zero

f(t)

Vlow

logical one

t

Figure 10.4: A digital interpretation of an analog signal in the zero-noise model.

We often refer to the logical value of an analog signal f . This is simply a shorthand way of
referring to the value of the digital signal dig(f).

It is important to note that fluctuations of f(t) are still possible around the threshold values.
However, if the two thresholds are sufficiently far away from each other, fluctuations of f do
not cause fluctuations of dig(f(t)) between 0 and 1. Instead, we will have at worst fluctuations
of dig(f(t)) between a non-logical value and a logical value (i.e., 0 or 1). A fluctuation between
a logical value and a non-logical value is much more favorable than a fluctuation between 0 and
1. The reason is that a non-logical value is an indication that the circuit is still in a transient
state and a “decision” has not been reached yet.

Assume that we design an inverter so that its output tends to a voltage that is bounded
away from the thresholds Vlow and Vhigh. Let us return to the example of the spring with weight
w hanging from it. Additional fluctuations in the length of the spring might be caused by wind.
This means that we need to consider additional effects so that our model will be useful. In the
case of the digital abstraction, we need to take noise into account. Before we consider the effect
of noise, we formulate the static functionality of a gate, namely, the values of its output as a
function of its stable inputs.
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Example: analog specification of an inverter

Can we define an inverter in terms of the voltage of the output as a function of the voltage of
the input. Let Vin and Vout denote the input and output voltages of an inverter. Then,

Vout =

⎧⎪⎪⎨⎪⎪⎩
< Vlow if Vin > Vhigh

> Vhigh if Vin < Vlow.
(10.3)

What should Vout be if Vlow < Vin < Vhigh? Formally, such an input voltage is not “legal” in
the steady state, so we should not be worried about it. However, to avoid a wrong digital
interpretation of Vout, it could help if dig(Vout) is non-logical if dig(Vin) is non-logical.
10.4 Transfer functions of gates

The voltage at an output of a gate depends on the voltages of the inputs of the gate. This
dependence is called the transfer function (or the voltage-transfer characteristic - VTC) Con-
sider, for example an inverter with an input x and an output y. To make things complicated,
the value of the signal y(t) at time t is not only a function of the signal x at time t since y(t)
depends on the history. Namely, y(t0) is a function of x(t) over the interval (−∞, t0].

Partial differential equations are used to model gates, and the solution of these equations is
unfortunately a rather complicated task. A good approximation of transfer functions is obtained
by solving differential equations, still a complicated task that can be computed quickly only for
a few transistors. So how are chips that contain millions of chips designed if the models are too
complex to be solved?

The way this very intricate problem is handled is by restricting designs. In particular,
only a small set of building blocks is used. The building blocks are analyzed intensively, their
properties are summarized, and designers rely on these properties for their designs.

One of the most important steps in characterizing the behavior of a gate is computing its
static transfer function. Returning to the example of the inverter, a “proper” inverter has a
unique output value for each input value. Namely, if the input x(t) is stable for a sufficiently
long period of time and equals x0, then the output y(t) stabilizes on a value y0 that is a function
of x0.

Before we define what a static transfer function is, we point out that there are devices that
do not have static transfer functions. We need to distinguish between two cases: (a) Stability is
not reached: this case occurs, for example, with devices called oscillators. Note that oscillating
devices must consume energy even when the input is stable. We point out that in CMOS
technology it is easy to design circuits that do not consume energy if the input is logical, so
such oscillations are avoided. (b) Stability is reached: in this case, if there is more than one
stable output value, it means that the device has more than one equilibrium point. Such a
device can be used to store information about the “history”. It is important to note that
devices with multiple equilibriums are very useful as storage devices (i.e., they can “remember”
a small amount of information). Nevertheless, devices with multiple equilibriums are not “good”
candidates for gates, and it is easy to avoid such devices in CMOS technology.

Example. A device with many equilibriums. Consider a pot that is initially filled with water.
At time t, the pot is held in angle x(t). A zero angle means that the pot is held upright. An
angle of 180○ means that the pot is upside down. Now, we are told that x(t) = 0○ for t ≥ 100.
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Can we say how much water is contained in the pot at time t = 200? The answer, of course,
depends on the history during the interval t ∈ [0,100), namely, whether the pot was tilted.

We formalize the definition of a static transfer function of a gate G with one input x and
one output y in the following definition. We begin with a naive definition.

Definition 10.1 Consider a device G with one input x and one output y. The device G is a
gate if its functionality is specified by a function f ∶ R→ R as follows: there exists a ∆ > 0, such
that, for every x0 and every t0, if x(t) = x0 for every t ∈ [t0 −∆, t0], then y(t0) = f(x0).
Such a function f(x) is called the static transfer function of G.

Since circuits operate over a bounded range of voltages, static transfer functions are usually
only defined over bounded domains and ranges (say, [0,5] volts).

To make the definition useful, one should allow perturbations of x(t) during the interval[t0 −∆, t0]. Static transfer functions model physical devices, and hence, are continuous. This
implies the following definition.

Definition 10.2 A function f(x) is the static transfer function of a gate G if the following
holds. For every ǫ > 0, there exists a δ > 0 and a ∆ > 0, such that

∀t ∈ [t1, t2] ∶ ∣x(t) − x0∣ ≤ δ ⇒ ∀t ∈ [t1 +∆, t2] ∶ ∣y(t) − f(x0)∣ ≤ ǫ.
Note that in the above definition ∆ does not depend on x0 (although it may depend on ǫ).
Typically, we are interested on the values of ∆ only for logical values of x(t) (i.e., x(t) ≤ Vlow
and x(t) ≥ Vhigh). Once the value of ǫ is fixed, this constant ∆ is called the propagation delay
of the gate G and is one of the most important characteristics of a gate.

It is easy to extend Definition 10.2 to gates with n inputs and m outputs. Thus, the input
is a vector x(t) ∈ Rn and the output is a vector y(t) ∈ Rm. First, the static transfer function
should be a function f ∶ Rn → R

m. For a vector z ∈ Rk, let

∣∣z∣∣ △=√z21 +⋯+ z2
k
.

Now, require, for every ǫ > 0, there exists a δ > 0 and a ∆ > 0, such that

∀t ∈ [t1, t2] ∶ ∣∣x(t) − x0∣∣ ≤ δ ⇒ ∀t ∈ [t1 +∆, t2] ∶ ∣∣y(t) − f(x0)∣∣ ≤ ǫ.
Finally, we can now define an inverter in the zero-noise model. Observe that according to

this definition a device is an inverter if its static transfer function satisfies a certain property.
We already stated this property in Eq. 10.3.

Definition 10.3 (inverter in zero-noise model) A gate G with a single input x and a single
output y is an inverter if its static transfer function f(z) satisfies the following the following
two conditions:

1. If z < Vlow, then f(z) > Vhigh.
2. If z > Vhigh, then f(z) < Vlow.

The implication of this definition is that if the logical value of the input x is zero (resp., one)
during an interval [t1, t2] of length at least ∆, then the logical value of the output y is one
(resp., zero) during the interval [t1 +∆, t2].

We are now ready to strengthen the digital abstraction so that it will be useful also in the
presence of bounded noise.
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10.5 The bounded-noise model

Consider a wire from point A to point B. Let A(t) denote the analog signal measured at point
A. Similarly, let B(t) denote the analog signal measured at point B. We would like to assume
that wires have zero resistance, zero capacitance, and that signals propagate through a wire
with zero delay. This assumption means that the signals A(t) and B(t) should be equal at all
times. Unfortunately, this is not the case; the main reason for this discrepancy is noise.

There are many sources of noise. The main source of noise is heat that causes electrons to
move randomly. These random movements do not cancel out perfectly, and random currents
are created. These random currents create perturbations in the voltage. The difference between
the signals B(t) and A(t) is a noise signal.

Consider, for example, the setting of additive noise: A is an output of an inverter and B is
an input of another inverter. We consider the signal A(t) to be a reference signal. The signal
B(t) is the sum A(t) + nB(t), where nB(t) is the noise signal.

The bounded-noise model assumes that the noise signal along every wire has a bounded
absolute value. We will use a slightly simplified model in which there is a constant ǫ > 0
such that the absolute value of all noise signals is bounded by ǫ. We refer to this model as
the uniformly bounded noise model. The justification for assuming that noise is bounded is
probabilistic. Noise is a random variable whose distribution has a rapidly diminishing tail.
This means that if the bound is sufficiently large, then the probability of the noise exceeding
this bound during the lifetime of a circuit is negligibly small.

10.6 The digital abstraction in presence of noise

Consider two inverters connected in series. Namely, the output of one gate feeds the input of
the second gate (see Figure 10.5).

Assume that the input x has a value that satisfies: (a) x > Vhigh, so the logical value of x
is one, and (b) y = Vlow − ǫ

′, for a very small ǫ′ > 0. This might not be possible with every
inverter, but Definition 10.3 does not rule out such an inverter. (Consider a transfer function
with f(Vhigh) = Vlow, and x slightly higher than Vhigh.) Since the logical value of y is zero, it
follows that the second inverter, if not faulty, should output a value z that is greater than Vhigh.
In other words, we expect the logical value of z to be 1. At this point we consider the effect of
adding noise.

Let us denote the noise added to the wire y by ny. This means that the input of the second
inverter equals y(t) + ny(t). Now, if ny(t) > ǫ′, then the second inverter is fed a non-logical
value! This means that we can no longer deduce that the logical value of z is one. We conclude
that we must use a more resilient model; in particular, the functionality of circuits should not
be affected by noise. Of course, we can only hope to be able to cope with bounded noise, namely
noise whose absolute value does not exceed a certain value ǫ.

z
y

x

Figure 10.5: Two inverters connected in series.



150 CHAPTER 10. THE DIGITAL ABSTRACTION∗

10.6.1 Input and output signals

Definition 10.4 An input signal is a signal that is fed to a circuit or to a gate. An output
signal is a signal that is output by a gate or a circuit.

For example, in Figure 10.5 the signal y is both the output signal of the left inverter and an
input signal of the right inverter. If noise is not present and there is no delay, then the signal
output by the left inverter always equals the signal input to the right inverter.

10.6.2 Redefining the digital interpretation of analog signals

The way we deal with noise is that we interpret input signals and output signals differently.
An input signal is a signal measured at an input of a gate. Similarly, an output signal is a
signal measured at an output of a gate. Instead of two thresholds, Vlow and Vhigh, we define the
following four thresholds:

• Vin,low - an upper bound on a voltage of an input signal interpreted as a logical zero.

• Vout,low - an upper bound on a voltage of an output signal interpreted as a logical zero.

• Vin,high - a lower bound on a voltage of an input signal interpreted as a logical one.

• Vout,high - a lower bound on a voltage of an output signal interpreted as a logical one.

These four thresholds satisfy the following equation:

Vout,low < Vin,low < Vin,high < Vout,high. (10.4)

Figure 10.6 depicts these four thresholds. Note that the interpretation of input signals is less
strict than the interpretation of output signals. The actual values of these four thresholds
depend on the transfer functions of the devices we wish to use.

Vout,high

Vout,low

logical zero - output

Vin,high

Vin,low

logical zero - input

logical one - output

logical one - input

t

f(t)

Figure 10.6: A digital interpretation of an input and output signals.
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Consider an input signal f(t). The digital signal digin(f(t)) is defined as follows.

digin(f(t)) △=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if f(t) < Vin,low
1 if f(t) > Vin,high
non-logical otherwise.

(10.5)

Consider an output signal g(t). The digital signal digout(g(t)) is defined analogously.

digout(g(t)) △=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if g(t) < Vout,low
1 if g(t) > Vout,high
non-logical otherwise.

(10.6)

Definition 10.5 The differences Vin,low−Vout,low and Vout,high−Vin,high are called noise margins.

Consider the following setting. The signal g(t) is the output of gate G1. On its way to
an input of G2, the signal g(t) accumulates noise so that the input signal to G2 is the signal

f(t) △= g(t) + n(t). Our goal is to show that if the absolute value of the noise is less than the
noise margins, then the noise does not corrupt the signal.

Claim 10.1 Assume that f(t) = g(t)+n(t). Assume that ∣n(t)∣ is less than the noise margins.
If digout(g)(t) ∈ {0,1}, then digin(f)(t) = digout(g)(t).
Proof: Assume that digout(g)(t) = 0. Therefore, g(t) < Vout,low. Hence,

f(t) = g(t) + n(t)
< Vout,low + (Vin,low − Vout,low) = Vin,low.

Therefore, digin(f)(t) = 0, as required. The proof of the case digout(g)(t) = 1 is analogous. ✷

We can now fix the definition of an inverter so that bounded noise added to outputs, does not
affect the logical interpretation of signals.

Definition 10.6 (inverter in the bounded-noise model) A gate G with a single input x
and a single output y is an inverter if its static transfer function f(z) satisfies the following the
following two conditions:

1. If z < Vin,low, then f(z) > Vout,high.
2. If z > Vin,high, then f(z) < Vout,low.

10.7 Stable signals

In this section we define terminology that will be used later. To simplify notation we define
these terms in the zero-noise model. We leave it to the curious reader to extend the definitions
and notation below to the bounded-noise model.

An analog signal f(t) is said to be logical at time t if dig(f(t)) ∈ {0,1}. An analog signal f(t)
is said to be stable during the interval [t1, t2] if f(t) is logical for every t ∈ [t1, t2]. Continuity
of f(t) and the fact that Vlow < Vhigh imply the following claim.
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Claim 10.2 If an analog signal f(t) is stable during the interval [t1, t2], then one of the fol-
lowing holds:

1. dig(f(t)) = 0, for every t ∈ [t1, t2], or
2. dig(f(t)) = 1, for every t ∈ [t1, t2].
From this point we will deal with digital signals and use the same terminology. Namely, a

digital signal x(t) is logical at time t if x(t) ∈ {0,1}. A digital signal is stable during an interval[t1, t2] if x(t) is logical for every t ∈ [t1, t2].
10.8 Summary

In this chapter we presented the digital abstraction of analog devices. For this purpose we
defined analog signals and their digital counterpart, called digital signals. In the digital ab-
straction, analog signals are interpreted either as zero, one, or non-logical.

We discussed noise and showed that to make the model useful, one should set stricter
requirements from output signals than from input signals. Our discussion is based on the
bounded-noise model in which there is an upper bound on the absolute value of noise.

We defined gates using transfer functions and static transfer functions. This functions
describe the analog behavior of devices. We also defined the propagation delay of a device as
the amount of time that input signals must be stable to guarantee stability of the output of a
gate.

Problems

10.1 Define the static transfer function of a nand-gate and a nor-gate in the zero noise model.

10.2 Define the static transfer function of a nand-gate and a nor-gate in the bounded noise
model.

10.3 Consider the following piecewise linear function:

f(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
5 if x ≤ 5

3

0 if x ≥ 10
3

−3x + 10 if 5
3
< x < 10

3
.

Show that if f(x) is the transfer function of a device C, then one can define threshold values
Vout,low < Vin,low < Vin,high < Vout,high so that C is an inverter according to Definition 10.6.

10.4 Consider the function f(x) = 1 − x over the interval [0,1]. Suppose that f(x) is a the
transfer function of a device C. Can you define threshold values Vout,low < Vin,low < Vin,high <
Vout,high so that C is an inverter according to Definition 10.6?

Hint: Prove that Vout,high ≤ 1−Vin,low and that Vout,low ≥ 1−Vin,high. Derive a contradiction from
these two inequalities.

10.5 Can you justify or explain the saying that “computers use only zeros and ones”?

10.6 Can you explain the following anomaly? The design of an adder is a simple task. How-
ever, the design and analysis of a single electronic device (e.g., a single gate) is a complex
task.
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In this chapter we define and study combinational circuits. The underlying graph of a
combinational circuit is more general than the underlying graph of a Boolean formula. In
a formula the underlying graph is a rooted tree. However, in a combinational circuit the
underlying graph is a directed acyclic graph.

We focus on the representation of Boolean functions by combinational circuits, a represen-
tation that is different from tables and formulas. Our goal is to prove two theorems: (i) Every
Boolean function can be implemented by a combinational circuit, and (ii) every combinational
circuit implements a Boolean function.

We introduce an efficient algorithm for simulating a combinational circuit. Simulation means
that we can determine the value of the outputs if we are given the values of the inputs. In
addition, we analyze the time that elapses till the outputs of a combinational circuit stabilize.

We measure the quality of a combinational circuit using two criteria: cost and delay. Cost
refers to the number of gates in a circuit. Delay refers to the speed of the circuit. Obviously,
we prefer cheap and fast circuit over costly and slow circuits.

11.1 Combinational gates - an analog approach

By Definition 10.1, a gate is a device whose static functionality is specified by a static transfer
function. This means that the output is a function of the inputs, provided that the input values
do not change for a sufficiently long amount of time.

Our goal now is to define combinational gates. According to Definition 10.1, a gate is a
deterministic memoryless device. A combinational gate must satisfy an additional property.
Namely, if the inputs are logically stable, then the output is logical. Hence, not only is the
output a function of the present value of the inputs - the output is logical if the inputs are
stable. We now formalize the definition of a combinational gate.

First, we extend the definition of the digital interpretation of an analog signal to real vectors.
Let y⃗ ∈ Rn, where y⃗ = (y1, y2,⋯, yn). The function dign ∶ R

n → {0,1,non-logical}n is defined by

dign(y1, y2,⋯, yn) △= (dig(y1),dig(y2),⋯,dig((yn))).
To simplify notation, we denote dign simply by dig when the length n of the vector is clear.

We now define a combinational gate. Consider a gate g with n inputs (denoted by x⃗) and
k outputs (denoted by y⃗). When we write dig(x⃗(t)) ∈ {0,1}n, we mean that every component
of x⃗(t) is logical.
Definition 11.1 The gate g is a combinational gate if there exists a ∆ > 0, such that, for all
x⃗(t) ∈ Rn,

∀t ∈ [t1, t2] ∶ digin(x⃗(t)) ∈ {0,1}n ⇒ ∀t ∈ [t1 +∆, t2] ∶ digout(y⃗(t)) ∈ {0,1}k . (11.1)

The above definition says that in a combinational gates, a stable input during [t1, t2] leads to
a stable output during [t1 +∆, t2]. Note that this definition is stricter than the definition of a
gate in two ways. First, we require that the static transfer function f ∶ Rn → R

k satisfy

∀x⃗ ∶ digin(x⃗) ∈ {0,1}n ⇒ digout(f(x⃗)) ∈ {0,1}k . (11.2)

Second, we allow the input x⃗(t) to fluctuate as much as it wishes, as long as it is logically stable
(i.e., each component must have the same logical value during the interval [t1, t2], but its analog
value may fluctuate within the intervals [0, Vin,low] and [Vin,high,+∞]).
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Consider a combinational gate g and let f ∶ Rn → R
k denote its static transfer function. The

function f induces a Boolean function Bf ∶ {0,1}n → {0,1}k as follows. Given a Boolean vector(b1,⋯, bn) ∈ {0,1}n, define xi as follows:
xi

△

=

⎧⎪⎪⎨⎪⎪⎩
Vlow − ε if bi = 0

Vhigh + ε if bi = 1.

The Boolean function Bf is defined by

Bf(b⃗) △= digout(f(x⃗)).
Since g is a combinational gate, it follows that every component of digout(f(x⃗)) is logical, and
hence Bf is a Boolean function, as required.

After defining the Boolean function Bf , we can rephrase Equation 11.2 as follows (note that
this formulation ignores timing):

dig(x⃗) ∈ {0,1}n ⇒ dig(f(x⃗)) = Bf(dig(x⃗)).
Claim 11.1 In a combinational gate, the relation between the logical values of the inputs and
the logical values of the outputs is specified by a Boolean function.

Proof: Since digout(f(x⃗)) ∈ {0,1}k if diginx⃗ ∈ {0,1}n, we conclude that digout(f(x⃗)) does not
depend of the real values of x⃗ but only on their digital interpretation. Moreover, digout(f(x⃗))
must be stable. This means that transitions from 0 to 1 (or vice versa) are not possible. Indeed,
during each such transition the digital interpretation must be non-logical. ✷

Recall that the propagation delay is an upper bound on the amount of time that elapses from
the moment that the inputs (nearly) stop changing till the moment that the output (nearly)
equals the value of the static transfer function. Hence, one must allow some time till the logical
values of the outputs of a combinational gate properly reflect the value of the Boolean function.
We say that a combinational gate is consistent if this relation holds.

Consider a combinational gate g with inputs x⃗(t) and outputs y⃗(t). Let f denote the static
transfer function of g.

Definition 11.2 Gate g is consistent at time t if dig(x⃗(t)) ∈ {0,1}n and dig(y⃗(t)) = Bf(dig(x⃗(t))).
11.2 Back to the digital world

In the previous section we defined combinational gates using analog signals and their digital
interpretation. This approach is useful when one wishes to determine if an analog device can be
used as a digital combinational gate. Here simplify matters and deal only with digital signals.

To simplify notation, we consider a combinational gate g with 2 inputs, denoted by x1, x2,
and a single output, denoted by y. Instead of using analog signals, we refer only to digital
signals. Namely, we denote the digital signal at terminal x1 by x1(t). The same notation is
used for the other terminals.

Our goals are to: (i) specify the functionality of combinational gate g by a Boolean function,
(ii) define when a combinational gate g is consistent, and (iii) define the propagation delay of
g.
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We use a looser definition of the propagation delay. Recall that we decided to refer only to
digital signals. Hence, we are not sensitive to the analog value of the signals. This means that
a (logically) stable signal is considered to have a fixed value, and the analog values of inputs
may change as long as they remain with the same logical value.

In the looser definition of propagation delay we only ask about the time that elapses from
the moment the inputs are stable till the gate is consistent.

Definition 11.3 A combinational gate g is consistent with a Boolean function B at time t if
the input values are logical at time t and

y(t) = B(x1(t), x2(t)).
Note that y(t) must be also logical since x1(t), x2(t) ∈ {0,1} and B is a Boolean function.

Let B ∶ {0,1}2 → {0,1} denote the Boolean function induced by the static transfer function of the
combinational gate g. The following definition defines propagation delay tpd of a combinational
gate.

Definition 11.4 The propagation delay of a combinational gate g is tpd if the following holds.
If the inputs are stable during the interval [t1, t2], then the gate is consistent with the function
B during the interval [t1 + tpd, t2].
Note that the definition is interesting only if t2 > t1+tpd. In practice, this means that the periods
of steady state must be longer than the propagation delays. Otherwise, the combinational gate
may not reach consistency.

The propagation delay is an upper bound on the amount of time that elapses till a combi-
national gate becomes consistent (provided that its inputs are stable). The actual amount of
time that passes till a combinational gate is consistent is very hard to compute, and in fact it is
random. It depends on x(t) during the interval (−∞, t) (i.e., how fast does the input change?),
noise, and manufacturing variance. This is why upper bounds are used for propagation delays
rather than the actual times.

Suppose that a combinational gate g implements a Boolean function B ∶ {0,1}n → {0,1}
with propagation delay tpd. Assume that t′ ≥ tpd. Then g also implements the Boolean function
B(x) with propagation delay t′. It is legitimate to use upper bounds on the actual propagation
delay, and pessimistic assumptions should not render a circuit incorrect. Timing analysis of
circuits composed of many gates depends on the upper bounds we use; the tighter the bounds,
the more accurate the timing analysis is.

Assume that the combinational gate g is consistent at time t2, and that at least one input is
not stable in the interval (t2, t3). We can not assume that the output of g remains stable after
t2. However, in practice, an output may remain stable for a short while after an input becomes
instable. We formalize this as follows.

Definition 11.5 The contamination delay of a combinational device is a lower bound on the
amount of time that the output of a consistent gate remains stable after its inputs stop being
stable.

Throughout this course, unless stated otherwise, we will make the most “pessimistic” as-
sumption about the contamination delay. Namely, we do not rely on an output remaining stable
after an input becomes instable. Formally, we will assume that the contamination delay is zero.

Figure 11.1 depicts the propagation delay and the contamination delay. The outputs become
stable at most tpd time units after the inputs become stable. The outputs remain stable at least
tcont time units after the inputs become instable.
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inputs

tpd
outputs

tcont

Figure 11.1: The propagation delay and contamination delay of a combinational gate. The
x-axis corresponds to time. The dark (or red) segments signify that the signal is not guaranteed
to be logical; the light (or green) segments signify that the signal is guaranteed to be stable.

11.2.1 Example

In this example we discuss timing analysis and inferring output values based on partial inputs.
Consider an and-gate with inputs x1(t) and x2(t) and an output y(t). Suppose that the
propagation delay of the gate is tpd = 2 seconds. (All time units are in seconds in this example,
so units will not be mentioned anymore in this example).

• Assume that the inputs equal 1 during the interval [100,109] . Since tpd = 2, it follows
that y(t) = 1 during the interval [102,109]. It may very well happen that y(t) = 1 before
t = 102, however, we are not certain that this happens. During the interval [100,102), we
are uncertain about the value of y(t); it may be 0, 1, or non-logical, and it may fluctuate
arbitrarily between these values.

• Assume that x1(t) = 1 during the interval (109,115], x2(t) = non-logical during the interval(109,110), and x2(t) = 0 during the interval [110,115].
During the interval (109,110) we know nothing about the value of the output y(t) since
x2(t) is non-logical. The inputs are stable again starting t = 110. Since tpd = 2, we are only
sure about the value of y(t) during the interval [112,115] (during the interval [112,115],
y(t) = 0). We are uncertain about the value of y(t) during the interval (109,112).

• Assume that x2(t) remains stable during the interval [110,120], x1(t) becomes non-logical
during the interval (115,116), and x1(t) equals 1 again during the interval [116,120].
Since x2(t) is stable during the interval [110,120], we conclude that it equals 0 during
this interval. The truth-table of an and-gate implies that if one input is zero, then the
output is zero. Can we conclude that that y(t) = 0 during the interval [110,120]?
There are some technologies in which we could draw such a conclusion. However, our
formalism does not imply this at all! As soon as x1(t) becomes non-logical (after t = 115),
we cannot conclude anything about the value of y(t). We remain uncertain for two
seconds after both inputs stabilize. Both inputs stabilize at t = 116. Therefore, we can
only conclude that y(t) = 0 during the interval [118,120].
The inability to determine the value of y(t) during the interval (115,118) is a shortcoming
of our formalism. For example, in a CMOS nand-gate, one can determine that the output
is zero if one of the inputs is one (even if the other input is non-logical). The problem with
using such deductions is that timing depends on the values of the signals. On one hand,
this improves the estimates computed by timing analysis. One the other hand, timing
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analysis becomes a very hard computational problem. In particular, instead of a task that
can be computed in linear time, it becomes an NP-hard task (i.e., a task that is unlikely
to be solvable in polynomial time).

11.3 Combinational gates

A combinational gate, as defined in Definition 11.4 is a device that implements a Boolean
function. From this point on, we refer to a combinational gate, in short, as a gate.

The inputs and outputs of a gate are often referred to as terminals, ports, or even pins. The
fan-in of a gate g is the number of input terminals of g (i.e., the number of bits in the domain of
the Boolean function that specifies the functionality of g). The fan-in of the basic gates that we
will be using as building blocks for combinational circuits is constant (i.e., we usually consider
at most two input ports). The basic gates that we consider are: inverter (not-gate), or-gate,
nor-gate, and-gate, nand-gate, xor-gate, nxor-gate, multiplexer (mux). All this gates have
a single output. To avoid confusion, note that the fan-out of a gate is not the number of output
ports. (The definition of fan-out appears below.)

Given a gate g, we denote the fan-in (i.e., number of input ports) of g by in(g) and the
number of output ports of g by out(g). The input ports of a gate g are denoted by the set{in(g)i}in(g)i=1 . The output ports of a gate g are denoted by the set {out(g)i}out(g)i=1 . Let

terminals(g) △= {in(g)i}in(g)i=1 ∪ {out(g)i}out(g)i=1 .

We introduce two special gates used for external inputs and outputs.

Definition 11.6 (input and output gates) An input gate is a gate with zero inputs and a
single output. An output gate is a gate with one input and zero outputs.

Output GateInput Gate

Figure 11.2: An input gate and an output gate

Figure 11.2 depicts an input gate and an output gate. Inputs from the “external world”
are fed to a circuit via input gates. Similarly, outputs to the “external world” are fed by the
circuit via output gates. The second coordinate xi of an input-gate (in, xi) is simply the name
of the signal along the wire that emanates from it. Similarly, the second coordinate yi of an
output-gate (out, yi) is simply the name of the signal along the wire that enters it. We usually
name the inputs xi and the outputs yj, but they could be assigned arbitrary names. (Of course,
it is a good practice to use meaningful names.)

11.4 Wires and Nets

A wire is a connection between two terminals (e.g., an output of one gate and an input of
another gate). In the zero-noise model, the signals at both ends of a wire are identical.



11.4. WIRES AND NETS 159

Very often we need to connect several terminals (i.e., inputs and outputs of gates) together.
We could, of course, use any set of edges (i.e., wires) that connects these terminals together.
Instead of specifying how the terminals are physically connected together, we use nets.

Definition 11.7 A net is a subset of terminals that are connected by wires. The fan-out of a
net N is the number of input terminals that are contained in N .

For example, let us consider the leftmost drawing in Figure 11.3. All the gates in this
drawing are inverters, i.e., not-gates. A not-gate has a single input port and a single output
port, i.e., in(not) = out(not) = 1. There is a single net in this drawing. This net consists of
5 terminals: a single output port, and four input ports. Hence, the fan out of this net is 4.

How to draw multi-terminal nets? We say that a net is multi-terminal if it contains more
than two terminals. The issue of drawing a multi-terminal net is a bit confusing. Figure 11.3
depicts three different drawings of the same net. All three nets contain an output terminal of
an inverter and 4 input terminals of inverters. However, the nets are drawn differently. Recall
that the definition of a net is simply a subset of terminals. We may draw a net in any way that
we find convenient or aesthetic. The interpretation of the drawing is that terminals that are
connected by lines or curves constitute a net.

Figure 11.3: Three equivalent nets.

The digital signal in a net. Consider a net N . We would like to define the digital signal
N(t) for the whole net. The problem is that due to noise (and other reasons) the analog
signals at different terminals of the net might not equal each other. This might cause the
digital interpretations of analog signals at different terminals of the net to be different, too.
We solve this problem by defining N(t) as logical only if there is a consensus among all the
digital interpretations of the analog signals at all the terminals of the net. Namely, N(t) is zero
(respectively, one) if the digital values of all the analog signals in the net are zero (respectively,
one). If there is no consensus, then N(t) is non-logical. Recall that, in the bounded-noise model,
different thresholds are used to interpret the digital values of the analog signals measured in
input and output terminals.

Direction in Nets. We “direct” a net from the output terminals to the input terminals as
follows. We say that a net N feeds an input terminal t if the input terminal t is in N . We say
that a net N is fed by an output terminal t if t is in N . Figure 11.4 depicts an output terminal
that feeds a net and an input terminal that is fed by a net. The notion of feeding and being fed
implies a direction according to which information “flows”; namely, information is “supplied”
by output terminals and is “consumed” by input terminals.

From an physical point of view, direction of signals along nets is obtained in “pure” CMOS
gates as follows. Output terminals are connected (via low resistance) to the ground or to the
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power (but not both!). Input terminals, on the other hand, are connected only to capacitors.
To avoid conflicts between output terminals we use only simple nets, defined next.

G

a net fed by G
a net that feeds G

Figure 11.4: A terminal that is fed by a net and a terminal that feeds a net.

Simple Nets. The following definition captures the type of nets we would like to use. We
call these nets simple.

Definition 11.8 A net N is simple if (i) N is fed by exactly one output terminal, and (ii) N
feeds at least one input terminal.

A simple net N that is fed by the output terminal t and feeds the input terminals {ti}i∈I can be
modeled by the wires {wi}i∈I , where each wire wi connects t and ti. In fact, since information
flows in one direction, we may regard each wire wi as a directed edge t → ti. Hence, we may
model a simple net by a “star” of directed edges emanating from a common output terminal
and entering input terminals.

11.5 Combinational circuits

Let Γ denote a library of combinational gates that contains standard combinational gates such
as an inverter, or-gate, and-gate, et cetera. The library Γ contains a sub-library IO that
contains two special types of gates: input-gates (in, xi) and output-gates (out, yj).
Terminals in a Circuit. Suppose we want to design a circuit that contains two and gates,
three inputs, x1, x2, x3, and two outputs y1, y2, where y1 = and(x1, x2) and y2 = and(x2, x3).
One way to describe the circuit is to draw a schematic as depicted in Figure 11.5. We would
like to describe the circuit formally (a schematic is perhaps easy to “read”, but hard to argue
about).

First, we count the number of gates. We have, in total, 2 + 3 + 2 = 7 gates (including the

input and output gates). We define a set V
△

= {vi}7i=1 of nodes. Now, we need to assign a gate
type to each node. We do this by defining a function π ∶ V → Γ. The function π is simply

π(v1) = (in, x1), π(v2) = (in, x2), π(v3) = (in, x3),
π(v4) = π(v5) = and, (11.3)

π(v6) = (out, y1), π(v7) = (out, y2).
Both v4 and v5 are assigned and-gates. An and-gate has two input ports, called in(and)1

and in(and)2, and one output terminal called out(and). How can we distinguish between the
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(in, x3)

(in, x1)

(in, x2)

(out, y1)

(out, y2)

and

and

Figure 11.5: A combinational circuit.

input ports of v4 and the input ports of v5? We do this by giving “family” names to terminals.
For example, the first input port of v4 is called (v4, in(and)1). This is a bit cumbersome but
unambiguous.

In the case of input and output gates, we abbreviate, and write (in, xi), instead of, out((in, xi)).
Similarly, we write (out, yj), instead of, in((out, yj)).

We now generalize this example. Consider a set of nodes V and a function π ∶ V → Γ assigns
a gate type to each node.

Definition 11.9 The set of terminals of V with respect to π is defined as follows

terminals(V,π) △= {(v, t) ∶ v ∈ V, t ∈ terminals(π(v))}.
Netlist. A netlist is a way to describe how gates are connected to each other.

Definition 11.10 A netlist is a tuple H = (V,N,π), where V is a set of nodes, π ∶ V → Γ
assigns a gate type to each node, and N is a set of nets over terminals(V,π). We require that
the nets in N are pairwise disjoint.

We continue with the foregoing example. The netlist in this example is as follows. The
set of nodes is V

△

= {vi}7i=1, and the function π is defined in Equation 11.3. The set N of nets
consists of the following nets.

{(v1, (in, x1)), (v4, in(and)1)} ,{(v2, (in, x2)), (v4, in(and)2), (v5, in(and)1)} ,{(v3, (in, x3)), (v5, in(and)2)} ,{(v4, out(and)), (v6, (out, y1))} ,{(v5, out(and)), (v7, (out, y2))} .
The requirement that the nets are disjoint implies that each terminal may belong to at most

net in N . We often use the term circuit for a netlist. In fact, a netlist is a formal way to
describe a circuit.

In our foregoing example, the netlist “tells” us how to construct the circuit depicted in
Figure 11.5. First, “place” 7 gates according to the set V and the labeling function π. Now,
all that remains is to do is to to solder the wires between the gates. Indeed, the soldering rules
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are dictated by the nets in N . We connect a wire between the input gate (in, x1) and the first
input port of the and-gate that corresponds to v4, etc.

A netlist with multi-terminal nets is also called a hypergraph. We prefer to work with
directed graphs. Indeed, this can be done if all nets are simple, as follows.

Graph Representation of a Netlist with Simple Nets. A netlist H = (V,N,π) in which
all nets are simple can be represented by a directed graph DG(H) = (V, Ñ). Consider a net
n = {t, t1, . . . , tk} in N with an output terminal t and input terminals t1, . . . , tk. Suppose that t
is a terminal of node v, and ti is a terminal of node vi. This net n is represented in Ñ by the
set of directed edges {(v, vi)}ki=1.
Note that in our foregoing example all the nets are simple. Hence, the set Ñ in this example is
as follows:

Ñ = {(v1, v4), (v2, v4), (v2, v5), (v3, v5), (v4, v6), (v5, v7)} .
Note that the directed graph DG(H) may have directed edges of the form (v, v); such edges

are called self-loops. In addition, the directed graph DG(H) may have parallel edges, that is,
more than one edge may emanate from a node u and enter the same node v. For example, let
us consider two combinational gates with multiple inputs and outputs. Connecting the outputs
of one to the inputs of the other, by using simple nets, yields a directed graph with parallel
edges between the corresponding nodes. Self-loops can be obtained by gates that their output
is connected to their input. Such a circuit is not a combinational circuit, defined as follows.

Definition of Combinational Circuits.

Definition 11.11 A netlist H = (V,N,π) is a combinational circuit if it satisfies the following
conditions.

1. Every net in N is simple.

2. Every terminal in terminals(V,π) belongs to exactly one net in N .

3. The directed graph DG(H) is acyclic.

One can easily check if a netlist H = (V,N,π) is a combinational circuit. We need to
check that the nets are simple, pairwise disjoint, and contain all the terminals exactly once. In
addition, we need to check that DG(H) is acyclic. To check that the graph G is acyclic, one can
try to sort the vertices in topological order. This procedure succeeds if and only if the graph is
acyclic.

In many cases, a gate implements a commutative Boolean function (e.g., an and-gate). In
such cases, we may connect to either input terminals without modifying the functionality.

In a depiction of a combinational circuit one often omits the orientation of the directed
edges. The reason is that the orientation is implied - an edge emanates from an output terminal
and enters an input terminal. In addition, one uses special symbols for different gate types.
Thus, instead of writing the label π(v) in the vertex v, one sometimes depicts the vertex by a
symbol that represents π(v). Figure 11.6 depicts the symbols used to depict common gates. In
Fig. 11.6, the input ports are on the left side and the output terminal is on the right side.
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XOR−gate OR−gate NOR−gate

inverter AND−gate NAND−gate

Figure 11.6: Symbols of common gates. Inputs are on the left side, outputs are on the right
side.

Example. In Figure 11.7, a combinational circuit C = (V,N,π) is depicted. This circuit is
called a Half-Adder. Subfigure 11.7a depicts the graph G. Subfigure 11.7b depicts the graph G
with the labels. Note that the labels are depicts using special symbols for each vertex. Edge
directions are omitted in Subfigure 11.7b since they are implied.

The set of the combinational gates in this example is Γ = {and,xor}. The labeling function
π ∶ V → Γ is as follows.

π(v1) = (in, a),
π(v2) = (in, b),
π(v3) = and,

π(v4) = xor,

π(v5) = (out, cout),
π(v6) = (out, s) .

Example. Consider the circuits depicted in Figure 11.8. Can you explain why these are not
valid combinational circuits?

11.6 Properties of Combinational Circuits

Our goal now is to prove the following four important properties of combinational circuits.

Completeness: For every Boolean function B, there exists a combinational circuit that im-
plements B.

Soundness: Every combinational circuit implements a Boolean function.

Simulation: Given the digital values of the inputs of a combinational circuit, one can simulate
the circuit efficiently (the running time is linear in the size of the circuit). Namely, one
can compute the digital values of the outputs of the circuit that are output by the circuit
once the circuit becomes consistent.

Delay analysis: Given the propagation delays of all the gates in a combinational circuit, one
can compute in linear time an upper bound on the propagation delay of the circuit.
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v1
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v4
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v6

(a)

(in, b)

(in, a)

(out, s)

(out, cout)

(b)

Figure 11.7: A Half-Adder combinational circuit and its matching DAG.

Figure 11.8: Two examples of non-combinational circuits.
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The proof that these properties hold proceeds as follows. First, we present an algorithm
for simulation and delay analysis. The correctness of this algorithm implies the property of
soundness. We then prove completeness by presenting a simple algorithm that constructs a
combinational circuit that implements a given Boolean formula.

11.7 Simulation and Delay Analysis

In this section we prove that combinational circuits are sound and can be simulated efficiently.
In fact, soundness is proved by a simulation, namely, we prove that, in a combinational circuit,
the stable signal along every wire is a Boolean function of the inputs of the circuit.

Assumption. To simplify the presentation, we assume that every combinational gate has a
single output terminal and implements a commutative Boolean function. Moreover, we assume
that the fan-in of combinational gates is one or two.

Consider a combinational circuit C = (G,N,π). We identify a vertex v with its output terminal,
and denote the digital signal at the output terminal of v simply by v(t). For an output-gate v,
we denote the digital signal at the input terminal of v also by v(t). We assume that C has k
input gates named (in, xi), for 1 ≤ i ≤ k. To simplify notation, we use x⃗(t) to denote the vector
x1(t), . . . , xk(t).
Theorem 11.2 (Simulation theorem of combinational circuits) Assume that the digital
signals {xi(t)}ki=1 are stable during the interval [t1, t2]. Then, for every vertex v ∈ V there exist:

1. a Boolean function fv ∶ {0,1}k → {0,1}, and
2. a propagation delay tpd(v)

such that v(t) = fv(x⃗(t)), for every t ∈ [t1 + tpd(v), t2].
Note the difference between tpd(v) and tpd(π(v)). The propagation delay tpd(π(v)) refers to
the delay of a single gate of type π(v). This delay is measured with respect to the input of the
gate. On the other hand, the propagation delay tpd(v) refers to the delay of the output of v
with respect to the input gates of the circuit C.

We prove the Simulation Theorem by presenting algorithm SIM(C, x⃗) (a listing appears
as Algorithm 11.1). The algorithm computes the value of fv(x⃗) and the propagation delays
tpd(v). We prove below that, for all v ∈ V , v(t) = fv(x⃗) during the interval [t1 + tpd(v), t2]. The
algorithm first sorts the vertices in topological order. We rename the vertices, so that vi is the
vertex given the ith position in the topological ordering. Without loss of generality, the sources
appear first in the topological ordering so that vi = xi, for 1 ≤ i ≤ k. The algorithm scans the
vertices in this order. Source vertices are the the easiest. Each source vertex vi equals xi. So fvi
simply equals xi, and the propagation delay of an input gate is zero. Suppose that the in-degree
of the next vertex vi is one. In this case, vi is either an output gate or an inverter. If vi is an
output gate, then let vj denote the gate that feeds vi. Clearly, fvi = fvj and tpd(vi) = tpd(vj).
If vi is an inverter, then it outputs the negation of its input. The propagation delay of the vi
is the propagation delay of the vertex that feeds the inverter plus the propagation delay of the
inverter itself. Finally, a vertex vi whose in-degree equals two is treated as follows. We apply
the local Boolean function fπ(vi) to the values of its inputs. The propagation delay equals the
maximum propagation delay of the gates that fed vi plus the propagation delay of π(vi).
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Algorithm 11.1 SIM(C, x⃗) - An algorithm for simulating the combinational circuit C =(V,N,π) with respect an input vector x⃗.

(v1, v2, . . . , vn)← TS(DG(C)) {topological sorting of DG(C)}
For i = 1 to n do

switch deg in(vi)
case deg in(vi) = 0: {π(vi) = (in, xj)}

• Let xj denote the name of vi before topological sorting.

• Set fvi(x⃗) △= xj and tpd(vi) △= 0.

case deg in(vi) = 1:

If {π(vi) = not}, then
• Let vj Ð→ vi denote the arc that enters vi.

• Set fvi(x⃗) = not(fvj(x⃗)) and tpd(vi) = tpd(vj) + tpd(not).
If {π(vi) = (out, y)}, then

• Let vj Ð→ vi denote the arc that enters vi.

• Set fvi(x⃗) = fvj(x⃗) and tpd(vi) = tpd(vj).
case deg in(vi) = 2:

• Let vj Ð→ vi and vk Ð→ vi denote the arcs that enter vi.

• Set fvi(x⃗) = Bπ(vi)(fvj(x⃗), fvk(x⃗)), and tpd(vi) = max{tpd(vj), tpd(vk)} +
tpd(π(vi)).
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Proof of Theorem 11.2: We prove that Algorithm SIM(C, x⃗) computes correct functionali-
ties fvi and propagation delays tpd(vi). By correct we mean that

∀i ∈ [1..n] ∀x⃗ ∈ {0,1}k ∀t ∈ [t1 + tpd(vi), t2] ∶ vi(t) = fvi(x⃗). (11.4)

The proof is by complete induction on i, the index of a vertex after topological sorting takes
place. We assume that topological ordering orders the sources first, namely, vi = xi, for 1 ≤ i ≤ k.
In Lemma 11.3, this assumption is justified.

Induction Basis: Recall that the first k nets are the input signals, hence vi(t) = xi(t), if i ≤ k.
The algorithm sets fvi(x⃗(t)) = xi(t) and the propagation delay tpd(vi) is zero. The induction
basis follows for i ≤ k.

Induction Step: We assume that Eq. 11.4 holds for every j, provided that j < i, and prove
it for i. Since i > k, the vertex vi is not a source. By our assumption its in-degree is either one
or two.

If deg in(vi) = 1, then π(vi) = not. Let vj the vertex such that (vj , vi) is the arc that enters
vi. Since the vertices are topologically sorted, it follows that j < i. Hence, we may apply the
induction hypothesis to vj. The induction hypothesis states that vj(t) = fvj(x⃗(t)) during the
interval [t1 + tpd(vj), t2]. Thus, the input to vi is stable during the interval [t1 + tpd(vj), t2].
Since vj is a combinational gate, this implies that its output is consistent with Bπ(vi) during the
interval [t1 + tpd(vj)+ tpd(not), t2]. Thus, vi(t) = not(vj(t)) during this interval, and Eq. 11.4
holds for i.

If deg in(vi) = 2, then let vj and vk denote the two vertices such that (vj , vi) and (vk, vi)
are the arcs that enter vi. Since the vertices are topologically sorted, it follows that j, k <
i. Hence, we may apply the induction hypothesis to vj and vk. The induction hypothesis
states that vj(t) = fvj(x⃗(t)) during the interval [t1 + tpd(vj), t2]. Similarly, vk(t) = fvk(x⃗(t))
during the interval [t1 + tpd(vk), t2]. Thus, both inputs to vi are stable during the interval[t1 + max{tpd(vj), tpd(vk)}, t2]. Since vj is a combinational gate this implies that its output
is consistent with Bπ(vi) during the interval [t1 +max{tpd(vj), tpd(vk)} + tpd(π(vi)), t2]. Thus,
vi(t) = Bπ(vi)(vj(t), vk(t)) during this interval. We conclude that Eq. 11.4 holds for i, and the
induction step follows. ✷

Recall that a DAG may have more than one topological ordering. The following lemma shows
that Algorithm SIM(C, x⃗) outputs the same results independent of the topological ordering
computed in the first line.

Lemma 11.3 The output of SIM(C, x⃗) does not depend on the topological ordering computed
by TS(G).
Proof: Consider two topological orderings. The first one, (v1, . . . , vn), is “specific” in the sense
that vi = xi, for i ≤ k. Namely, the input gates appear first. The second ordering (u1, . . . , un) is
arbitrary. We consider two executions of Algorithm SIM(C, x⃗): In the first execution, Algorithm
TS computed the topological ordering (v1, . . . , vn). In the second execution, Algorithm TS
computed the topological ordering (u1, . . . , un). It suffices to prove that, in both executions,
SIM(C, x⃗) computes the same functionalities and propagation delays. The proof is by complete
induction on i, the index of a vertex in the second ordering (u1, . . . , un).



168 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

The induction basis, for i = 1, holds because u1 is a source, and therefore, an input gate.
This means that ui = vj for some j ≤ k. Therefore, in the second execution, fu1(x⃗) = xj, and
tpd(u1) = 0. It follows that the second execution agrees with the first execution, as required.
The induction step is proved as follows.

1. If ui is a source, then the proof is identical to the proof of the induction basis.

2. If deg in(ui) = 1, then let uj Ð→ ui denote the incoming edge. Since the vertices are sorted
in topological order, j < i. The induction hypothesis implies that both execution agree
on the functionality and propagation delay of uj. It follows that they also agree on the
functionality of ui.

3. If deg in(ui) = 2, then let uj Ð→ ui and uk Ð→ ui denote the incoming edges. Since the
vertices are sorted in topological order, j, k < i. The induction hypothesis implies that
both execution agree on the functionality and propagation delay of uj and uk. It follows
that they also agree on the functionality of ui.

✷

An important interpretation of Theorem 11.2 is that it enables us to regard a combinational
circuit as a “macro-gate”. This macro-gate computes a Boolean function B ∶ {0,1}k → {0,1}ℓ,
where k denotes the number of input gates and ℓ denotes the number of output gates. All
instances of the same combinational circuit implement the same Boolean function and have the
same propagation delay.

Corollary 11.4 (Soundness) Every combinational circuit implements a Boolean function.

Proof: Consider a combinational circuit C with k input gates and ℓ output gates. Let xi
denote the i’th input gate, and let yi denote the i’th output gate. Let tpd(C) △=maxv∈V {tpd(v)}.
By Theorem 11.2, yi(t) = fyi(x⃗) during the interval [t1 + tpd(C), t2]. Thus, C implements the
Boolean function f ∶ {0,1}k → {0,1}ℓ defined by

f(x⃗) △= (fy1(x⃗), . . . , fyℓ(x⃗)).
✷

Remarks:

1. The computation of the values fvi(x⃗) by Algorithm SIM(C, x⃗) is actually identical to
the evaluation of the truth value of a Boolean formula (see Algorithm 6.2 EVAL(G,π, τ)).
One could rewrite algorithm EVAL(G,π, τ) so that instead of employing recursion, it runs
as follows: Scan the vertices according to a topological order, and evaluate the output of
each vertex v as the Boolean function Bπ(v) applied to the values that enter v.

2. The computation of the propagation delays is, in fact, a computation of longest paths in
DAGs with non-unit delays. Assume that each vertex v has a delay δ(v) ≥ 0. (In our
case, sources and sinks have zero delay, but we can deal with the general case just the
same.) The delay of a path p is defined by d(p) △= ∑v∈p δ(v). Algorithm 11.2 computes the
longest delay of paths in a DAG. It is a straightforward generalization of Algorithm 4.2.
Note that the computation of the propagation delays by Algorithm SIM(C, x⃗) follows the
same method.
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Algorithm 11.2 weighted-longest-path-lengths(V,E, δ) - An algorithm for computing the
longest delays of paths in a DAG. Returns a delay function d(v).
(a) topological sort: (v0, . . . , vn−1)← TS(V,E).
(b) For j = 0 to (n − 1) do

i. If vj is a source then d(vj)← δ(vj).
ii. Else

d(vj) = δ(vj) +max{d(vi) ∣ i < j and (vi, vj) ∈ E}.

3. The running time of the Algorithm SIM(C, x⃗) is linear in the number of gates in C.
Indeed, we preform a constant amount of “work” per vertex.

4. We do not rule out the usage of constants as inputs. In this case we add the possibility for
input-gates labeled (in,0) and (in,1). Such an input gate feeds a constant to the circuit.
Algorithm 11.1 needs to be modified to handle constant inputs. Namely, the case that vi
is a source has to be split to a constant input and a variable input.

11.8 Completeness

Theorems 6.6 and 9.2 state that the set {¬,or,and} of logical connectives is complete. There-
fore, every Boolean function B ∶ {0,1}n → {0,1} can be represented by a Boolean formula ϕ.
To complete the proof of completeness, we need to show that every Boolean formula can be
implemented by a combinational circuit.

The case that B is a constant Boolean function is handled quite easily. Simply construct a
combinational gate with one input gate that feeds one output gate. Let the input-gate output
a constant, and we are done. Thus, we focus on the case that B is not a constant Boolean
function. In this case, by Theorem 9.2, the Boolean formula ϕ is a sum of minterms, and
therefore, lacks constants. Thus, we focus on the construction of a combinational circuit Cϕ
that implements the function Bϕ, where ϕ is a Boolean formula in which the constants {0,1}
do not appear.

Note that the key difference between a formula and a Boolean circuit is that multiple leaves
may be labeled by the same variable in a parse tree. For example, in the parse tree depicted in
Figure 11.10a there are two leaves that are labeled by X1.

Our proof uses an operation of merging (or coalescing) of vertices in a directed graph defined
as follows.

Definition 11.12 Let G = (V,E) denote a directed graph, and let X ⊆ V denote a nonempty
set of vertices. The graph GX = (V ′,E′) obtained by merging the vertices in X is defined as
follows (the new merged vertex is denoted by x, so we assume that x ∉ V ):

V ′
△

= (V ∖X) ∪ {x}
E′

△

= (E ∖ {e ∣ e enters or emanates from a vertex in X})
∪ {(u,x) ∣ ∃v ∈ X ∶ (u, v) ∈ E} ∪ {(x,u) ∣ ∃v ∈ X ∶ (v,u) ∈ E}.
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Figure 11.9: The merging operation on DAGs. The set X is bordered by a dashed line.
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Example. Consider the DAG G = (V,E) depicted in Figure 11.9.
In this example the graphGX = (V ′,E′) obtained by merging the vertices inX = {v3, v4, v5, v6}.

The edges that enter or emanate from a vertex in X are in the set

{e2, e3, e4, e5, e6, e8, e9, e10, e11} .
The new edges are in the set {e′2, e′3, e′9, e′10, e′11}. In this example the set X is not a set of
sources. In general, merging of an arbitrary set of vertices may lead to a cyclic graph, e.g.,
G{v2,v7} is cyclic since it contains the cycle x→ v4 → v6 → x.

Claim 11.5 If G = (V,E) is a DAG and X is a subset of sources, then the graph GX is also a
DAG.

Proof: Since X contains only sources, the vertex x in GX is also a source. Therefore, a cycle
in GX does not contain x. On the other hand, any path p in GX that does not traverse x is
also a path in G. Since G is acyclic, such a path p cannot be closed. ✷

Consider a Boolean formula ϕ that is generated by a parse tree (G,π), where G = (V,E). We
construct the combinational circuit Cϕ as follows.

Definition 11.13 The combinational circuit Cϕ = (V ′,N ′, π′) is defined as follows. Construct
the directed graph G′ = (V ′,E′) as follows

1. For each 1 ≤ i ≤ n, merge all sources in G labeled Xi into one new source vertex ui and
define π′(ui) △= (in, xi).

2. Add a new vertex y labeled π′(y) △= (out, y) and an arc form the root of G to y, i.e., add
the arc r(G)Ð→ y.

The nets in N are defined as follows. For each node u define the net Nu by

Nu
△

= {u} ∪ {v ∶ (u, v) ∈ E′}.
We chose an imprecise definition of the net Nu to avoid cumbersome notation. Note that Nu

is a subset of nodes instead of terminals. One could replace u by the unique output port of u.
However, defining the input terminals in Nu requires some work. Note that there can be two
edges entering v in E′. Which input terminal is fed by which edge? Luckily, it does not matter
as long as the node is assigned a commutative Boolean function. One should just make sure
that the two edges are connected to distinct input terminals. Thus, the definition of Nu can
be fixed by employing a one-to-one correspondence between incoming edges and input ports for
each node.

Example. Consider the parse tree depicted in Figure 11.10a. In this example the Boolean
formula is ϕ = ((X1 ∨X2). ∧ ¬X1) The combinational circuit Cϕ is derived from the parse-tree(G,π) depicted in Figure 11.10a as follows. We merge the bordered sources that are labeled
by X1. The source labeled by X2 is, also, “merged”. The labels of these merged sources are(in,X1) and (in,X2), respectively. An additional vertex is added (out, y). That vertex is
connected by an arc to r(G). Note that the labeling function π is augmented so that it is
defined over all the vertices of Cϕ.

Claim 11.6 Cϕ is a combinational circuit.
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Figure 11.10: The combinational circuit Cϕ: (a) the parse tree of ϕ, (G,π), (b) the dashed line
borders the sources labeled by X1, (c) these sources are merged to a single source vertex. The
source labeled by x2 is “merged” to a single source as well. The labels of these merged sources
are (in, x1) and (in, x2). An additional vertex (out, y) is added and connected by an arc to
r(G).
Proof: By Claim 11.5, the merging of the sources labeled Xi keeps the graph acyclic. The
root G(r) is a sink in G, therefore, connecting it to the new sink y does not introduce a cycle.
Note also that all terminals belong to exactly one net, and that the nets are all simple. ✷

To complete the proof of completeness, we need to show that Cϕ implements the same
Boolean function Bϕ that is represented by ϕ. Note that the signal that enters the output gate
y is output by r(G).
Theorem 11.7 The combinational circuit Cϕ implements the Boolean function Bϕ, namely,

∀x⃗ ∈ {0,1}n ∶ fr(G)(x⃗) = Bϕ(x⃗).
Proof: The proof is by induction on the number of vertices in the parse tree of ϕ. The
induction basis for a single vertex proceeds as follows. If G contains a single vertex r(G), then
it labeled by a variable, say Xi. In this case Cϕ consists of a single input-gate labeled (in, xi)
connected to the output-gate labeled (out, y). It follows that fr(G)(x⃗) = xi. But, Bϕ(x⃗) = xi,
and the induction basis follows.

The induction step is proved as follows. If ϕ = ϕ1 ○ϕ2, then apply the induction hypothesis
to ϕ1 and ϕ2. This means that Cϕi

implements Bϕi
. Let (Gi, πi) denote the parse tree of ϕi.

Then,

Bϕ(x⃗) = B○(Bϕ1
(x⃗),Bϕ2

(x⃗))
= B○(fr(G1)(x⃗), fr(G2)(x⃗)
= fr(G)(x⃗),

where the first line follows from Lemma 6.3, the second line from the induction hypothesis, and
the third line by Algorithm SIM(C, x⃗). A similar argument is used to prove the induction step
for the case that ϕ = ¬ϕ1.

We remark that there is one subtle point that we omitted. One needs to show that the
simulations SIM(Cϕ, x⃗) and SIM(Cϕi

, x⃗) agree on the value of fr(Gi)(x⃗). This can be shown as
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follows. By Lemma 11.3, we may assume that, in the execution of SIM(Cϕ, x⃗), the topological
ordering puts all the vertices of Gϕi

first. Thus, both executions agree while scanning the
vertices of Gϕi

. ✷

11.9 Cost and propagation delay

In this section we define the cost and propagation delay of a combinational circuit. Throughout
this section, let C = (V,N,π) denote a combinational circuit.

Let c ∶ Γ→ R
≥0 denote a cost function. Usually, input-gates and output-gates have zero cost.

Definition 11.14 The cost of C is defined by

c(C) △= ∑
v∈V

c(π(v)).
Recall that the propagation delays tpd(v) are computed by Algorithm SIM(C, x⃗).
Definition 11.15 The propagation delay of C is defined by

tpd(C) △=max
v∈V

tpd(v).
We often refer to the propagation delay of a combinational circuit as its depth or simply its
delay .

Definition 11.16 The propagation delay of a path p in G is defined as

tpd(p) △=∑
v∈p
tpd(π(v)).

The following claim states that Algorithm SIM(C, x⃗) computes the largest delay of a path in
G.

Claim 11.8
tpd(C) =max {tpd(p) ∣ p is a path in G}

Proof: Follows the proof of Theorem 4.5. ✷

Definition 11.17 Let C = (V,N,π) denote a combinational circuit. A path p in C is critical
if tpd(p) = tpd(C).
We focus on critical paths that are maximal (i.e., cannot be further augmented). This means
that maximal critical paths begin in an input-gate and end in an output-gate.

11.10 Example: relative gate costs and delay

Müller and Paul compiled a table of costs and delays of gates [13]. These figures were obtained
by considering ASIC libraries of two technologies and normalizing them with respect to the cost
and delay of an inverter. They referred to these technologies as Motorola and Venus. Table 11.1
summarizes the normalized costs and delays in these technologies according to Müller and Paul.



174 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

Gate Motorola Venus
cost delay cost delay

inv 1 1 1 1
and,or 2 2 2 1
nand, nor 2 1 2 1
xor, nxor 4 2 6 2
mux 3 2 3 2

Table 11.1: Costs and delays of gates

11.11 Semantics and Syntax

The term semantics (in our context) refers to the function that a circuit implements. Synonyms
for semantics of a circuit are functionality or even the circuit!behavior of the circuit. In general,
the semantics of a circuit is a formal description that relates the outputs of the circuit to the
inputs of the circuit (including timing). In the case of combinational circuits, semantics are
described by Boolean functions. Note that in non-combinational circuits, the output depends
not only on the current inputs, so semantics cannot be described simply by a Boolean function.

The term syntax refers to a formal set of rules that govern how “grammatically correct”
circuits are constructed from smaller circuits (just as sentences are built by combining words).
In the syntactic definition of combinational circuits, the functionality (or gate-type) of each gate
is not important. The only part that matters is that the rules for connecting gates together
are followed. Following syntax in itself does not guarantee that the resulting circuit is useful.
Following syntax is, in fact, a restriction that we are willing to accept so that we can enjoy
the benefits of well defined functionality, simple simulation, and simple timing analysis. The
restriction of following syntax rules is a reasonable choice since every Boolean function can be
implemented by a syntactically correct combinational circuit.

In this chapter we defined design rules for building combinational circuits. These design
rules define syntactically correct circuits. Our main result is that syntactically correct circuits,
called combinational circuits, can implement any Boolean function. We are now left with the
following design task: Given a Boolean function B, design a combinational circuit C that
implements B such that the delay and cost of C is as small as possible.

11.12 Summary

Combinational circuits are formally defined in this chapter. We started by considering the basic
building blocks: gates and wires. Gates are simply implementations of Boolean functions. The
digital abstraction enables a simple definition of what it means to implement a Boolean function
B. Given a propagation delay tpd and stable inputs whose digital value is x⃗, the digital values
of the outputs of a gate equal B(x⃗) after tpd time elapses.

Wires are used to connect terminals together. Bunches of wires are used to connect multiple
terminals to each other and are called nets. Simple nets are nets in which the direction in which
information flows is well defined; from a single output terminal of a gate to input terminals of
gates.

The formal definition of combinational circuits turns out to be most useful. It is a syntactic
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definition that only depends on the topology of the circuit, namely, how the terminals of the
gates are connected. One can check in linear time whether a given circuit is indeed a combina-
tional circuit. Even though the definition ignores functionality, one can compute in linear time
the digital signals of every wire in the circuit. Moreover, one can also compute in linear time
the propagation delay of every net with respect to the circuit inputs.

Two quality measures are defined for every combinational circuit: cost and propagation
delay. The cost of a combinational circuit is the sum of the costs of the gates in the circuit.
The propagation delay of a combinational is the maximum delay of a path in the circuit.

Problems

11.1 Does every collection of combinational gates and wires constitute a combinational circuit?

11.2 Which of these tasks is easy?

1. Check if a circuit is combinational.

2. Simulate a combinational circuit.

3. Estimate the propagation delay of a combinational circuit for an arbitrary input.

11.3 Describe a combinational circuit with n gates that has at least 2n/2−1 paths. Can you
describe a circuit with 2n different paths?

11.4 In Claim 11.8 the propagation delay of a combinational circuit is claimed to equal the
maximum delay of a path in the circuit. The number of paths can be exponential in n. Does this
mean that we cannot compute the propagation delay of a combinational circuit in linear time?

11.5 Suggest criteria for comparing functionally equivalent combinational circuits. For exam-
ple: Suppose C1 and C2 are 32-bit adders. Which circuit should we use as an adder?

11.6 ∗ For a Boolean function f , let c∗(f) denote the minimum cost of a combinational circuit
that implements f .

Prove that for every n, there exists a Boolean function f ∶ {0,1}n → {0,1} such that c∗(f) ≥
2n

4n
.
Can you extend your proof to show this lower bound for most Boolean functions?
(Assume that a combinational circuit uses only gates with two inputs and that the cost of

all gates is one.)
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Consider the problem of designing a circuit that computes the or of n bits. A natural
approach for solving this problem is to partition the bits into pairs, compute the or of each
pair, and continue recursively until we are left with one bit—the result. The underlying graph,
or topology, of the combinational circuit we obtain is a rooted tree. Is this the best design? In
this chapter, we prove that indeed, this is the case.

We consider this question in a more general setting. First, we define a class of functions for
which the preceding problem can be easily formulated. This is the class of associative Boolean
functions. Second, we define a combinational circuit with a topology of a rooted tree, all gates
of which are identical.

We prove two lower bounds: one for cost and one for delay. These lower bounds do not
assume that topology of the circuits is a rooted tree. The lower bounds prove that rooted trees
have optimal cost and that balanced rooted trees have optimal delay.

12.1 Associative Boolean Functions

Definition 12.1 A Boolean function f ∶ {0,1}2 → {0,1} is associative if

f(f(σ1, σ2), σ3) = f(σ1, f(σ2, σ3))
for every σ1, σ2, σ3 ∈ {0,1}.

A Boolean function defined over the domain {0,1}2 is often denoted by a dyadic operator,
say, ∗. Namely, f(σ1, σ2) is denoted by σ1 ∗ σ2. Associativity of a Boolean function ∗ is then
formulated by

∀σ1, σ2, σ3 ∈ {0,1} ∶ (σ1 ∗ σ2) ∗ σ3 = σ1 ∗ (σ2 ∗ σ3).
This implies that one may omit parentheses from expressions involving an associative Boolean

function and simply write σ1 ∗ σ2 ∗ σ3. Thus we obtain a function defined over {0,1}n from a
dyadic Boolean function. We formalize this composition of functions as follows:

Definition 12.2 Let f ∶ {0,1}2 → {0,1} denote a Boolean function. The function fn ∶ {0,1}n →{0,1}, for n ≥ 1, is defined recursively as follows:

1. If n = 1, then f1(x) = x.
2. If n = 2, then f2 = f .

3. If n > 2, then fn is defined based on fn−1 as follows:

fn(x1, x2, . . . xn) △= f(fn−1(x1, . . . , xn−1), xn).
If f(x1, x2) is an associative Boolean function, then one could define fn in many equivalent

ways, as summarized in the following claim.

Claim 12.1 If f ∶ {0,1}2 → {0,1} is an associative Boolean function, then

fn(x1, x2, . . . xn) = f(fn−k(x1, . . . , xn−k), fk(xn−k+1, . . . , xn))
for every n ≥ 2 and k ∈ [1, n − 1].
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Proof: The proof is by complete induction on n. The induction basis for n = 2 is proved as
follows. Since n = 2 and k ∈ [1, n − 1], it follows that k = 1. Therefore the claim simply states
that

f2(x1, x2) = f(f1(x1), f1(x2)).
But f1(xi) = xi, and the induction basis holds.

The induction step is proved as follows. Let n ≥ 3. Assume the claim holds for all n′ < n.
Let

Fi,j
△

= fj−i+1(xi, . . . , xj).
In this notation, the induction hypothesis states that for every n′ < n and every 0 < k′ < n′,

F1,n′ = f(F1,n′−k′ , Fn′−k′+1,n′).
In the induction step, we need to prove that, for every 0 < k < n,

F1,n = f(F1,n−k, Fn−k+1,n).
Indeed,

f(F1,n−k, Fn−k+1,n) = f(F1,n−k, f(Fn−k+1,n−1, xn))
= f(f(F1,n−k, Fn−k+1,n−1), xn)
= f(F1,n−1, xn)
= F1,n.

The first line is by the definition of fk+1, hence Fn−(k+1)+1,n = f(Fn−(k+1)+1,n−1, xn)). The second
line follows by applying associativity of f . The third line follows by the induction hypothesis
for n′ = n − 1 and k′ = k. The last line follows from the definition of fn. ✷

12.2 Trees of Associative Boolean Gates

In this section, we deal with combinational circuits that have a topology of a tree. All the gates
in the circuits we consider are instances of the same gate, which implements an associative
Boolean function. To simplify the presentation, we consider only the Boolean function orn.
The discussion for the other three nontrivial associative functions is analogous.

Definition 12.3 A combinational circuit H = (V,E,π) that satisfies the following conditions
is called an or-tree(n).

1. Topology. The graph DG(H) is a rooted tree with n sources.

2. Each vertex v in V that is not a source or a sink is labeled π(v) = or.

3. The set of labels of leaves of H is {x0, . . . , xn−1}.
Figure 12.1 depicts two or-tree(n) for n = 4. The following claim states that these trees

implement the same Boolean function.

Claim 12.2 Every or-tree(n) implements the Boolean function orn.
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or

or

x[3]

y

x[2]

or

or

or

x[0] x[1] x[2] x[3]

or

x[0] x[1]

y

Figure 12.1: Two implementations of an or-tree(n) with n = 4 inputs.

Proof: The proof is by complete induction on n. The proof, however, requires a strengthening
of the statement. The reason is that the set of leaves of a subtree is not labeled contiguously
starting from x1. Suppose that the leaves of an or-tree(n) T are labeled by distinct variables{xi1 , . . . , xin}, where {i1, . . . , in} ⊆ N is a set of n distinct indices. We wish to prove that the
output of T equals xi1 +⋯+ xin , where + denotes the Boolean function or.

The induction basis for n = 1 and n = 2 is trivial. The proof of the induction step relies on
Claim 4.7, which decomposes a rooted tree. Let H = (V,E,π) denote an or-tree(n) for n > 2.
The directed graph G = (V,E) is a rooted tree. The root r(G) is an output gate. Let v denote
the child of r(G). Since C is an or-tree, π(v) = or. Consider the two rooted trees G1 and G2

hanging from v. Let Hi = (Gi, πi) denote the subcircuit that corresponds to Gi. Note that the
root of Gi is an or-gate, so we attach its output to a new root that is labeled as an output gate.
The labeling πi keeps all the labels assigned by π to the leaves and the internal nodes. Hence
leaves are labeled as input gates, and internal nodes (except for the new roots) are labeled as
or-gates. Let ni denote the number of leaves in Gi. Note that ni > 0 and n1 +n2 = n, therefore
n1 < n. The induction hypothesis states that Hi implements the function orni

over its inputs.
Let {i1, . . . , in1

} denote the indices of the inputs of H1. Similarly, let {j1, . . . , jn2
} denote the

indices of the inputs of H2. Note that these two sets of indices are disjoint, and their union
equals the set {0, . . . , n − 1}.

The induction hypothesis combined with the or gate in v imply that the output y of H
equals

y = (xi1 +⋯+ xin1
) + (xj1 +⋯ + xjn2

)
= x0 + x1 +⋯+ xn−1.

Note that the last line is based on the fact that the function or is commutative and associative.
✷
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12.2.1 Relation to Boolean Formulas

An or-tree can be viewed as the combinational circuit that corresponds to a Boolean formula
that uses only the or connective.

Definition 12.4 A Boolean formula ϕ is an or(n) formula if it satisfies three conditions: (i) it
is over the variables X0, . . . ,Xn−1, (ii) every variable Xi appears exactly once in ϕ, and (iii) the
only connective in ϕ is the or connective.

An equivalent definition of an or(n)-tree is obtained by using the reduction from Boolean
formulas to combinations circuits defined in Definition 11.13.

The following claim can be proved by complete induction on n.

Claim 12.3 A Boolean circuit C is an or(n)-tree if and only if there exists an or(n) Boolean
formula ϕ such that C = Cϕ.

12.2.2 Cost Analysis

You may have noticed that both or-trees depicted in Figure 12.1 contain three or-gates. How-
ever, their delay is different. The following claim summarizes the fact that all or-trees have the
same cost. Recall that we use the convention that input gates and output gates have zero cost.

Claim 12.4 The cost of every or-tree(n) is (n − 1) ⋅ c(or).
Proof: The proof is by complete induction on n. The induction basis for n = 2 follows because
or-tree(2) contains a single or-gate. (What about the case n = 1?)

We now prove the induction step. The proof is similar to the proof of the induction step
in Claim 12.2. Let C = (G,π) denote an or-tree(n) for n > 2. Let Ci = (Gi, πi) denote the
subcircuit generated by (i) the subtree Gi hanging from child v of the root of G and (ii) the
labeling πi. We attach a new root to Gi that is labeled as an output gate. Let ni denote
the number of leaves in Gi. Note that n1 + n2 = n. The induction hypothesis states that
c(C1) = (n1 − 1) ⋅ c(or) and c(C2) = (n2 − 1) ⋅ c(or). We conclude that

c(C) = c(v) + c(C1) + c(C2)
= (1 + n1 − 1 + n2 − 1) ⋅ c(or)
= (n − 1) ⋅ c(or),

and the claim follows. ✷

In fact, Claim 12.4 is a restatement of the well-known relationship between the number of
leaves and interior nodes of in-degree two in rooted binary trees.

Lemma 12.5 Let G = (V,E) denote a rooted tree in which the in-degree of each vertex is at
most two. Then ∣{v ∈ V ∣ degin(v) = 2}∣ = ∣{v ∈ V ∣ degin(v) = 0}∣ − 1.

Proof: The proof is almost identical to the proof of Claim12.4. The only difference is in the
induction when the root of the subtree has an in-degree that equals one. In this case, we apply
the induction hypothesis to the subtree hanging from this root. ✷
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12.2.3 Delay Analysis

The delay of an or-tree(n) is simply the number of or-gates along the longest path from an
input to an output times the delay of an or-gate. In terms of rooted trees, depth is defined as
follows.

Definition 12.5 The depth of a rooted tree T is the maximum number of vertices with in-degree
greater than one in a path in T . We denote the depth of T by depth(T ).
We emphasize that this definition of depth is nonstandard. It ignores input gates, output gates,
and gates with in-degree one. Input and output gates have zero delay. However, inverters have
positive delay. The fact that we ignore inverters in this definition does not affect the lower
bound on the delay because they only increase the delay.

Binary rooted trees

In this section, we focus on binary trees, defined as follows.

Definition 12.6 A rooted tree is a binary tree if the maximum in-degree is two.

We refer to a rooted tree as a minimum depth tree if its depth is minimum among all the
rooted trees with the same number of leaves.

Consider the set of all rooted binary trees that have n leaves. By Lemma 12.5, each tree in
this set has n − 1 nodes whose in-degree equals two. Thus we focus on minimizing the depth
of the tree without worrying about the cost. The natural candidates to minimize delay are
“balanced” trees (we formalize the term balanced trees in Definition 12.9). We will show that
if n that is a power of 2, then there is a unique minimum depth tree, namely, the perfect binary
tree with log2 n levels. Conversely, if n is not a power of 2, we show that there is more than one
minimum depth tree, as demonstrated in the following example.

Example 12.1 Consider the two trees that are depicted in Figure 12.2, each with six inputs.
One tree is obtained from two binary trees with three leaves each. The second tree is obtained
from one binary tree with four leaves and one with two leaves. Although both these trees have
six leaves, they are quite different. Conversely, their depth is the same. Are these minimum
depth trees?

or

or

or

or

or or

or

or

or

or

Figure 12.2: Two trees with six inputs.

Our goal is to prove that the depth of every rooted binary tree with n leaves is at least⌈log2 n⌉. Moreover, we wish to show that this bound can be obtained rather easily.
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Claim 12.6 If Tn is a rooted binary tree with n leaves, then the depth of Tn is at least ⌈log2 n⌉.
Proof: Since the depth is an integer, it suffices to prove that it is at least log2 n. We now
modify the tree so that all vertices have in-degree 0 or 2. This modification proceeds by merging,
one by one, vertices with in-degree one with their child. Note that this modification does not
change the number of leaves nor the depth (as inverters do not contribute to the depth according
to our nonstandard definition).

We now assume that all vertices in Tn have in-degree 0 or 2. We prove that the depth of Tn
is at least log2 n. Since Tn ∈ N, it follows that Tn ≥ ⌈log2 n⌉, as required.

The proof is by complete induction on n. The induction basis follows since the depth of T1
is 0 ≥ log2 1 = 0. We now prove the induction step.

Let Tn denote a binary rooted tree for n > 2. Let Tn1
, Tn2

denote the subtrees hanging from
the root of Tn. Let n1 + n2 = n denote the number of leaves in Tn. The induction hypothesis
states that depth(Tn1

) ≥ log2 n1 and depth(Tn2
) ≥ log2 n2. We conclude that

depth(Tn) = 1 +max{depth(Tn1
),depth(Tn2

)}
≥ 1 +max{log2 n1, log2 n2}
≥ 1 + log2(n/2)
= log2 n ,

where the first line follows from Definition 12.5. The second line follows from the induction
hypothesis. The third line follows from the assumption that n1 + n2 = n, and the fact that the
log2 function is monotone increasing, and the claim follows. ✷

The following claim is a generalization of Claim 12.6 for in-degrees greater than two.

Claim 12.7 The depth of a tree T with n leaves and in-degree at most k is at least logk n.

Perfect Binary Trees. The distance of a vertex v to the root r in a rooted tree is the length
of the path from v to r. Note that the length of a path equals the number of edges along it,
hence it includes traversed nodes with in-degree one.

Definition 12.7 A rooted binary tree is perfect if (i) the in-degree of every nonleaf is two and
(ii) all leaves have the same distance to the root.

Note that the depth of a perfect tree equals the distance from the leaves to the root.

Claim 12.8 The number of leaves in a perfect tree is 2k, where k is the distance of the leaves
to the root.

Proof: By induction on the distance from the leaves to the root, the induction basis is trivial
for k = 0 since the tree consists only of the root. The induction step is proved as follows.
Consider a perfect tree T rooted at r such that the distance from the leaves to r equals k + 1.
Let r1 and r2 denote the children of r. The subtrees Ti rooted at ri, for i = 1,2, are also perfect,
and the distance of a leaf of Ti to the root ri is k. By the induction hypothesis, each subtree
has 2k leaves, and hence the tree T has 2k + 2k = 2k+1 leaves, as required. ✷

Claim 12.9 Let n denote the number of leaves in a perfect tree. Then the distance from every
leaf to the root is log2 n.
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Proof: Let k denote the distance of the leaves to the root. By Claim 12.8, the tree has 2k

leaves. Therefore n = 2k, and the claim follows. ✷

Minimum Depth Trees. Let T ∗n denote a minimum depth tree with n leaves. We now show
that for every n, the depth of T ∗n is ⌈log2 n⌉. In fact, if n is not a power of 2, then there are
many such trees.

We start with a simple rule for determining how to split the leaves between the subtrees
hanging from the root.

Definition 12.8 Two positive integers a, b are a balanced partition of n if

1. a + b = n

2. max{⌈log2 a⌉, ⌈log2 b⌉} ≤ ⌈log2 n⌉ − 1.

Claim 12.10 If n = 2k − r, where 0 ≤ r < 2k−1, then the set of balanced partitions is

P
△

= {(a, b) ∣ 2k−1 − r ≤ a ≤ 2k−1 and b = n − a}.
Proof: First, we observe that if n = 2k − r, where 0 ≤ r < 2k−1, then

⌈log2 n⌉ = k. (12.1)

Let (a, b) ∈ P . By the definition of P , it follows that a + b = n, as required. Moreover,

b = n − a

≤ 2k − r − 2k−1 + r

= 2k−1 ,

where the first line follows from the definition of P . The second line follows since n = 2k − r and
2k−1 − r ≤ a.

We now prove that max{⌈log2 a⌉, ⌈log2 b⌉} ≤ ⌈log2 n⌉ − 1:

max{⌈log2 a⌉, ⌈log2 b⌉} ≤ ⌈log2 (2k−1)⌉
= log2 (2k−1)
= k − 1

= ⌈log2(n)⌉ − 1 ,

where the first line follows since a, b ≤ 2k−1 and since log2 is a monotone increasing function.
The last line follows from Eq. 12.1. Hence (a, b) is a balanced partition, as required.

To prove the other direction, one must prove that if (a, b) is a balanced partition, then(a, b) ∈ P . Indeed, if (a, b) is a balanced partition, then max{a, b} ≤ 2k−1. Hence a = n − b ≥(2k − r) − 2k−1 = 2k−1 − r, as required. ✷

The following algorithm deals with the construction of minimum depth trees. The algorithm
partitions n = a + b using any balanced partition described in Claim 12.10. Note that if n is
not a power of 2, then there are multiple balanced partitions. In such a case, the algorithm has
more than one valid output. Note also that the in-degree of every vertex in the tree output by
the algorithm is either 2 or 0.

Claim 12.11 The depth of a binary tree T ∗n constructed by Algorithm Balanced-Tree(n) equals⌈log2 n⌉.
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Algorithm 12.1 Balanced-Tree(n) - a recursive algorithm for constructing a binary tree T ∗n
with n ≥ 1 leaves.

1. The case that n = 1 is trivial (an isolated root).

2. If n ≥ 2, then let a, b be balanced partition of n.

3. Compute trees T ∗a and T ∗b . Connect their roots to a new root to obtain T ∗n .

Proof: The proof is by complete induction on n. The induction basis for n = 1 holds since
the depth of T ∗1 is 0.

We now prove the induction step. Let a + b = n be a balanced partition of n that the
algorithm has chosen in step 2. By Definition 12.5, depth(T ∗n ) = 1+max{depth(T ∗a ),depth(T ∗b )}.
Hence

depth(T ∗n ) = 1 +max{depth(T ∗a ),depth(T ∗b )}
= 1 +max{⌈log2 a⌉, ⌈log2 b⌉}
≤ 1 + ⌈log2 n⌉ − 1

= ⌈log2 n⌉ ,
where the second line follows from the induction hypothesis. The third line follows since a+b = n
is a balanced partition.

Claim 12.6 implies that depth(T ∗n ) ≥ ⌈log2 n⌉. We conclude that depth(T ∗n ) = ⌈log2 n⌉, as
required. ✷

The conclusion from Claims 12.6 and 12.11 is summarized in the following corollary.

Corollary 12.12 The propagation delay of a minimum depth or-tree(n) is ⌈log2 n⌉ ⋅ tpd(or).
Proof: A balanced or-tree(n) is constructed from T ∗n as follows. Label all leaves as input
gates and all other vertices in T ∗n as or-gates. Add a new root, labeled as an output gate, and
connect the new root to the root of T ∗n . ✷

Definition 12.9 A rooted binary tree Tn is a balanced tree if it is a valid output of Algorithm
Balanced-Tree(n).

12.3 Optimality of Trees

In this section, we deal with the following questions: what is the best choice of a topology for
a combinational circuit that implements the Boolean function orn? Is a tree indeed the best
topology? Perhaps one could do better if another implementation is used? (Say, using other
gates or connecting an input xi to more than one gate.)

We attach two measures to every design: cost and delay. In this section, we prove lower
bounds on the cost and delay of every circuit that implements the Boolean function orn. These
lower bounds imply that a balanced or-tree is an optimal combinational circuit both in terms
of cost and in terms of delay.
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12.3.1 Definitions

In this section, we present the definition of a (functional) cone of a Boolean function.

Definition 12.10 (Restricted Boolean Functions) Let f ∶ {0,1}n → {0,1} denote a Boolean
function. Let σ ∈ {0,1}. The Boolean function g ∶ {0,1}n−1 → {0,1} defined by

g(w0, . . . ,wn−2) △= f(w0, . . . ,wi−1, σ,wi, . . . ,wn−2)
is called the restriction of f with xi = σ. We denote it by f↾xi=σ.

Example. Consider the Boolean function f(x⃗) = xorn(x1, . . . , xn). The restriction of f with
xn = 1 is the Boolean function

f↾xn=1(x1, . . . , xn−1) △= xorn(x1, . . . , xn−1,1)
= inv(xorn−1(x1, . . . , xn−1)).

Definition 12.11 A Boolean function f ∶ {0,1}n → {0,1} depends on its ith input if

f↾xi=0 ≠ f↾xi=1.

Example. Consider the Boolean function f(x⃗) = xor2(x1, x2). The function f depends on
the ith input for i = 2. Indeed, f↾x2=1(x1) = not(x1) and f↾x2=0(x1) = x1.
Definition 12.12 (Cone of a Boolean Function) The cone of a Boolean function f ∶ {0,1}n →{0,1} is defined by

cone(f) △= {i ∶ f↾xi=0 ≠ f↾xi=1}.
We later define a term called a graphical cone. To avoid confusion, the cone of a function is
sometimes called a functional cone.

Example. The cone of the Boolean function f(x⃗) = xor2(x1, x2) equals {1,2} because xor
depends on both inputs.

Definition 12.13 Let flipi ∶ {0,1}n → {0,1}n be the Boolean function defined by flipi(x⃗) △= y⃗,
where

yj
△

=

⎧⎪⎪⎨⎪⎪⎩
xj if j ≠ i

not(xj) if i = j.

Example. Let x[1 ∶ 5] = 11111. Then flip3(x) = 11011.

Claim 12.13 Let f ∶ {0,1}n → {0,1} denote a Boolean function. Then

i ∈ cone(f)⇐⇒ ∃v⃗ ∈ {0,1}n ∶ f(v⃗) ≠ f(flipi(v⃗)).
Proof: By definition, i ∈ cone(f) iff f↾xi=0 ≠ f↾xi=1. This is equivalent to f(v) ≠ f(flipi(v⃗)),
for a vector v⃗ ∈ {0,1}n. ✷

Claim 12.14 The Boolean function orn depends on all its inputs, namely,

∣cone(orn)∣ = n.
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Proof: For every i, or(0n) = 0, but or(flipi(0n)) = 1. ✷

Example. Consider the following Boolean function:

f(x⃗) = ⎧⎪⎪⎨⎪⎪⎩
0 if ∑i xi < 3

1 otherwise.

Suppose that one reveals the input bits one by one. As soon as three ones are revealed, one can
determine the value of f(x⃗). Nevertheless, the function f(x⃗) depends on all its inputs (why?),
and hence, cone(f) = {1, . . . , n}.
The following trivial claim deals with the case that cone(f) = ∅.
Claim 12.15 cone(f) = ∅⇐⇒ f is a constant Boolean function.

Proof: If f is constant, then f(v) = f(flipi(v⃗)), for every i and every v⃗. To prove the other
direction, we prove that if f is not constant, then there exists an index i and a vector v⃗ such
that f(v⃗) ≠ f(flipi(v⃗)), thus implying that i ∈ cone(f).

To prove this, we consider the undirected graph G = (V,E), where V = {0,1}n (the range
of f). The edge set E consists of all the pairs (u⃗, v⃗) such that u⃗ and v⃗ disagree in a single bit.
Namely, there exists an index i such that v⃗ = flipi(u⃗). Thus, all we need to prove is that, if f
is not constant, then there exists an edge (u⃗, v⃗) ∈ E such that f(u⃗) ≠ f(v⃗).

It is easy to see that G is connected, that is, between every two vertices u⃗ and v⃗, there is a
path. To obtain a path from u⃗ to v⃗, simply flip, one by one, the bits on which u⃗ and v⃗ disagree.

Now, if f is not constant, then there exist vectors u⃗ and v⃗ such that f(u⃗) ≠ f(v⃗). If(u⃗, v⃗) ∈ E, then we are done. But what do we do if (u⃗, v⃗) /∈ E? We may assume that u⃗ and v⃗
are a pair of closest vertices in G such that f(u⃗) ≠ f(v⃗). Now, consider a shortest path p in G
from u⃗ to v⃗. Let (u⃗, w⃗) ∈ E denote the first edge along p. Clearly f(u⃗) = f(w⃗); otherwise, the
pair u⃗ and w⃗ are closer than u⃗ and v⃗—a contradiction. Hence f(v⃗) ≠ f(w⃗). But v⃗ and w⃗ are
closer to each other than v⃗ and u⃗—a contradiction. ✷

The following claim deals with the case that a Boolean function is a composition of Boolean
functions.

Claim 12.16 If g(x⃗) ≜ B(f1(x⃗), f2(x⃗)), then
cone(g) ⊆ cone(f1) ∪ cone(f2) .

Proof: By contra-position, it suffices to prove that if i ∉ cone(f1)∪cone(f2), then i ∉ cone(g).
Indeed, if i ∉ cone(f1) ∪ cone(f2), then, by Claim 12.13, for every x⃗

f1(x⃗) = f1(flipi(x⃗))
f2(x⃗) = f2(flipi(x⃗)) .

Hence for every x⃗

g(x⃗) = B(f1(x⃗), f2(x⃗))
= B(f1(flipi(x⃗)), f2(flipi(x⃗)))
= g(flipi(x⃗)) .

Therefore i ∉ cone(g), and the claim follows. ✷
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12.3.2 Graphical Properties of Implementations of Functions

We now define the graphical cone of a vertex in a DAG.

Definition 12.14 Let G = (V,E) denote a DAG. The graphical cone of a vertex v ∈ V is
defined by

coneG(v) △= {u ∈ V ∶ degin(u) = 0 and there is a path from u to v}.
In a combinational circuit, every source is an input gate. This means that the graphical cone
of v equals the set of input gates from which there exists a path to v.

Recall that the simulation algorithm (Algorithm 11.1) attaches a Boolean function fv to
the output of every vertex v in a combinational circuit. The following claim establishes a
containment between the functional cone of fv and the graphical cone of v for every vertex v in
a combinational circuit.

The claim abuses notation in the following sense. Formally, i ∈ cone(fv) if the function fv
depends on the input xi. On the other hand, u ∈ coneG(v) if u is a source and there is a path
from u to v. A source u is an input gate and is labeled by (IN,xi), for some input xi. When
we write cone(fv) ⊆ coneG(v) we mean the following: If fv depends on xi, then the input gate
u that feeds the input xi must be in the graphical cone of v.

Claim 12.17 Let H = (V,E,π) denote a combinational circuit. Let G = DG(H). For every
vertex v ∈ V , the following holds:

cone(fv) ⊆ coneG(v) .
Proof: Let (v1, v1, . . . , vm) denote a topological ordering of the vertices in V . We prove the
claim by complete induction on the index j of a vertex vj in the topological ordering.

The induction basis for v1 holds because v1 is a source. The vertex v1 is labeled by (IN,xi)
for some input bit xi. This implies that fv1(x1, . . . , xn) = xi. Hence cone(fv) = {i}. On the
other hand, the only source from which there is a path to v1 is v1 itself. Hence coneG(v1) = {v1}.
This means that the induction basis holds (recall the abuse of notation described earlier).

Assume that the claim holds for all indices ℓ < j. We now prove the claim for j. The in-
degree of vj is either 0,1 or 2. If deg in(vj) = 0, then the proof is identical to the induction basis.
We leave the case that deg in(vj) = 1 as an exercise and focus on the case that deg in(vj) = 2.

Assume that deg invi = 2. Let va, vb denote the vertices such that (va, vi) and (vb, vi) are the
edges that enter vi. By the topological ordering, a, b < i. Hence we may apply the induction
hypothesis to va and vb. Note that every path from a source to vi must traverse either va or vb.
Hence coneG(vi) = coneG(va) ∪ coneG(vb).

The simulation algorithm defines fvi(x⃗) ≜ Bπ(vi)(fva(x⃗), fvb(x⃗)). By Claim 12.16,

cone(fvi) ⊆ cone(fva) ∪ cone(fvb) .
The following derivations are now justified:

cone(fvi) ⊆ cone(fva) ∪ cone(fvb)
⊆ coneG(va) ∪ coneG(vb)
= coneG(vi) .

✷

The following claim states that, for for every DAG and every vertex v, a rooted tree from
coneG(v) to v is “hidden” in the DAG.
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Claim 12.18 Let G = (V,E) denote a DAG. For every v ∈ V , there exist U ⊆ V and F ⊆ E
such that:

1. T = (U,F ) is a rooted tree;

2. v is the root of T ;

3. coneG(v) equals the set of leaves of (U,F ).
Proof: The sets U and F are constructed as follows.

1. Initialize F = ∅ and U = ∅.

2. For every source u in coneG(v) do
(a) Find a path pu from u to v.

(b) Let qu denote the prefix of pu, the vertices and edges of which are not contained in U
or F .

(c) Add the edges of qv to F , and add the vertices of qv to U .

By construction, U contains all the sources of coneG(v) and the vertex v. In addition, the
algorithm for constructing (U,F ) maintains the invariant that the out-degree of every vertex in
U ∖{v} is one. Because the out-degree of v in (U,F ) is zero, it follows by definition that (U,F )
is a rooted tree. ✷

12.3.3 Lower Bound on Cost

In the following theorem, we assume that the cost of every nontrivial gate is at least one. (Input
and output gates are considered trivial and have zero cost.) In fact, the bound is somewhat
stronger, it provides a lower bound on the number of gates with at least two inputs. What this
means is that, from the point of view of the lower bound, inverters are not counted.

Theorem 12.19 (Linear Cost Lower Bound Theorem) Let H = (V,E,π) denote a com-
binational circuit. If the fan-in of every gate in H is at most 2, then

c(H) ≥max
v∈V
∣cone(fv)∣ − 1.

Before we prove Theorem 12.19, we show that it implies the optimality of or-trees. Note that
it is very easy to prove a lower bound of n/2. The reason is that every input must be fed to a
nontrivial gate, and each gate can be fed by at most two inputs.

Corollary 12.20 Let Cn denote a combinational circuit that implements orn. Then

c(Cn) ≥ n − 1.
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Proof: The functional cone of orn consists of all the n inputs. The corollary follows from
Theorem 12.19. ✷

Proof of Theorem 12.19: We need to prove that c(H) ≥ ∣cone(fv)∣ − 1, for every vertex
v ∈ V . Recall that DG(H) is the directed graph that corresponds to the combinational circuit.
Because H is a combinational circuit, DG(H) is a DAG.

Fix a vertex v ∈ V . By Claim 12.18, there exists a rooted tree Tv = (U,F ) in DG(H), the
leaves of which are coneDG(H)(v).

The rooted tree Tv is a binary tree because the in-degrees in H are at most two. Let degTin(u)
denote the in-degree of u in a directed graph T . By Lemma 12.5,

∣{u ∈ U ∣ degTvin (u) = 2}∣ = ∣{u ∈ U ∣ degTvin (u) = 0}∣ − 1 (12.2)

= ∣coneDG(H)(v)∣ − 1

≥ ∣cone(fv)∣ − 1 .

Every gate in H with two inputs corresponds to a vertex v ∈ V with deg
DG(H)
in (v) = 2.

Clearly, the vertices of in-degree 2 in Tv are a subset of the vertices of in-degree 2 in DG(H).
The cost of every gate in H is at least one, hence c(H) ≥ ∣{u ∈ V ∣ degDG(H)in (u) = 2}∣. (This is

where we do not count vertices with in-degree one.)

By Eq. 12.2, it follows that

c(H) ≥ ∣coneDG(H)(v)∣ − 1 . (12.3)

By Claim 12.17, ∣coneDG(H)(v)∣ ≥ ∣cone(fv)∣.
We conclude that c(H) ≥ ∣cone(fv)∣ − 1, and the theorem follows. ✷

12.3.4 Lower Bound on Delay

The following theorem shows a lower bound on the delay of combinational circuits that is
logarithmic in the size of the cone. We assume that the delay of every nontrivial gate is at least
one.

Theorem 12.21 (Logarithmic Delay Lower Bound Theorem) Let H = (V,E,π) denote
a combinational circuit. If the fan-in of every gate in H is at most k, then

tpd(H) ≥max
v∈V

logk ∣cone(fv)∣.
Before we prove Theorem 12.21, we show that the theorem implies a lower bound on the delay
of combinational circuits that implement orn.

Corollary 12.22 Let Cn denote a combinational circuit that implements orn. Let k denote
the maximum fan-in of a gate in Cn. Then

tpd(Cn) ≥ ⌈logk n⌉ .
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Proof: The functional cone of orn consists of all the n inputs. The corollary follows from
Theorem 12.21. ✷

Proof of Theorem 12.21: Fix a vertex v ∈ V . By Claim 12.18, there exists a rooted tree
Tv = (U,F ) in DG(H), the leaves of which are coneDG(H)(v).

For simplicity, assume that k = 2. The rooted tree Tv is a binary tree because the in-degrees
in H are at most k = 2. By Claim 12.6, the depth of Tv is at least log2 ∣coneDG(H)(v)∣.

By Claim 12.17, ∣coneDG(H)(v) ≥ ∣cone(fv)∣. It follows that the depth of Tv is at least
log2 ∣cone(fv)∣.

Our nonstandard definition of depth counts vertices of in-degree at least two along paths.
A path p in Tv that traverses at least log2 ∣cone(fv)∣ nodes with in-degree two is also a path
in DG(H). Each node with in-degree at least two has a propagation delay of at least one. It
follows that tpd(p) ≥ log2 ∣cone(fv)∣.

We conclude that tpd(H) ≥ log2 ∣cone(fv)∣, and the theorem follows for k = 2.
The proof for k > 2 is proved in the same way based on Claim 12.7. ✷

12.4 Summary

In this chapter, we focused on combinational circuits that have a topology of a tree and are built
from instances of identical gates. Such circuits are especially suited for computing associative
Boolean functions (make sure you understand why).

We began this chapter by extending associative dyadic functions to n arguments. We argued
that there are only four nontrivial associative Boolean functions, and we decided to focus on
orn. We then defined an or-tree(n) to be a combinational circuit that implements orn using
a topology of a tree.

Although it is intuitive that or-trees are the cheapest designs for implementing orn, we
had to work a bit to prove it. It is also intuitive that balanced or-trees are the fastest designs
for implementing orn, and again, we had to work a bit to prove that, too.

We will be using the lower bounds that we proved in this chapter also in the next chapters.
To prove these lower bounds, we introduced the cone(f) of a Boolean function f . The cone of
f is the set of inputs on which the function f depends.

If all the gates have a fan-in of at most two and the cost and delay of nontrivial gates is at
least one, then the lower bounds are as follows. The first lower bound states that the number of
gates of a combinational circuit implementing a Boolean function f must be at least ∣cone(f)∣−1.
The second lower bound states that the propagation delay of a circuit implementing a Boolean
function f is at least log2 ∣cone(f)∣.
Problems

12.1 Design a zero-tester, defined as follows.

Input: x[n − 1 ∶ 0].
Output: y

Functionality:
y = 1 iff x[n − 1 ∶ 0] = 0n.

(a) Suggest a design based on an or-tree.
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(b) Suggest a design based on an and-tree.

(c) What do you think about a design based on a tree of nor-gates?

12.2 Prove that each of the following functions f ∶ {0,1}n → {0,1} is associative:

f ∈ {constant 0, constant 1, x1, xn,andn,orn,xorn,nxorn} .
12.3 Let G = (V,E) be a DAG with a single sink r. Prove the following statement:

∀v ∈ V ∃ a single path from v to r⇒ G is a rooted tree .

12.4 Recall the algorithm for constructing (V ′,E′) in the proof of Claim 12.18. Prove that
this algorithm maintains the following invariant:

There is a single path from every v ∈ V ′ to the sink r.

12.5 Prove that there is only one balanced partition of n if and only if n is a power of 2.

12.6 An even partition of n is the partition a = ⌈n/2⌉ and b = ⌊n/2⌋.
(a) Give an example of a balanced partition that is not an even partition.

(b) Prove that every even partition is a balanced partition. Namely, prove that

∀n ≥ 2 ∶ ⌈log2⌈n/2⌉⌉ = ⌈log2 n⌉ − 1. (12.4)

Hint: the proof of Eq. 12.4 is easy if n is even. If n is odd, then ⌈log2⌈n2 ⌉⌉ = ⌈log2(n + 1)⌉−1.
Thus one needs to prove that

∀n = 2k + 1 ∶ ⌈log2(n + 1)⌉ = ⌈log2 n⌉. (12.5)

12.7 Prove the second direction in Claim 12.10, that is: Prove that if (a, b) is a balanced
partition, then (a, b) ∈ P .
12.8 Consider the Boolean function xorn.

1. What is the cost and delay of a xor-tree(n)?
2. What is the length of the shortest SOP Boolean formula ϕ∗ that represents xorn?

3. What is the cost and delay of a combinational circuit obtained from ϕ∗? What is the
maximum fan-in and fan-out of this circuit?

12.9 State and prove a generalization of Theorem 12.19 for the case that the fan-in of every
gate is bounded by a constant k.

12.10

Let U ⊆ V denote a subset of vertices of a directed graph G = (V,E), and let r ∈ V . Let
dist(u, v) denote the length of a shortest path in G from u to v. If there is no such path, then
dist(u, v) =∞. Let k denote the maximum in-degree in G.

Prove that there exists a vertex u ∈ U such that dist(u, r) ≥ logk ∣U ∣.
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Consider the following problem. We need a combinational circuit that controls many devices
numbered 0,1, . . . ,2k − 1. At every moment, the circuit instructs exactly one device to work
while the others must be inactive. The input to the circuit is a k-bit string that represents the
number i of the device to be active. Now, the circuit has 2k outputs, one for each device, and
only the ith output should equal 1; the other outputs must equal zero. How do we design such
a circuit? The circuit described above is known as a decoder. The circuit that implements the
inverse Boolean function is called an encoder.

In this chapter we specify and design decoders and encoders. We also prove that the com-
binational circuit are correct, namely, they satisfy the specification. Moreover, we prove that
these designs are asymptotically optimal.

13.1 Buses

We begin this section by describing what buses are. Consider a circuit that contains an adder
and a register (a memory device). The output of the adder should be stored by the register.
Suppose that the adder outputs 8 bits. This means that there are 8 different wires that emanate
from the output of the adder to the input of the register. There 8 wires are distinct, and
must have distinct name. Instead of naming the wires a, b, c, . . ., we often use names such as
a[0], a[1], . . . , a[7].
Definition 13.1 A bus is a set of wires that are connected to the same modules. The width of
a bus is the number of wires in the bus.

Very often buses are used to connect between multiple components or modules. For example, a
PCI bus is used to connect hardware devices (e.g., network cards, sound cards, USB adapters)
to the main memory. In our settings, we consider wires instead of nets.

In VLSI-CAD tools and hardware description languages (such as VHDL), one often uses
indexes to represent buses. Indexing of buses is often a cause of confusion. For example,
assume that the terminals on one side of a bus are called a[0 ∶ 3] and the terminals on the other
side of the bus are called b[3 ∶ 0]. Does that mean that a[0] is connected to b[0] or does it mean
that a[0] is connected to b[3]? Obviously, naming rules are well defined in hardware description
languages, but these rules are too strict for our purposes (for example, negative indexes are not
allowed, and connections are not implied).

Our convention regarding indexing of terminals and their connection by buses is as follows:

1. Connection of terminals is done by assignment statements. For example, the terminals
a[0 ∶ 3] are connected to the terminals b[0 ∶ 3] by the statement b[0 ∶ 3] ← a[0 ∶ 3]. This
statement is meaningful if a[0 ∶ 3] are output terminals and b[0 ∶ 3] are input terminals.
The statement b[0 ∶ 3]← a[0 ∶ 3] means connect a[i] to b[i].

2. “Reversing” of indexes does not take place unless explicitly stated. Hence, unless stated
otherwise, assignments of buses in which the index ranges are the same or reversed, such as:
b[i ∶ j]← a[i ∶ j] and b[i ∶ j] ← a[j ∶ i], have the same meaning, i.e., b[i] ← a[i], . . . , b[j] ←
a[j].

3. “Shifting” is done by default. For example, will often write a[0 ∶ 3] ← b[4 ∶ 7], meaning
that a[0] ← b[4], a[1] ← b[5], etc. Similarly, assignments in which the index ranges are
shifted, such as: b[i+5 ∶ j +5]← a[i ∶ j], mean b[i+5] ← a[i], . . . , b[j +5]← a[j]. We refer
to such an implied re-assignment of indexes as hardwired shifting.
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Recall that we denote the (digital) signal on a wire N by N(t). This notation is a bit
cumbersome in buses, e.g., a[i](t) means the signal on the wire a[i]. To shorten notation,
we will often refer to a[i](t) simply as a[i]. Note that a[i](t) is a bit (this is true only after
the signal stabilizes). So, according to our shortened notation, we often refer to a[i] as a
bit meaning actually “the stable value of the signal a[i](t)”. This establishes the somewhat
confusing convention of attaching several meanings to a[n− 1 ∶ 0]; it is a bus, a string, a binary
vector, or a binary representation of a number.

We will often use an even shorter abbreviation for signals on buses, namely, vector notation.
We often use the shorthand a⃗ for a binary string a[n−1 ∶ 0] provided, of course, that the indexes
of the string a[n − 1 ∶ 0] are obvious from the context.

Consider a gate G with two input terminals a and b and one output terminal z. The
combinational circuit G(n) is simply n instances of the gate G, as depicted in part (A) of
Figure 13.1. The ith instance of gate G in G(n) is denoted by Gi. The two input terminals of
Gi are denoted by ai and bi. The output terminal of Gi is denoted by zi. We use shorthand
when drawing the schematics of G(n) as depicted in part (B) of Figure 13.1. The short segment
drawn across a wire indicates that the line represents a bus. The bus width is written next to
the short segment.

G0

a0 b0

z0

n n

n

G1

a1 b1

z1

Gn−1

an−1 bn−1

zn−1

(A) (B)

G(n)

z[0 ∶ n − 1]

a[0 ∶ n − 1] b[0 ∶ n − 1]

Figure 13.1: Vector notation: multiple instances of the same gate.

We often wish to feed all the second input terminals of gates in G(n) with the same signal.
Figure 13.2 denotes a circuit G(n) in which the value b is fed to the second input terminal of
all the gates.

Note that the fan-out of the net that carries the signal b in Figure 13.2 is n. In practice,
the capacity of a net increases linearly with the fan-out, hence large fan-out increases the
propagation delay. To keep our delay model simple, we often ignore this important phenomenon
in this course.

13.2 Decoders

In this section we present a combinational module called a decoder. We start by defining
decoders. We then suggest an implementation, prove its correctness, and analyze its cost and
delay. Finally, we prove that the cost and delay of our implementation is asymptotically optimal.
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n
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(A) (B)
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z[0 ∶ n − 1]

a[0 ∶ n − 1]b

1

b

G0

a0
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Figure 13.2: Vector notation: b feeds all the gates.

13.2.1 Division in Binary Representation

Recall that ⟨a[n − 1 ∶ 0]⟩n denotes the binary number represented by an n-bit vector a⃗.

⟨a[n − 1 ∶ 0]⟩n △= n−1

∑
i=0

ai ⋅ 2
i.

In Theorem 5.6, it was shown that ⟨⟩n ∶ {0,1}n → {0,1, . . . ,2n−1} is a bijection. This means
that the inverse function is well defined. The inverse function, called the binary representation
function, attaches a binary representation to natural numbers.

Definition 13.2 Binary representation using n-bits is a function binn ∶ {0,1, . . . ,2n − 1} →{0,1}n that is the inverse function of ⟨⋅⟩. Namely, for every a[n − 1 ∶ 0] ∈ {0,1}n,
binn(⟨a[n − 1 ∶ 0]⟩n) = a[n − 1 ∶ 0].

Note that binn(x) equals the output of Algorithm 5.1 BR(x,n).
We defined division and modulo in Section 5.1. Recall that division of a by b means finding

a quotient q and a remainder r that satisfy:

a = q ⋅ b + r, where 0 ≤ r < b.

One advantage of binary representation is that it is trivial to divide by powers of two as well
as compute the remainders. We summarize this property in the following claim.

Claim 13.1 Let s = ⟨x[n − 1 ∶ 0]⟩n, and 0 ≤ k ≤ n − 1. Let q and r denote the quotient and
remainder obtained by dividing s by 2k. Define the binary strings xR[k − 1 ∶ 0] and xL[n − 1 ∶
n − k − 1] as follows.

xR[k − 1 ∶ 0] △= x[k − 1 ∶ 0]
xL[n − k − 1 ∶ 0] △= x[n − 1 ∶ k].

Then,

q = ⟨xL[n − k − 1 ∶ 0]⟩
r = ⟨xR[k − 1 ∶ 0]⟩.
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13.2.2 Definition of Decoder

Definition 13.3 A decoder with input length n is a combinational circuit specified as follows:

Input: x[n − 1 ∶ 0] ∈ {0,1}n.
Output: y[2n − 1 ∶ 0] ∈ {0,1}2n
Functionality:

y[i] △= ⎧⎪⎪⎨⎪⎪⎩
1 if ⟨x⃗⟩ = i
0 otherwise.

We denote a decoder with input length n by decoder(n).
Note that the number of outputs of a decoder is exponential in the number of inputs. Note

also that exactly one bit of the output y⃗ is set to one. Such a representation of a number is
often termed one-hot encoding or 1-out-of-k encoding.

Example 13.1 Consider a decoder decoder(3). On input x = 101, the output y equals
00100000.

An example of how a decoder is used is in decoding of controller instructions. Suppose that
each instruction is a coded by an 4-bit string. Our goal is to determine what instruction is to be
executed. For this purpose, we feed the 4 bits to a decoder(4). There are 16 outputs, exactly
one of which will equal 1. This output will activate a module that should be activated in this
instruction.

13.2.3 Brute force design

The simplest way to design a decoder is to build a separate circuit for every output bit y[i].
The circuit for y[i] is simply a product of n literals. Let v

△

= binn(i), i.e., v is the binary
representation of the index i. Using the notation from Definition 9.5, define the minterm pv to
be pv

△

= (ℓv1 ⋅ ℓv2⋯ℓvn), where:
ℓvj

△

=

⎧⎪⎪⎨⎪⎪⎩
xj if vj = 1

x̄j if vj = 0.

In the following claim we refer to pv as a Boolean function of the input x[n − 1 ∶ 0].
Claim 13.2 If ⟨v⟩ = i, then y[i] = pv.
Proof: By definition y[i] = 1 iff ⟨x⃗⟩ = i. Now ⟨x⃗⟩ = i iff x⃗ = v. Indeed, pv attains the value 1
iff x⃗ = v, as required. ✷

The brute force decoder circuit consists of: (i) n inverters used to compute inv(x⃗), and (ii)
computing pv by a separate and(n)-tree for every v ∈ {0,1}n. The delay of the brute force
design is tpd(inv)+tpd(and(n)-tree) = O(log2 n). The cost of the brute force design is Θ(n ⋅2n),
since we have an and(n)-tree for each of the 2n outputs.

Intuitively, the brute force design is wasteful because, if the binary representation of i and
j differ in a single bit, then the and-trees of y[i] and y[j] share all but a single input. Hence
the product of n− 1 bits is computed twice. In the next section we present a systematic way to
share hardware between different outputs.
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13.2.4 An optimal decoder design

We design a decoder(n) using recursion on n. The base case, for n = 1, is trivial. We then
proceed with the reduction rule by designing a decoder(n) based on “smaller” decoders.

Base case decoder(1): The circuit decoder(1) is simply one inverter where: y[0] ←
inv(x[0]) and y[1]← x[0].
Reduction rule decoder(n): We assume that we know how to design decoders with input
length less than n, and design a decoder with input length n.

The method we apply for our design is called “divide-and-conquer”. Consider a parameter
k, where 0 < k < n. We partition the input string x[n − 1 ∶ 0] into two strings as follows:

1. The right part (or lower part) is xR[k − 1 ∶ 0] and is defined by xR[k − 1 ∶ 0] = x[k − 1 ∶ 0].
2. The left part (or upper part) is xL[n − k − 1 ∶ 0] and is defined by xL[i] ← x[i + k]. We

write this also by xL[n − k − 1 ∶ 0] = x[n − 1 ∶ k], which means that hardwired shift by k
positions is applied.

We will later show that, to reduce delay, it is best to choose k as close to n/2 as possible.
However, at this point we consider k to be an arbitrary integer such that 0 < k < n.

Figure 13.3 depicts a recursive implementation of a decoder(n). Our recursive design feeds
xL[n − k − 1 ∶ 0] to decoder(n − k). We denote the output of the decoder decoder(n − k) by
Q[2n−k − 1 ∶ 0]. (The letter ’Q’ stands “quotient”.) In a similar manner, our recursive design
feeds xR[k − 1 ∶ 0] to decoder(k). We denote the output of the decoder decoder(k) by
R[2k − 1 ∶ 0]. (The letter ’R’ stands for “remainder”.)

The decoder outputs Q[2n−k−1 ∶ 0] and R[2k−1 ∶ 0] are fed to a 2n−k×2k array of and-gates.
We denote the and-gate in position (q, r) in the array by andq,r. The rules for connecting the
and-gates in the array are as follows. The inputs of the gate andq,r are Q[q] and R[r]. The
output of the gate andq,r is y[q ⋅ 2k + r].

Note that we have defined a routing rule for connecting the outputs Q[2n−k − 1 ∶ 0] and
R[2k − 1 ∶ 0] to the inputs of the and-gates in the array. This routing rule (that involves
division with remainder by 2k) is not computed by the circuit; the routing rule defines the
circuit and must be followed by the person implementing the design.

In Figure 13.3, we do not draw the connections in the array of and-gates. Instead, con-
nections are inferred by the names of the wires (e.g., two wires called R[5] belong to the same
net).

Example: implementing decoder(2). In this example we “unroll” the recursive design,
decoder(n), for n = 2. The implementation of decoder(2) is depicted in Figure 13.4.

13.2.5 Correctness

In this section we prove the correctness of the decoder(n) design.
Claim 13.3 The decoder(n) design is a correct implementation of a decoder.
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k

2k

xR[k − 1 : 0]
△

= x[k − 1 : 0]
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y[q · 2k + r]
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− 1 : 0]
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x[n − 1 : k]
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=

Figure 13.3: A recursive implementation of decoder(n).
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Figure 13.4: An implementation of decoder(2).
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Proof: Our goal is to prove that, for every n and every 0 ≤ i < 2n, the following holds:

y[i] = 1 ⇐⇒ ⟨x[n − 1 ∶ 0]⟩ = i.
The proof is by induction on n. The induction basis, for n = 1, is trivial. We proceed

directly to the induction step. Fix an index i and divide i by 2k to obtain i = q ⋅ 2k + r, where
r ∈ [2k − 1 ∶ 0].

We apply the induction hypothesis to decoder(k) to conclude that R[r] = 1 iff ⟨xR[k − 1 ∶ 0]⟩ =
r. Similarly, the induction hypothesis when applied to decoder(n − k) implies that Q[q] = 1
iff ⟨xL[n − k − 1 ∶ 0]⟩ = q. Since i = q ⋅ 2k + r, this implies that

y[i] = 1⇐⇒ R[r] = 1 and Q[q] = 1

⇐⇒ ⟨xR[k − 1 ∶ 0]⟩ = r and ⟨xL[n − k − 1 ∶ 0]⟩ = q.
⇐⇒ ⟨x[n − 1 ∶ 0]⟩ = i,

where the first line is by the functionality of the and-gate that outputs y[i]. The second line
follows from the induction hypothesis. The third line follows from the property of division by
2k, and the claim follows. ✷

13.2.6 Cost and delay analysis

In this section we analyze the cost and delay of the decoder(n) design. We denote the cost
and delay of decoder(n) by c(n) and d(n), respectively.
Cost analysis. The cost c(n) satisfies the following recurrence equation:

c(n) = ⎧⎪⎪⎨⎪⎪⎩
c(inv) if n=1

c(k) + c(n − k) + 2n ⋅ c(and) otherwise.

It follows that, up to constant factors

c(n) = ⎧⎪⎪⎨⎪⎪⎩
1⋅ if n = 1

c(k) + c(n − k) + 2n if n > 1.
(13.1)

Obviously, c(n) = Ω(2n) (regardless of the value of k), so the best we can hope for is to find
a value of k such that c(n) = O(2n). In fact, it can be shown that c(n) = O(2n), for every choice
of 1 ≤ k < n. The following claim considers the case that k = ⌈n/2⌉.
Claim 13.4 The solution of Eq. 13.1 is c(n) ≤ 2 ⋅ 2n if k = ⌈n/2⌉.
Proof: The proof is by complete induction on n. The induction basis for n ∈ {1,2,3} holds
because c(1) = 1, c(2) = 6 < 8, and c(3) = 15 < 16. The induction hypothesis states that, for
every i < n, c(i) ≤ 2 ⋅ 2i. We now prove the induction step for n ≥ 4. The function c(n) satisfies

c(n) = c(⌈n/2⌉) + c(⌊n/2⌋) + 2n

≤ 21+⌈n/2⌉ + 21+⌊n/2⌋ + 2n

= 2 ⋅ 2n ⋅ (2−⌊n/2⌋ + 2−⌈n/2⌉ + 1/2)
Because n ≥ 4, it follows that 2−⌈n/2⌉ ≤ 2−⌊n/2⌋ ≤ 1

4
, and we conclude that c(n) < 2 ⋅2n, as required.

✷

Note that Lemma 7.2 does not help in proving Claim 13.4 because the function c(n) grows
too fast. Indeed, c(2n)/c(n) = Ω(2n), and is not bounded by a constant.
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Delay analysis. The delay of decoder(n) satisfies the following recurrence equation:

d(n) = ⎧⎪⎪⎨⎪⎪⎩
d(inv) if n=1

max{d(k), d(n − k)} + d(and) otherwise.

Set k = n/2. By Problem 7.11 it follows that d(n) = Θ(logn).
13.2.7 Asymptotic Optimality

Our goal is to prove that the design we presented is optimal. Optimality is not well defined
since we are not committed to specific costs and propagation delays of the basic gates. Instead,
we resort to asymptotic optimality. Of course, we are also very interested in the constants
since they are important from a practical point of view. The analysis presented in the previous
section also proves very reasonable constants (i.e., c(n) ≤ 2 ⋅ 2n ⋅ max{c(and), c(inv)} and
d(n) ≤ log2 n ⋅max{c(and), c(inv)}).

In the following theorem we assume that every gate in G has a constant number of input
terminals (say, at most two).

Theorem 13.5 For every decoder G of input length n:

d(G) = Ω(logn)
c(G) = Ω(2n).

Proof: We begin by proving that d(G) = Ω(logn). The proof is a simple application of the
Logarithmic Delay Lower Bound (Theorem 12.21). Consider the output y[0]. The Boolean
function implemented by y[0] is

y[0] = not(or(x[n − 1], . . . , x[0])).
The cone of this Boolean function is the set {0, . . . , n − 1}, and the first part of the theorem
follows. (In fact, every output bit depends on all the inputs - see Problem 13.3.)

We now prove that c(G) = Ω(2n). The proof is based on the following observations: (i) Com-
puting each output bit requires at least one nontrivial gate. (ii) No two output bits are identical.
Assume, for the sake of contradiction, that the first observation does not hold. Then, there ex-
ists an index i ∈ [0 ∶ 2n − 1] such that y[i] equals one of the input bits, say x[j]. But, y[i] = 1
only for one unique input vector, a contradiction.

Assume, for the sake of contradiction, that the second observation does not hold. Then,
there exist two distinct indexes i, j ∈ [0 ∶ 2n − 1] such that y[i] = y[j], for every input. However,
consider the input vector x⃗ such that ⟨x⃗⟩ = i. Given this input, we have y[i] = 1 and y[j] = 0, a
contradiction.

These two observations imply that the 2n output bits are outcomes of distinct nontrivial
gates, and the theorem follows. ✷

Note that Theorem 12.19 only implies that, for every decoder G of input length n, c(G) =
Ω(n), a very weak result. In Theorem 13.5 we proved a much stronger lower bound.

13.3 Encoders

An encoder implements the inverse Boolean function implemented by a decoder. Note however,
that the Boolean function implemented by a decoder is not surjective. In fact, the range of the
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Boolean function implemented by a decoder is the set of binary vectors in which exactly one
bit equals 1. It follows that an encoder implements a partial Boolean function (i.e., a function
that is not defined for every binary string).

13.3.1 Hamming Distance and Weight

We first define the Hamming weight of binary strings.

Definition 13.4 The Hamming distance between two binary strings u, v ∈ {0,1}n is defined by

dist(u, v) △= {i ∣ ui ≠ vi}.
Definition 13.5 The Hamming weight of a binary string u ∈ {0,1}n equals dist(u,0n). Namely,
the number of non-zero symbols in the string.

We denote the Hamming weight of a binary string a⃗ by wt(a⃗), namely,

wt(a[n − 1 ∶ 0]) △= ∣{i ∶ a[i] ≠ 0}∣.
13.3.2 Concatenation of Strings

Recall that the concatenation of the strings a and b is denoted by a ○ b.

Definition 13.6 The binary string obtained by i concatenations of the string a is denoted by
ai.

Consider the following examples of string concatenation:

• If a = 01 and b = 10, then a ○ b = 0110.

• If a = 1 and i = 5, then ai = 11111.

• If a = 01 and i = 3, then ai = 010101.

• We denote the zeros string of length n by 0n (hopefully, there is no confusion between
exponentiation and concatenation of the binary string 0).

13.3.3 Definition of Encoder

We define the encoder partial function as follows.

Definition 13.7 The function encodern ∶ {y⃗ ∈ {0,1}2n ∶ wt(y⃗) = 1} → {0,1}n is defined as
follows: ⟨encodern(y⃗)⟩ equals the index of the bit of y[2n − 1 ∶ 0] that equals one. Formally,

wt(y) = 1Ô⇒ y[⟨encodern(y⃗)⟩] = 1.

Examples:

1. encoder2(0001) = 00, encoder2(0010) = 01,
encoder2(0100) = 10, encoder2(1000) = 11.

2. encodern(02n−k−1 ○ 1 ○ 0k) = binn(k).
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Definition 13.8 An encoder with input length 2n and output length n is a combinational circuit
that implements the Boolean function encodern.

We denote an encoder with input length 2n and output length n by encoder(n). An encoder(n)
can be also specified as follows:

Input: y[2n − 1 ∶ 0] ∈ {0,1}2n .
Output: x[n − 1 ∶ 0] ∈ {0,1}n.
Functionality: If wt(y⃗) = 1, let i denote the index such that y[i] = 1. In this case x⃗ should

satisfy ⟨x⃗⟩ = i. Formally:
wt(y⃗) = 1 Ô⇒ y[⟨x⃗⟩] = 1.

Note that the functionality is not specified for all inputs y⃗. Functionality is only specified
for inputs whose Hamming weight equals one. Since an encoder is a combinational circuit, it
implements a Boolean function. This means that it outputs a digital value even if wt(y) ≠ 1.
The specification only requires that two encoders agree with respect to inputs whose Hamming
weight equals one.

If y⃗ is output by a decoder, then wt(y⃗) = 1, and hence an encoder implements the inverse
function of a decoder.

13.3.4 Brute Force Implementation

We begin by describing a brute force implementation. Recall that binn(i)[j] denotes the jth
bit in the binary representation of i. Let Aj denote the set of all integers in [0 ∶ 2n − 1] whose
jth bit in binary representation equals one. Formally,

Aj
△

= {i ∈ [0 ∶ 2n − 1] ∣ binn(i)[j] = 1}.
Claim 13.6 If wt(y) = 1, then x[j] = ⋁i∈Aj

y[i] for every j ∈ [0 ∶ n − 1].
Proof: Assume that the output of an encoder with input y equals x. Let ℓ ∈ [0 ∶ 2n−1] denote
the position of the one in y, namely, y[ℓ] = 1. We consider two cases:

1. If ℓ = 0, then y = 02
n
−1
○ 1 and x = 0n. Because 0 /∈ Aj , ⋁i∈Aj

y[i] equals 0, for each j, as
required.

2. If ℓ > 0, then ⟨x⟩ = ℓ. By the definition of binary representation, x[j] = 1 iff binn(ℓ)[j] = 1.
Namely, x[j] = 1 iff ℓ ∈ Aj . But

⋁
i∈Aj

y[i] = ⎧⎪⎪⎨⎪⎪⎩
0 if ℓ /∈ Aj
1 if ℓ ∈ Aj .

Thus, x[j] = ⋁i∈Aj
y[i], as required.

✷

Claim 13.6 gives us a recipe for implementing an encoder(n). For each output xj , use a
separate or-tree whose inputs are {y[i] ∣ i ∈ Aj}. Each such or-tree has at most 2n inputs (in
fact, ∣Aj ∣ = 2n−1, for every j). Therefore, the cost of each or-tree is O(2n). There are n outputs,
so the total cost is O(n ⋅ 2n). The delay of each or-tree is O(log 2n) = O(n).

In the following sections we try to design a better encoder.
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13.3.5 Implementation and Correctness

In this section we present a step by step implementation of an encoder. We start with a rather
costly design, which we denote by encoder′(n). We then show how to modify encoder′(n)
to an asymptotically optimal one.

Implementation

As in the design of a decoder, our design is recursive. The design for n = 1, is simply x[0]← y[1].
Hence, for n = 1, the cost and delay of our design are zero. We proceed with the design for
n > 1.

Again, we use the divide-and-conquer method. We partition the input y⃗ into two strings of
equal length as follows:

yL[2n−1 − 1 ∶ 0] = y[2n − 1 ∶ 2n−1] yR[2n−1 − 1 ∶ 0] = y[2n−1 − 1 ∶ 0].
The idea is to feed these two parts into two encoders encoder′(n−1) (see Figure 13.5). However,
there is a problem with this approach. The problem is that even if y⃗ is a “legal” input (namely,
wt(y⃗) = 1), then one of the strings y⃗L or y⃗R is all zeros, which is not a legal input. An “illegal”
input can produce an arbitrary output, which might make the design wrong.

To fix this problem we augment the definition of the encodern function so that its domain
also includes the all zeros string 02

n

. We define

encodern(02n) △= 0n.

Note that encoder′(1) also meets this new condition, so the induction basis of the correctness
proof holds.

n − 1 n − 1

or(n − 1)

n − 1

x[n − 2 : 0]

2n−1

1

△

= y[2n
− 1 : 2n−1]

△

= y[2n−1
− 1 : 0]

2n−1

a[n − 2 : 0]b[n − 2 : 0]

or-tree(2n−1)

encoder
′(n − 1) encoder

′(n − 1)

x[n − 1]

yL[2n−1
− 1 : 0] yR[2n−1

− 1 : 0]

Figure 13.5: A recursive implementation of encoder′(n).
Let a[n − 2 ∶ 0] (resp., b[n − 2 ∶ 0]) denote the output of the encoder′(n − 1) circuit that is
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fed by y⃗R (resp., y⃗L). The output is defined by

x[i]← or(b[i], a[i]), if 0 ≤ i ≤ n − 2, and

x[n − 1]← or2n−1(y⃗L)
Correctness

Claim 13.7 The circuit encoder′(n) depicted in Figure 13.5 implements the Boolean function
encodern.

Proof: The correctness of the encoder design is proved as follows. We distinguish between
three cases, depending on which half contains the bit that is lit in y⃗, if any.

1. If wt(y⃗L) = 0 and wt(y⃗R) = 1, then the induction hypothesis implies that b⃗ = 0n−1 and
yR[⟨a⃗⟩] = 1. It follows that y[⟨a⃗⟩] = 1, hence the required output is x⃗ = 0 ⋅ a⃗. The actual
output equals the required output, and correctness holds in this case.

2. If wt(y⃗L) = 1 and wt(y⃗R) = 0, then the induction hypothesis implies that yL[⟨b⃗⟩] = 1 and
a⃗ = 0n−1. It follows that y[2n−1 + ⟨b⃗⟩] = 1, hence the required output is x⃗ = 1 ⋅ b⃗. The actual
output equals the required output, and correctness holds in this case.

3. If wt(y⃗) = 0, then the required output is x⃗ = 0n. The induction hypothesis implies that
a⃗ = b⃗ = 0n−1. The actual output is x⃗ = 0n, and correctness follows.

✷

13.3.6 Cost Analysis

The problem with the encoder′(n) design is that it is too costly. The cost of encoder′(n)
satisfies the following recurrence:

c(encoder′(n)) = ⎧⎪⎪⎨⎪⎪⎩
0 if n = 1

2 ⋅ c(encoder′(n − 1)) + c(or-tree(2n−1)) + (n − 1) ⋅ c(or) if n > 1.

Let c(n) △= c(encoder′(n))/c(or). Then, c(n) satisfies the recurrence

c(n) = ⎧⎪⎪⎨⎪⎪⎩
0 if n = 1

2 ⋅ c(n − 1) + (2n−1 − 1 + n − 1) if n > 1.
(13.2)

Claim 13.8 c(n) = Θ(n ⋅ 2n).
Proof: Define a(2k) △= c(k). Then, a(2k) = 2 ⋅ a(2k−1) +Θ(2k). By Lemma 7.4 it follows that
a(2k) = Θ(k ⋅ 2k). Hence c(n) = Θ(n ⋅ 2n), as required. ✷

We conclude with the following corollary.

Corollary 13.9 c(encoder′(n)) = Θ(n ⋅ 2n).
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13.3.7 Reducing the Cost

Corollary 13.9 suggests that the encoder′(n) design is not (asymptotically) cheaper than a
brute force design. Can we do better? The following claim serves as a basis for reducing the
cost of an encoder.

Claim 13.10 If wt(y[2n − 1 ∶ 0]) ≤ 1, then

encodern−1(or(y⃗L, y⃗R)) = or(encodern−1(y⃗L),encodern−1(y⃗R)). (13.3)

Proof: The proof in case y⃗ = 02
n

is trivial. We consider the case that wt(y⃗L) = 0 and wt(y⃗R) = 1
(the proof of other case is analogous). The left-hand side of Eq. 13.3 equals

encodern−1(or(y⃗L, y⃗R)) = encodern−1(or(02n−1 , y⃗R))
= encodern−1(y⃗R).

However, the right-hand side of Eq. 13.3 equals

or(encodern−1(y⃗L),encodern−1(y⃗R)) = or(encodern−1(02n−1),encodern−1(y⃗R))
= or(0n−1,encodern−1(y⃗R))
= encodern−1(y⃗R),

and the claim follows. ✷

Figure 13.6 depicts the design encoder∗(n) obtained from encoder′(n) after commut-
ing the or and the encoder(n − 1) operations. Claim 13.10 implies that encoder′(n) and
encoder∗(n) are functionally equivalent.

Definition 13.9 Two combinational circuits are functionally equivalent if they implement the
same Boolean function.

In other words, functionally equivalent combinational circuits output the same output when
they are input by the same values.

We conclude that we do not need to prove the correctness of the encoder∗(n) circuit from
scratch. Namely, the correctness of encoder′(n) implies the correctness of encoder∗(n). The
following claim is proved by induction on n.

Claim 13.11 The circuits encoder′(n) and encoder∗(n) are functionally equivalent.

13.3.8 Cost and delay analysis

The cost of encoder∗(n) satisfies the following recurrence equation:

c(encoder∗(n)) = ⎧⎪⎪⎨⎪⎪⎩
0 if n=1

c(encoder∗(n − 1)) + (2n − 1) ⋅ c(or) otherwise.

Let us rewrite the recurrence so that the parameter is the number of inputs. Note, that the error
term is linear in the number of inputs. In other words, let C(2k) △= c(encoder∗(k))/c(or).
Then,

C(2k) = ⎧⎪⎪⎨⎪⎪⎩
0 if k=0

C(2k−1) + (2k − 1) otherwise.

By Lemma 7.1, we conclude that C(2k) = Θ(2k).
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2n−1

n − 1

encoder∗(n − 1)

1

or-tree(2n−1)

x[n − 1]

2n−1

or(2n−1)

2n−1

x[n − 2 ∶ 0]

y⃗L y⃗R

Figure 13.6: A recursive implementation of encoder∗(n).

Corollary 13.12 c(encoder∗(n)) = Θ(2n).
The delay of encoder∗(n) satisfies the following recurrence equation:

d(encoder∗(n)) = ⎧⎪⎪⎨⎪⎪⎩
0 if n=1

max{d(or-tree(2n−1)), d(encoder∗(n − 1) + d(or))} otherwise.

Since d(or-tree(2n−1)) = (n − 1) ⋅ d(or), it can be proven by induction that

d(encoder∗(n)) = (n − 1) ⋅ d(or).
13.3.9 Asymptotic Optimality

Our goal is to prove that the encoder design we presented is optimal. In the following theorem
we assume that every gate in G has a constant number of input terminals (say, at most two).

Theorem 13.13 For every encoder Cn of output length n:

d(G) = Ω(n)
c(G) = Ω(2n).

Proof: We cannot apply Theorems 12.19 and Theorem 12.21 because the function correpos-
nding to each output is a partial function. Instead we need to prove a lower bound on the size
of the graphical cone of output x[0] of Cn. We claim that

coneG(x[0]) ≥ 2n

2
− 1. (13.4)
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Indeed, assume, towards a contradiction, that coneG(x[0]) < 2n

2
− 1. This implies the existance

of an odd index i and an even index j such that y[i] and y[j] are not in coneG(x[0]).
Consider the inputs yi (respectively, yj) that contain a single one located in position i

(respectively, j). As yi and yj agree on all the bits in coneG(x[0]), the value of the output x[0]
is the same for the inputs yi and yj. However, for input yi, the output x[0] should equal 1 (as
i is odd). Similarly, for input yj , the output x[0] should equal 0 (as j is even). We conclude
that the circuit Cn is wrong for one of the inputs yi or yj. Hence Eq. 13.4 holds.

By Claim 12.18, there is a “hidden” tree in Cn that is rooted in x[0], the leaves of which are
coneG(x[0]). This implies that the cost of Cn is at least ∣coneG(x[0])∣ − 1 = Ω(2n). Similarly,
the delay of Cn is at least log ∣coneG(x[0])∣ = Ω(n), and the theorem follows. ✷

13.4 Summary

In this chapter, we introduced notation for buses that is used to denote indexed signals (e.g.,
a[n − 1 ∶ 0]). We presented designs for decoders and encoders using design methodology called
divide-and-conquer.

The first combinational circuit we described is a decoder. A decoder can be viewed as a
circuit that translates a number represented in binary representation to a 1-out-of-2n encoding.
We started by presenting a brute force design in which a separate and-tree is used for each
output bit. The brute force design is simple yet wasteful. We then presented a recursive decoder
design with asymptotically optimal cost and delay.

There are many advantages in using recursion. First, we were able to formally define the
circuit. The other option would have been to draw small cases (say, n = 3,4) and then argue
informally that the circuit is built in a similar fashion for larger values of n. Second, having
recursively defined the design, we were able to prove its correctness using induction. Third,
writing the recurrence equations for cost and delay is easy. We proved that our decoder design
is asymptotically optimal both in cost and in delay.

The second combinational circuit we described is an encoder. An encoder is the inverse
circuit of a decoder. We presented a naive design and proved its correctness. We then reduced
the cost of the naive design by commuting the order of two operations without changing the
functionality. We proved that the final encoder design has asymptotically optimal cost and
delay.

Three main techniques were used in this chapter.

• Divide & Conquer. We solve a problem by dividing it into smaller sub-problems. The
solutions of the smaller sub-problems are “glued” together to solve the big problem. Divide
& Conquer is a design methodology that uses recursion.

• Extend specification to make problem easier. We encountered a difficulty in the encoder
design due to an all zeros input. We bypassed this problem by extending the specification
of an encoder so that it must output all zeros when input an all zeros. Adding restrictions
to the specification made the task easier since we were able to add assumptions in our
recursive designs.

• Evolution. We started with a naive and correct design. This design turned out to be
too costly. We improved the naive design while preserving its functionality to obtain a
cheaper design. The correctness of the improved design follows from the correctness of
the naive design and the fact that it is functionally equivalent to the naive design.
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Problems

13.1 Answer the following questions.

1. Implement the decoder(3) combinational circuit using the Logisim software.

• First, implement decoder(1) and decoder(2). Hint: Implement an array of and
gates.

• Verify that the outputs of these decoders are indexed in ascending order, i.e., edit the
subcircuit’s appearance.

• Submit: (i) printouts of decoder(1),decoder(2) and decoder(3), (ii) printouts
of the truth tables of each of these decoders, and (iii) simulate the following input
vector x⃗ = 010, i.e., draw (by hand) the logical values on every wire on your printout
of decoder(3).

2. Implement the encoder*(3) combinational circuit using the Logisim software.

• First, implement encoder*(1), encoder*(2), and or-tree(4).
• Verify that the outputs of these encoders are indexed in ascending order, i.e., edit the
subcircuit’s appearance.

• Submit: (i) printouts of encoder*(1),encoder*(2) and encoder*(3), (ii) print-
outs of the truth tables of each of these encoders, and (iii) simulate the following
input vector y⃗ = 00100000, i.e., draw (by hand) the logical values on every wire on
your printout of encoder*(3).

3. Connect the output of decoder(3) to the input of encoder*(3). Print the truth table
containing the decoder’s input, decoder’s output and the encoder’s output.

13.2 Let c(n) and d(n) denote the cost of the decoder with n inputs presented in Section 13.2.4.

1. Prove that c(n) = O(2n) even if k = 1 in all the reduction rules.

2. Analyze d(n) if k = 1 in all the reduction rules.

3. (*)Prove that c(n) = O(2n), for every choice of 1 ≤ k < n.

13.3 Prove that every output bit of a decoder depends on all the inputs.

13.4 Prove that d(encoder′(n)) = Θ(n).
13.5 Provide a direct correctness proof for the encoder∗(n) design (i.e., do not rely on the
correctness of encoder′(n)). Does the correctness of encoder∗(n) require that encoder∗(n−
1) output an all-zeros string when the input is an all-zeros string?

13.6 The following question is based on the following definitions:

Definition 13.10 A binary string x′[n − 1 ∶ 0] dominates the binary string x′′[n − 1 ∶ 0] if
∀i ∈ [n − 1 ∶ 0] ∶ x′′[i] = 1⇒ x′[i] = 1.
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Definition 13.11 A Boolean function f is monotone if x′ dominates x′′ implies that f(x′)
dominates f(x′′).

1. Prove that if a combinational circuit C contains only gates that implement monotone
Boolean functions (e.g., only and-gates and or-gates, no inverters), then C implements
a monotone Boolean function.

2. The designs encoder′(n) and encoder∗(n) lack inverters, and hence are monotone
circuits. Is the Boolean function encodern a monotone Boolean function?

3. Suppose that G is an encoder and is a monotone combinational circuit. Suppose that
the input y of G has two ones (namely, wt(y) = 2). Can you immediately deduce which
outputs of G must equal one?



Chapter 14

Selectors and Shifters

Contents

14.1 Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

14.1.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

14.2 Cyclic Shifters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

14.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

14.2.2 Correctness and analysis of cost and delay . . . . . . . . . . . . . . . . . 217

14.3 Logical Shifters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

14.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

14.3.2 Reduction of right shift to left shift . . . . . . . . . . . . . . . . . . . . . 222

14.4 Arithmetic Shifters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

14.4.1 Two’s complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

14.4.2 Arithmetic shifter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

14.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

211



212 CHAPTER 14. SELECTORS AND SHIFTERS

In this chapter we present combinational circuits that manipulate the input bits. By ma-
nipulation we mean that the bits in the output appear in the input. Why do we need such
circuits?

We deal with two settings in which such manipulations take place: selection and shifting.

• In selection, we are given an n-bit string D[n−1 ∶ 0] and an encoding of an index 0 ≤ i < n
in binary representation. The output is simply D[i]. Namely, we want the output to equal
the ith bit of the input. The circuit that performs selection is often called a multiplexer.

• In shifting, we wish to ”move” the input bits around. Most programming languages
include shift instructions, so we must design combinational circuits that can execute these
instructions.

14.1 Multiplexers

In this section we present designs of (n ∶ 1)-multiplexers. Multiplexers are often also called
selectors.

We first define a mux-gate (also known as a (2 ∶ 1)-multiplexer).

Definition 14.1 A mux-gate is a combinational gate that has three inputs D[0],D[1], S and
one output Y . The functionality is defined by

Y =

⎧⎪⎪⎨⎪⎪⎩
D[0] if S = 0

D[1] if S = 1.

Note that we could have used the shorter expression Y = D[S] to define the functionality of a
mux-gate.

An (n ∶ 1)-mux is a combinational circuit defined as follows:

Input: D[n − 1 ∶ 0] and S[k − 1 ∶ 0] where k = ⌈log2 n⌉.
Output: Y ∈ {0,1}.
Functionality:

Y =D[⟨S⃗⟩].
We often refer to D⃗ as the data input and to S⃗ as the select input. The select input S⃗ encodes
the index of the bit of the data input D⃗ that should be output. To simplify the discussion, we
will assume in this chapter that n is a power of 2, namely, n = 2k.

Example 14.1 Let n = 4 and D[3 ∶ 0] = 0101. If S[1 ∶ 0] = 00, then Y = D[0] = 1. If
S[1 ∶ 0] = 01, then Y =D[1] = 0.

14.1.1 Implementation

We describe two implementations of (n ∶ 1)-mux. The first implementation is based on translat-
ing the number ⟨S⃗⟩ to 1-out-of-n representation (using a decoder). The second implementation
is basically a tree.
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k

2k2k

1

or-tree(2k)

2k

decoder(k)

S[k − 1 ∶ 0]D[n − 1 ∶ 0]

Y

and(2k)

W [2k − 1 ∶ 0]

Z[2k − 1 ∶ 0]

Figure 14.1: An (n ∶ 1)-mux based on a decoder (n = 2k).

A decoder based implementation. Figure 14.1 depicts an implementation of a (n ∶ 1)-mux
based on a decoder. The input S[k − 1 ∶ 0] is fed to a decoder(k). The decoder outputs a
1-out-of-n representation of ⟨S⃗⟩. Bitwise-and is applied to the output of the decoder and the
input D[n − 1 ∶ 0]. The output of the bitwise-and is then fed to an or-tree to produce Y .

Claim 14.1 The (n ∶ 1)-mux design depicted in Fig. 14.1 is correct.

Proof: Let s = ⟨S[k − 1 ∶ 0]⟩. The output W⃗ of the decoder satisfies:

W [i] = ⎧⎪⎪⎨⎪⎪⎩
1 if i = s

0 otherwise.

The output Z⃗ of the bitwise-and satisfies:

Z[i] = ⎧⎪⎪⎨⎪⎪⎩
D[i] if i = s

0 otherwise.

It follows that Y =D[s], as required. ✷

Claim 14.2 The cost of the (n ∶ 1)-mux design depicted in Fig. 14.1 is Θ(n).
Proof: The cost consists of three parts: (i) c(decoder(k)) = Θ(2k), (ii) c(and(2k)) = Θ(2k),
and (iii) c(or-tree(2k)) = Θ(2k). It follows, that c((n ∶ 1)-mux) = Θ(n), as required. ✷

Claim 14.3 The delay of the (n ∶ 1)-mux design depicted in Fig. 14.1 is Θ(logn).



214 CHAPTER 14. SELECTORS AND SHIFTERS

Proof: The delay consists of three parts: (i) d(decoder(k)) = Θ(log k), (ii) d(and(2k)) =
Θ(1), and (iii) d(or-tree(2k)) = Θ(k). It follows, that d((n ∶ 1)-mux) = Θ(k), as required. ✷

Claim 14.4 The cone of the Boolean function implemented by a (n ∶ 1)-mux circuit contains
at least n elements.

Proof: Fix an index i ∈ {0, . . . , n − 1}. Let S[k − 1 ∶ 0] satisfy ⟨S⃗⟩ = i. Let D[n − 1 ∶ 0] = 0n.
Since Y = D[⟨S⃗⟩], if we flip D[i] from 0 to 1, then the output Y flips from 0 to 1. Thus, the
cone contains all n indexes that correspond to the input D. ✷

Corollary 14.5 The cost of the (n ∶ 1)-mux design depicted in Fig. 14.1 is asymptotically op-
timal.

Proof: Follows from Theorem 12.19 and Claim 14.4. ✷

Corollary 14.6 The delay of the (n ∶ 1)-mux design depicted in Fig. 14.1 is asymptotically
optimal.

Proof: Follows from Theorem 12.21 and Claim 14.4. ✷

A tree-like implementation. A second implementation of (n ∶ 1)-mux is a recursive tree-
like implementation. The design for n = 2 is simply a mux-gate. The design for n = 2k is
depicted in Figure 14.2. The input D⃗ is divided into two parts of equal length. Each part is fed
to an (n

2
∶ 1)-mux controlled by the signal S[k − 2 ∶ 0]. The outputs of the (n

2
∶ 1)-muxs are YL

and YR. Finally a mux selects between YL and YR according to the value of S[k − 1].

S[k − 1]

(n
2
∶ 1)-mux

n/2

1

S[k − 2 ∶ 0]

D[n
2
− 1 ∶ 0]

(n
2
∶ 1)-mux

n/2

1

S[k − 2 ∶ 0]

D[n − 1 ∶ n
2
]

1

mux

Y

YL YR

1 0

Figure 14.2: A recursive implementation of (n ∶ 1)-mux (n = 2k).

Claim 14.7 The (n ∶ 1)-mux design depicted in Fig. 14.2 is correct.
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Proof: The proof is by induction on k. The induction basis for k = 1 follows from the
correctness of a mux-gate. The induction step is proved as follows.

Let s = ⟨S[k − 1 ∶ 0]⟩ and s′ = ⟨S[k − 2 ∶ 0]⟩. By the induction hypothesis YR = D[s′] and
YL =D[n2 + s′]. The mux-gate selects

Y =

⎧⎪⎪⎨⎪⎪⎩
YR if S[k − 1] = 0

YL if S[k − 1] = 1.

It follows that Y =D[s], as required. ✷

Claim 14.8 The cost of the (n ∶ 1)-mux design depicted in Fig. 14.2 is Θ(n).
Proof: Since we are not interested in the constants, let c(mux) = 1. The cost satisfies the
recurrence:

c(n) = ⎧⎪⎪⎨⎪⎪⎩
1 if n = 2

2 ⋅ c(n/2) + 1 otherwise.

We claim that c(n) = n− 1. The proof is by induction on n. The induction basis for n = 2 holds
because c(2) = 1. The induction step is proved as follows: c(n) = 2c(n/2)+1 = 2(n/2−1)+1 = n−1,
and the claim follows. ✷

The proof of Claim 14.8 shows, in fact, that c((n ∶ 1)-mux) = (n − 1) ⋅ c(mux), if implemented
according to Fig. 14.2.

Claim 14.9 The delay of the (n ∶ 1)-mux design depicted in Fig. 14.2 is Θ(logn).
Proof: Since we are not interested in the constants, let d(mux) = 1. The delay satisfies the
recurrence:

d(n) = ⎧⎪⎪⎨⎪⎪⎩
1 if n = 2

d(n/2) + 1 otherwise.

We claim that d(n) = log2(n). The proof is by induction on n. Indeed, d(2) = 1, and d(n) =
d(n/2) + 1 = log2(n/2) + 1 = log2(n), as required. ✷

Comparison. Both implementations suggested in this section are asymptotically optimal with
respect to cost and delay. Which design is better? A cost and delay analysis based on the cost
and delay of gates listed in Table 11.1 suggests that the tree-like implementation is cheaper and
faster. Nevertheless, our model is not refined enough to answer this question sharply. On one
hand, the tree-like design is simply a tree of multiplexers. The decoder based design contains,
in addition to an or(n)-tree with n inputs, also a line of and-gates and a decoder. So one may
conclude that the decoder based design is worse. On the other hand, or-gates are typically
cheaper and faster than mux-gates. Moreover, fast and cheap implementations of mux-gates in
CMOS technology do not restore the signals well; this means that long paths consisting only
of mux-gates are not allowed. We conclude that the model we use cannot be used to deduce
conclusively which multiplexer design is better.
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14.2 Cyclic Shifters

We explain what a cyclic shift is by the following example. Consider a binary string a[1 ∶ 12]
and assume that we place the bits of a on a wheel. The position of a[1] is at one o’clock, the
position of a[2] is at two o’clock, etc. We now rotate the wheel, and read the bits in clockwise
order starting from one o’clock and ending at twelve o’clock. The resulting string is a cyclic
shift of a[1 ∶ 12]. Figure 14.3 depicts an example of a cyclic shift.
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Figure 14.3: An example of a cyclic shift. The clock “reads” the numbers stored in each clock
notch in clockwise order starting from the one o’clock notch.

Notation. In this section we denote (a mod b) by mod(a, b).
Definition 14.2 The string b[n−1 ∶ 0] is a cyclic left shift by i positions of the string a[n−1 ∶ 0]
if

∀j ∶ b[j] = a[mod(j − i, n)].
Example 14.2 Let a[3 ∶ 0] = 0010. A cyclic left shift by one position of a⃗ is the string 0100.
A cyclic left shift by 3 positions of a⃗ is the string 0001.

Definition 14.3 A barrel-shifter(n) is a combinational circuit defined as follows:

Input: x[n − 1 ∶ 0] ∈ {0,1}n and sa[k − 1 ∶ 0] ∈ {0,1}k where k = ⌈log2 n⌉.
Output: y[n − 1 ∶ 0] ∈ {0,1}n.
Functionality: y⃗ is a cyclic left shift of x⃗ by ⟨s⃗a⟩ positions. Formally,

∀j ∈ [n − 1 ∶ 0] ∶ y[j] = x[mod(j − ⟨s⃗a⟩, n)].
We often refer to the input x⃗ as the data input and to the input s⃗a as the shift amount

input. To simplify the discussion, we will assume in this section that n is a power of 2, namely,
n = 2k.
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14.2.1 Implementation

We break the task of designing a barrel shifter into smaller sub-tasks of shifting by powers of
two. We define this sub-task formally as follows.

A cls(n,2i) is a combinational circuit that implements a cyclic left shift by zero or 2i positions
depending on the value of its select input.

Definition 14.4 A cls(n, i) is a combinational circuit defined as follows:

Input: x[n − 1 ∶ 0] and s ∈ {0,1}.
Output: y[n − 1 ∶ 0].
Functionality:

∀j ∈ [n − 1 ∶ 0] ∶ y[j] = x[mod(j − s ⋅ i, n)].
A cls(n, i) is quite simple to implement since y[j] is either x[j] or x[mod(j − i, n)]. So all

one needs is a mux-gate to select between x[j] or x[mod(j−i, n)]. The selection is based on the
value of s. It follows that the delay of cls(n, i) is the delay of a mux, and the cost is n times
the cost of a mux. Figure 14.4 depicts an implementation of a cls(4,2). It is self-evident that
the main complication with the design of cls(n, i) is routing (i.e., drawing the wires). However,
we do not deal with the area required for routing in this book.

1

s
1 0

mux

y[2]

1

s
1 0

mux

y[1]

s

1

y[3]

1

s
1 0

mux

y[0]

1 0

mux

x[0]x[1]x[2]x[3]

Figure 14.4: A row of multiplexers implement a cls(4,2).
The design of a barrel-shifter(n) is based on cls(n,2i) shifters. Figure 14.5 depicts an

implementation of a barrel-shifter(n). The implementation is based on k levels of cls(n,2i),
for i ∈ [k − 1 ∶ 0], where the ith level is controlled by sa[i].
14.2.2 Correctness and analysis of cost and delay

We now prove the correctness of the design for a barrel shifter depicted in Fig. 14.5. The proof
uses the following observation.

Observation 14.1 If α =mod(a,n) and β =mod(b,n), then
mod(a − b,n) =mod(α − β,n) .
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x[n − 1 : 0]

y[n − 1 : 0]

cls(n, 21)sa[1]

cls(n, 20)sa[0]

sa[k − 1] cls(n, 2k−1)

Figure 14.5: A barrel-shifter(n) built of k levels of cls(n,2i) (n = 2k).



14.2. CYCLIC SHIFTERS 219

Proof: Divide a by n to obtain the quotient qa and the remainder α:

a = qa ⋅ n +α.

Similarly,
b = qb ⋅ n + β.

Divide α − β by n to obtain the quotient q and the remainder r, namely,

α − β = q ⋅ n + r.

Then,

a − b = qan +α − (qbn + β)
= (qa − qb) ⋅ n + (α − β)
= (qa − qb) ⋅ n + (qn + r)
= (qa − qb + q) ⋅ n + r.

Hence, mod(a − b,n) = r, as required. ✷

Claim 14.10 The barrel shifter design depicted in Fig. 14.5 is correct.

Proof: Let clsn,2i denote the Boolean function that is implemented by a cls(n,2i) circuit.
Define the strings yi[n − 1 ∶ 0], for 0 ≤ i ≤ k − 1, recursively as follows:

y0[n − 1 ∶ 0]← clsn,20(x[n − 1 ∶ 0], sa[0])
yi+1[n − 1 ∶ 0]← clsn,2i+1(yi[n − 1 ∶ 0], sa[i + 1])

Note that the vector yi[n − 1 ∶ 0] equals the output of the shifter cls(n,2i). We claim that the
string yi[n − 1 ∶ 0] is a cyclic left shift of the string x[n − 1 ∶ 0] by ⟨sa[i ∶ 0]⟩ positions.

The proof is by induction on i. The induction basis, for i = 0, holds because of the definition
of cls(2,20).

The induction step is proved as follows.

yi[j] = clsn,2i(yi−1[n − 1 ∶ 0], sa[i])[j] (by definition of yi)

= yi−1[mod(j − 2i ⋅ sa[i], n)] (by definition of clsn,2i).

The induction hypothesis states that, for every j,

yi−1[j] = x[mod(j − ⟨sa[i − 1 ∶ 0]⟩, n)].
Let ℓ =mod(j − 2i ⋅ sa[i], n). By Observation 14.1,

mod(ℓ − ⟨sa[i − 1 ∶ 0]⟩, n) =mod(j − 2i ⋅ sa[i] − ⟨sa[i − 1 ∶ 0]⟩, n)
=mod(j − ⟨sa[i ∶ 0]⟩, n).

Therefore
yi[j] = x[mod(j − ⟨sa[i ∶ 0]⟩, n)],

and the claim follows. ✷

Claim 14.11 The cost and delay of barrel-shifter(n) satisfy:
c(barrel-shifter(n)) = n log2 n ⋅ c(mux)
d(barrel-shifter(n)) = log2 n ⋅ d(mux).
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Proof: Follows from the fact that the design consists of log2 n levels of cls(n,2i) shifters. ✷
Consider the output y[0] of barrel-shifter(n) .
Claim 14.12 The cone of the Boolean function implemented by the output y[0] contains at
least n elements.

Proof: Fix an index i. Let sa[k − 1 ∶ 0] satisfy ⟨sa[k − 1 ∶ 0]⟩ = i. Consider the input x[n − 1 ∶
0] = 0n. If we flip x[n − i] from 0 to 1, then the output y[0] flips from 0 to 1. Hence, the
index corresponding to the input x[n− i] belongs to the cone. Since this is true for every index
i ∈ {0, . . . , n − 1}, we conclude that the cone contains at least n elements. ✷

Corollary 14.13 The delay of barrel-shifter(n) is asymptotically optimal.

Proof: The claim follows from Theorem 12.21 and Claim 14.12. ✷

14.3 Logical Shifters

Logical shifting is used for shifting binary strings that represent unsigned integers in binary
representation. Shifting to the left by s positions corresponds to multiplying by 2s followed
by modulo 2n. Shifting to the right by s positions corresponds to division by 2s followed by
truncation.

Definition 14.5 The binary string y[n−1 ∶ 0] is a logical left shift by ℓ positions of the binary
string x[n − 1 ∶ 0] if

y[i] △= ⎧⎪⎪⎨⎪⎪⎩
0 if i < ℓ

x[i − ℓ] if ℓ ≤ i < n.

For example, y[3 ∶ 0] = 0100 is a logical left shift of x[3 ∶ 0] = 1001 by ℓ = 2 positions. When we
apply a logical left shift to x[n − 1 ∶ 0] by ℓ positions, we obtain the string x[n − 1 − ℓ ∶ 0] ○ 0ℓ.
Definition 14.6 The binary string y[n−1 ∶ 0] is a logical right shift by ℓ positions of the binary
string x[n − 1 ∶ 0] if

y[i] △= ⎧⎪⎪⎨⎪⎪⎩
0 if i ≥ n − ℓ

x[i + ℓ] if 0 ≤ i < n − ℓ.

For example, y[3 ∶ 0] = 0010 is a logical right shift of x[3 ∶ 0] = 1001 by ℓ = 2 positions. When
we apply a logical right shift to x[n − 1 ∶ 0] by ℓ positions, we obtain the string 0ℓ ○ x[n − 1 ∶ ℓ].
Notation. Let lls(x⃗, i) denote the logical left shift of x⃗ by i positions. Let lrs(x⃗, i) denote
the logical right shift of x⃗ by i positions.

A bi-directional logical shifter is defined as follows.

Definition 14.7 An l-shift(n) is a combinational circuit defined as follows:

Input:

• x[n − 1 ∶ 0] ∈ {0,1}n,
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• sa[k − 1 ∶ 0] ∈ {0,1}k, where k = ⌈log2 n⌉, and
• ℓ ∈ {0,1}.

Output: y[n − 1 ∶ 0] ∈ {0,1}n.
Functionality: The output y⃗ satisfies

y⃗
△

=

⎧⎪⎪⎨⎪⎪⎩
lls(x⃗, ⟨s⃗a⟩) if ℓ = 1,

lrs(x⃗, ⟨s⃗a⟩) if ℓ = 0.

For example, let x[3 ∶ 0] = 0010. If sa[1 ∶ 0] = 10 and ℓ = 1, then l-shift(4) outputs y[3 ∶ 0] =
1000. If ℓ = 0, then the output equals y[3 ∶ 0] = 0000.

14.3.1 Implementation

We present two implementations. In the first implementation, we repeat the method of cascading
shifters as in the implementation of the barrel shifter. The difference is that bi-directioanl
shifters are employed in each of the stages. In the second implementation, we reduce right
shifts to left shifts by reversing the input and output strings.

Cascading bi-drectional shifters

As in the case of cyclic shifters, we break the task of designing a logical shifter into sub-tasks
of logical shifts by powers of two.

Definition 14.8 An lbs(n, i) is a combinational circuit defined as follows:

Input: x[n − 1 ∶ 0] and s, ℓ ∈ {0,1}.
Output: y[n − 1 ∶ 0].
Functionality: The output y⃗ satisfies

y⃗
△

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x⃗ if s = 0,

lls(x⃗, i) if s = 1 and ℓ = 1,

lrs(x⃗, i) if s = 1 and ℓ = 0.

The role of the input s in is to determine if a shift (in either direction) takes place at all. If
s = 0, then y[j] = x[j], and no shift takes place. If s = 1, then the direction of the shift is
determined by ℓ.

A bit-slice of an implementation of an lbs(n, i) is depicted in Figure 14.6. By the term
“bit-slice” we mean that the figure depicts only how a single output bit y[j] is computed. The
whole circuit is obtained by combining such circuits for every output bit y[j]. We do not
depict the whole circuit to avoid a messy figure with lots of wires that are hard to follow. The
implementation of lbs(n, i) uses the following notation:

x′[i] △= ⎧⎪⎪⎨⎪⎪⎩
x[i] if 0 ≤ i ≤ n − 1

0 otherwise.

We leave it to the reader to complete the following details:
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s
1 0

mux

ℓ

y[j]

1 0

mux

x′[j − 2i] x′[j + 2i] x[j]

Figure 14.6: A bit-slice of an implementation of lbs(n,2i).
1. Show how lbs(n, i) circuits can be cascaded to obtain a l-shift(n). Hint: follow the

design of a barrel-shifter(n).
2. Prove the correctness of your l-shift(n) design.
3. Analyze the cost and delay of the resulting circuit.

4. Can you prove asymptotic optimality of the delay?

14.3.2 Reduction of right shift to left shift

Definition 14.9 Let rev ∶ {0,1}∗ → {0,1}∗ denote the function that reverses strings. Formally:

rev (An−1, . . . ,A1,A0) = (A0,A1, . . . ,An).
We denote a combinational circuit that implements rev for binary strings of length n simply by
rev (n). It is important to note that reversing a string can be implemented with zero cost and
zero delay. All one needs to do is connect input A[i] to the output B[n − i].

The reduction from logical right shift to logical left shift is based on the following claim (see
Fig. 14.7).

Claim 14.14 lrs(x⃗, i) = rev (lls(rev (x⃗), i)).
Proof: We provide a pictorial proof. Imagine two people, Alice and Bob, facing each other.
This means, among other things, that the right side of Bob is the left side of Alice, and vice
versa. Assume that Alice has a left shifter, and that Bob wishes to shift his string to the right.
Assume that the LSB of Bob’s string is on the right hand side, but from Alice’s point of view
the LSB is on the left hand side. Alice, shifts the string to the left, and hands the shifted string
back to Bob. From Bob’s point of view, a left shift by Alice is a right shift, and he is happy
with the outcome.

The point of this story is that Bob’s view of Alice’s actions is: Alice reversed the string,
shifted it to the left, and then reversed it again before she handed the shifted string back to
Bob. Thus, the following sequence of operations is equivalent to shifting to the right: reverse,
shift left, and reverse. ✷

The claim enables one to design a bidirectional shifter l-shift(n) by conditionally “wrapping”
a logical-left shifter with conditional reversals of the strings. A bi-directional logical shifter
l-shift(n) based on a logical left shifter LLS(n) is depicted in Figure 14.8.
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A[n − 1 ∶ 0]

reverse

lls(n, i)

reverse

D[n − 1 ∶ 0]

B[n − 1 ∶ 0] = rev (A[n − 1 ∶ 0])

C[n − 1 ∶ 0] = lls(B[n − 1 ∶ 0], i)

rev (C[n-1:0])

Figure 14.7: Reduction of right shift to left shift via reversing

14.4 Arithmetic Shifters

14.4.1 Two’s complement

We briefly deal with the representation of negative integers. This issue is dealt with in detail
in Chapter 16.

Definition 14.10 The number represented in two’s complement representation by A[n−1 ∶ 0] ∈{0,1}n is
−2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩.

We denote the number represented in two’s complement representation by A[n−1 ∶ 0] as follows:
[A[n − 1 ∶ 0]] △= −2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩.

14.4.2 Arithmetic shifter

Arithmetic shifters are used for shifting binary strings that represent signed integers in two’s
complement representation. Since left shifting is the same in logical shifting and in arithmetic
shifting, we discuss only right shifting (i.e., division by a power of 2).

Definition 14.11 The binary string y[n − 1 ∶ 0] is an arithmetic right shift by ℓ positions of
the binary string x[n − 1 ∶ 0] if the following holds:

y[i] △= ⎧⎪⎪⎨⎪⎪⎩
x[n − 1] if i ≥ n − ℓ

x[i + ℓ] if 0 ≤ i < n − ℓ.

For example, y[3 ∶ 0] = 0010 is an arithmetic shift of x[3 ∶ 0] = 0101 by ℓ = −1 positions. On
the other hand, y[3 ∶ 0] = 1110 is an arithmetic shift of x[3 ∶ 0] = 1001 by ℓ = −2 positions.
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x[n − 1 ∶ 0]

rev (n)

mux(n)1 0

lls(n)

rev (n)

mux(n)1 0

y[n − 1 ∶ 0]

sa[k − 1 ∶ 0]

ℓ

ℓ

n

n

1

1

k

n

n

Figure 14.8: An implementation of a bidirectional logical shift l-shift(n) based on a logical
left shifter LLS(n). The implementation is based on a reduction in which a right shift is
implemented by reversing the string before and after the left shift takes place.
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When we apply an arithmetic shift by ℓ < 0 positions to x[n − 1 ∶ 0], we obtain the string
x[n − 1]ℓ ○ x[n − 1 ∶ ℓ].
Notation. Let ars(x⃗, i) denote the arithmetic right shift of x⃗ by i positions.

The following claim shows that an arithmetic right shift by ℓ positions implements division
by 2ℓ with respect to two’s complement representation.

Claim 14.15 Let X[n− 1 ∶ 0] and Y [n− 1 ∶ 0] satisfy Y⃗ = ars(X⃗, ℓ). Let x = [X⃗] and y = [Y⃗ ],
then

y = ⌊ x
2ℓ
⌋ .

Proof: By definition,

y = −2n−1 ⋅ Y [n − 1] + n−2

∑
j=0

Y [j] ⋅ 2j
= −2n−1 ⋅ Y [n − 1] + n−2

∑
j=n−ℓ

Y [j] ⋅ 2j + n−ℓ−1

∑
j=0

Y [j] ⋅ 2j . (14.1)

We simplify the first two addends in Eq. 14.1 by noticing that Y [j] =X[n − 1] for j ≥ n − ℓ.
−2n−1 ⋅ Y [n − 1] + n−2

∑
j=n−ℓ

Y [j] ⋅ 2j =X[n − 1] ⋅ (−2n−1 + n−2

∑
j=n−ℓ

2j)
=X[n − 1] ⋅ (−2n−ℓ).

The last addend in Eq. 14.1 is simplified by noticing that Y [j] =X[j + ℓ] for j < n − ℓ.
n−ℓ−1

∑
j=0

Y [j] ⋅ 2j = n−ℓ−1

∑
j=0

X[j + ℓ] ⋅ 2j
=

1

2ℓ
⋅

n−1

∑
j=ℓ

X[j] ⋅ 2j
We combine these two simplification to obtain,

y =
1

2ℓ
⋅
⎛⎝−X[n − 1] ⋅ 2n + n−1

∑
j=ℓ

X[j] ⋅ 2j⎞⎠
Hence, y = ⌊x ⋅ 2−ℓ⌋, as required. ✷

An arithmetic right shifter is defined as follows.

Definition 14.12 An arith-shift(n) is a combinational circuit defined as follows:

Input: x[n − 1 ∶ 0] ∈ {0,1}n and sa[k − 1 ∶ 0] ∈ {0,1}k , where k = ⌈log2 n⌉.
Output: y[n − 1 ∶ 0] ∈ {0,1}n.
Functionality: The output y⃗ is a (sign-extended) arithmetic right shift of x⃗ by ⟨s⃗a⟩ positions.

Formally,

y[n − 1 ∶ 0] △= ars(x[n − 1 ∶ 0], ⟨s⃗a⟩).
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Example 14.3 Let x[3 ∶ 0] = 1001. If sa[1 ∶ 0] = 10, then arith-shift(4) outputs y[3 ∶ 0] =
1110.

We leave it to the reader to complete the following details:

1. Suggest a circuit ars(n, i) that implements an arithmetic right shift by i positions.

2. Show how ars(n, i) circuits can be cascaded to obtain a arith-shift(n). Hint: follow
the design of a barrel-shifter(n).

3. Prove the correctness of your arith-shift(n) design.
4. Analyze the cost and delay of the resulting circuit.

5. Can you prove asymptotic optimality of the delay?

14.5 Summary

We began this chapter by defining (n ∶ 1)-multiplexers. We presented two optimal implementa-
tions. One implementations is based on a decoder, the other implementation is based on a tree
of multiplexers.

We continued by defining three types of shifts: cyclic, logical, and arithmetic shifts. The
method we propose for designing such shifters is to cascade a logarithmic number of shifters
(with parameter i) that either perform a shift by 2i positions or no shift at all.

Problems

14.1 Compute the cost and delay of both implementations of (n ∶ 1)-mux based on the data in
Table 11.1 for various values of n (e.g., n = 4,8,16,32).

14.2 Is the functionality of barrel-shifter(n) preserved if the order of the levels is changed?

14.3 Recall the definition of the combinational circuit lbs(n, i) (see Definition 14.8). Re-
call the definition of the combinational circuit l-shift(n) (see Definition 14.7). Complete the

following details:

1. Show how lbs(n, i) circuits can be cascaded to obtain a l-shift(n). Hint: follow the
design of a barrel-shifter(n).

2. Prove the correctness of your l-shift(n) design.
3. Analyze the cost and delay of the resulting circuit.

4. Can you prove asymptotic optimality of the delay?

14.4 Recall that ars(x⃗, i) denotes the arithmetic shift of x⃗ by i positions (see Definition 14.11).
Recall the definition of the combinational circuit arith-shift(n) (see Definition 14.12). Com-

plete the following details:

1. Suggest a circuit ars(n, i) that implements an arithmetic right shift by i positions.
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2. Show how ars(n, i) circuits can be cascaded to obtain a arith-shift(n). Hint: follow
the design of a barrel-shifter(n).

3. Prove the correctness of your arith-shift(n) design.
4. Analyze the cost and delay of the resulting circuit.

5. Can you prove asymptotic optimality of the delay?

14.5 Prove that every Boolean function can be implemented by a combinational circuit con-
taining only (2 ∶ 1)-mux gates.

14.6 Design a bi-directional cyclic shifter. Such a shifter is like a cyclic left shifter but has
an additional input ℓ ∈ {0,1} that indicates the direction of the required shift. Hint: Consider
reducing a cyclic right shift to a cyclic left shifter. To simplify the reduction you may assume
that n = 2k −1 (hint: use one’s complement negation). Suggest a simple reduction in case n = 2k

(hint: avoid explicit subtraction!).

14.7 A priority encoder with input length 2n is defined as follows.

Input: y[2n − 1 ∶ 0] ∈ {0,1}2n .
Output: x[n − 1 ∶ 0] ∈ {0,1}n.
Functionality: If y ≠ 02

n

, let i denote the smallest index i such that y[i] = 1. In this case x⃗
should satisfy ⟨x⃗⟩ = i. Formally:

wt(y⃗) > 0 Ô⇒ y[⟨x⃗⟩ ∶ 0] = 1 ○ 0⟨x⃗⟩−1.

1. Design a priority encoder with input length 2n. (Hint: add an output indicating if y = 02
n

and apply divide-and-conquer.)

2. Prove the correctness of your design.

3. Prove asymptotic lower bounds on the cost and delay of a priority encoder with input
length 2n.
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In this chapter we define binary adders. An adder is a combinational circuit that implements
the function f(x, y) = x+y. To be more precise, we want the function f to be a Boolean function,
not a function defined over the integers. We therefore use binary representation. This means
that the inputs are two n-bit strings, each string represents a nonnegative integer in binary
representation. The output should represent their sum in binary representation.

One complication, that we must address if we wish to be precise, is that the sum might be
too large, and cannot be represented using n bits. We solve this problem by adding one bit to
the output called the carry-out bit.

We present three different combinational circuits for addition. These designs have an in-
creasing level of sophistication. The first design, called a Ripple Carry Adder implements a
binary version of how addition is taught in elementary school. Its correctness proof can be
easily modified to finally prove the correctness of the addition algorithm we have been using
since elementary school.

15.1 Definition of a binary adder

Definition 15.1 A binary adder with input length n is a combinational circuit specified as
follows.

Input: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n, and C[0] ∈ {0,1}.
Output: S[n − 1 ∶ 0] ∈ {0,1}n and C[n] ∈ {0,1}.
Functionality: ⟨S⃗⟩ + 2n ⋅C[n] = ⟨A⃗⟩ + ⟨B⃗⟩ +C[0]. (15.1)

We denote a binary adder with input length n by adder(n). The inputs A⃗ and B⃗ are the
binary representations of the addends. The input C[0] is often called the carry-in bit. The
output S⃗ is the binary representation of the sum (more precisely, S⃗ is the binary representation
of the sum modulo 2n), and the output C[n] is often called the carry-out bit.

The following claim shows that the functionality of a binary adder is well defined.

Claim 15.1 For every A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n, and C[0] ∈ {0,1}, there exist S[n − 1 ∶
0] ∈ {0,1}n and C[n] ∈ {0,1} such that

⟨S⃗⟩ + 2n ⋅C[n] = ⟨A⃗⟩ + ⟨B⃗⟩ +C[0]
Proof: Since 0 ≤ A⃗, B⃗ ≤ 2n − 1, it follows that

0 ≤ ⟨A⃗⟩ + ⟨B⃗⟩ +C[0] ≤ 2n+1 − 1.

By Lemma 5.2, we can represent any integer in the set {0, . . . ,2n+1 − 1} if we have n + 1 bits.
Since S⃗ and C[n] together represent a number in binary representation, the claim follows. ✷

There are many ways to implement an adder(n). In this chapter we present a few adder(n)
designs.
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15.2 Ripple Carry Adder

Ripple Carry Adders are built by chaining a row of Full-Adders. We denote a Ripple Carry
Adder that implements an adder(n) by rca(n). A Full-Adder is a combinational circuit that
adds three bits and represents their sum in binary representation.

Definition 15.2 (Full-Adder) A Full-Adder is a combinational circuit with 3 inputs x, y, z ∈{0,1} and 2 outputs c, s ∈ {0,1} that satisfies:

2c + s = x + y + z.

The output s of a Full-Adder is often called the sum output. The output c of a Full-Adder
is often called the carry-out output. We denote a Full-Adder by fa. The Boolean function
corresponding the carry-out output is called the 3-bit carry function (see p. 15). The Boolean
formula for the outputs of a Full-Adder are presented in the following claim. We denote the
Boolean functions or,and,xor by ∨, ⋅,⊕, respectively.

Claim 15.2 The following equations specify the Boolean formulas for c and s in a Full-Adder:

s = x⊕ y ⊕ z,

c = (x ⋅ y) ∨ (y ⋅ z) ∨ (x ⋅ z).
Proof: The claim can be easily proved using a truth table. Instead, we consider four cases
based on the value of the sum x + y + z (this is a regular sum, not an or).

1. If x+y+z = 0, then x⊕y⊕z = 0 and (x ⋅y)∨(y ⋅z)∨(x ⋅z) = 0, hence 2c+s = 0, as required.

2. If x + y + z = 1, then exactly one of the inputs equals one. Therefore, x ⊕ y ⊕ z = 1 and(x ⋅ y) ∨ (y ⋅ z) ∨ (x ⋅ z) = 0, hence 2c + s = 1, as required.

3. If x + y + z = 2, then exactly two of the inputs equal one. Therefore, x ⊕ y ⊕ z = 0 and(x ⋅ y) ∨ (y ⋅ z) ∨ (x ⋅ z) = 1, hence 2c + s = 2, as required.

4. If x+y+z = 3, then all the inputs equal one. Therefore, x⊕y⊕z = 1 and (x⋅y)∨(y⋅z)∨(x⋅z) =
1, hence 2c + s = 3, as required.

✷

Implementation of rca(n). A Ripple Carry Adder, rca(n), is built by chaining a row of n
Full-Adders. An rca(n) is depicted in Figure 15.1. Note that the carry-out output of the ith
Full-Adder is denoted by c[i + 1]. The weight of c[i + 1] is 2i+1. This way, the weight of every
signal is two to the power of its index. One can readily notice that an rca(n) adds numbers
using the same addition algorithm that we use for adding numbers by hand.

15.2.1 Correctness proof

In this section we prove the correctness of an rca(n). To facilitate the proof, we use an
equivalent recursive definition of rca(n). The recursive definition is as follows.

The basis, rca(1), is simply a Full-Adder. The reduction rule for designing rca(n), for
n > 1, is depicted in Figure 15.2.
The following claim deals with the correctness of rca(n).
Claim 15.3 rca(n) is a correct implementation of adder(n).
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Figure 15.1: A Ripple Carry Adder rca(n).
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A[n − 2 : 0]B[n − 2 : 0]

Figure 15.2: A recursive description of rca(n).

Proof: The proof is by induction on n. The induction basis, for n = 1, follows directly from
the definition of a Full-Adder. The induction step is proved as follows.

The induction hypothesis, for n − 1, is

⟨A[n − 2 ∶ 0]⟩ + ⟨B[n − 2 ∶ 0]⟩ +C[0] = 2n−1 ⋅C[n − 1] + ⟨S[n − 2 ∶ 0]⟩. (15.2)

The definition of a Full-Adder states that

A[n − 1] +B[n − 1] +C[n − 1] = 2 ⋅C[n] + S[n − 1]. (15.3)

Multiply Equation 15.3 by 2n−1 to obtain

2n−1 ⋅A[n − 1] + 2n−1 ⋅B[n − 1] + 2n−1 ⋅C[n − 1] = 2n ⋅C[n] + 2n−1 ⋅ S[n − 1]. (15.4)

Note that 2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩. By adding Equations 15.2 and 15.4
we obtain:

2n−1 ⋅C[n − 1] + ⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩ +C[0] = 2n ⋅C[n] + 2n−1 ⋅C[n − 1] + ⟨S[n − 1 ∶ 0]⟩.
Cancel out 2n−1 ⋅C[n − 1], and the claim follows. ✷

15.2.2 Delay and cost analysis

The cost of an rca(n) satisfies:
c(rca(n)) = n ⋅ c(fa) = Θ(n).

The delay of an rca(n) satisfies
d(rca(n)) = n ⋅ d(fa) = Θ(n).
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Clock rates in modern microprocessors correspond to the delay of 15-20 gates (in more aggressive
designs, the critical paths are even shorter). Most microprocessors easily add 32-bit numbers
within one clock cycle (high-end microprocessors even add 100-bit number in a cycle). Obviously,
adders in such microprocessors are not Ripple Carry Adders. In the rest of the chapter we
present faster adder(n) designs.
15.3 Lower Bounds

15.3.1 Carry bits

We now define the carry bits associated with the addition

⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩ +C[0] = ⟨S[n − 1 ∶ 0]⟩ + 2n ⋅C[n]. (15.5)

Our definition is based on the values of the signals C[n−1 ∶ 1] of an rca(n). This definition
is well defined in light of the Simulation Theorem of combinational circuits.

Definition 15.3 The carry bits C[n ∶ 0] corresponding to the addition in Eq. 15.5 are defined
as the values of the stable signals C[n ∶ 0] in an rca(n).

Note that there are n + 1 carry-bits associated with the addition defined in Equation 15.5;
these bits are indexed from zero to n. The first carry bit C[0] is an input, the last carry bit
C[n] is an output, and the remaining carry bits C[n − 1 ∶ 0] are internal signals.

We now discuss a few issues related to the definition of the carry bits and binary addition.

15.3.2 Cone of adder outputs

The correctness proof of rca(n) implies that, for every 0 ≤ i ≤ n − 1,

⟨A[i ∶ 0]⟩ + ⟨B[i ∶ 0]⟩ +C[0] = 2i+1 ⋅C[i + 1] + ⟨S[i ∶ 0]⟩. (15.6)

Equation 15.6 implies that, for every 0 ≤ i ≤ n − 1,

⟨S[i ∶ 0]⟩ =mod(⟨A[i ∶ 0]⟩ + ⟨B[i ∶ 0]⟩ +C[0],2i+1).
These equations imply that the cone of each of the signals C[i + 1] and S[i] is the set of

inputs corresponding to A[i ∶ 0]⋃B[i ∶ 0]⋃C[0].
Claim 15.4 For each 0 ≤ i ≤ n− 1, the cone of Boolean functions corresponding to C[i+ 1] and
S[i] consists of 2i + 3 inputs corresponding to A[i ∶ 0],B[i ∶ 0], and C[0].
Proof: To simplify notation, we abuse notation, and say that A[j] is in the cone(C[i]).
Formally, we should say that the index of the input corresponding to the input A[j] belongs to
the cone of the Boolean function corresponding to C[i].

Equation 15.6 implies that the bits S[i] and C[i + 1] are determined by the bits of A[i ∶
0],B[i ∶ 0], and C[0]. This implies that the cone is contained in the union of these 2i + 3 input
bits.
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We need to prove that every bit among these 2i + 3 influences the bits S[i] and C[i + 1].
For example, consider A[j], for 0 ≤ j ≤ i. Let A[i ∶ 0] = 0i+1, B[i ∶ 0] = 1i−j+1 ○ 0j and C[0] = 0.
Since

⟨A[i ∶ 0]⟩ + ⟨B[i ∶ 0]⟩ +C[0] = 2i+1 − 2j .

By Eq. 15.6, it follows that

C[i + 1] = 0 and S[i] = 1.

We now flip A[j], namely, set A[j] = 1. This increases the sum ⟨A[i ∶ 0]⟩ + ⟨B[i ∶ 0]⟩ +C[0] by
2j . Therefore,

⟨A[i ∶ 0]⟩ + ⟨B[i ∶ 0]⟩ +C[0] = 2i+1.

By Eq. 15.6, it follows that

C[i + 1] = 1 and S[i] = 0.

It follows that A[j] belongs to the cones of S[i] and C[i + 1]. By interchanging the roles of A⃗
and B⃗, we obtain that B[j] also belongs to the cones of S[i] and C[i + 1]. To prove that C[0]
also belongs to these cones, consider A⃗ = 0i+1, B⃗ = 1i+1, and the two possible values of C[0]. ✷
15.3.3 Lower bounds

Claim 15.4 implies the following lower bounds.

Claim 15.5 Let A denote a combinational circuit that implements an adder(n). If the fan-in
in C is at most 2, then

c(A) ≥ 2n,

d(A) ≥ log2(2n + 1).
Proof: By Claim 15.4 the cones of C[n] and S[n − 1] contain 2n + 1 elements. The claim
follows from Theorems 12.19 and 12.21. ✷

Hence, the cost of the Ripple Carry Adder is asymptotically optimal, but its delay is far from
the lower bound.

15.4 Conditional Sum Adder

A Conditional Sum Adder is a recursive adder design that is based on divide-and-conquer. One
often uses only one “level” of recursion. Namely, three adders with input length n/2 are used
to construct one adder with input size n.

15.4.1 Motivation

The following “story” captures the main idea behind a conditional sum adder.
Imagine a situation in which Alice, who is positioned on Earth, holds the strings A[k − 1 ∶

0],B[k−1 ∶ 0],C[0]. Bob, who is stationed on the Moon, holds the strings A[n−1 ∶ k],B[n−1 ∶ k].
The goal of Alice and Bob is to jointly compute the sum ⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩ + C[0].
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They don’t care who holds the sum bits and C[n], as long as one of them does. Now, sending
information from Alice to Bob is costly. The first question we pose is: how many bits must
Alice send to Bob? After a short thought, Alice figures out that it suffices to send C[k] to
Bob. Alice is happy since she only needs to pay for sending a single bit (which is a big savings
compared to sending her 2k + 1 input bits!).

Unfortunately, sending information from Alice to Bob takes time. Even at the speed of light,
it takes a second, which is a lot compared to the time it takes to compute the sum. Suppose
Bob wants to finish his task as soon as possible after receiving C[k] from Alice. The second
question we pose is: what should Bob do during the second it takes C[k] to reach him? Since
the message has only two possible values (one or zero), an industrious Bob will compute two
sums; one under the assumption that C[k] = 0, and one under the assumption that C[k] = 1.
Finally, when C[k] arrives, Bob only needs to select between the two sums he has pre-computed.

15.4.2 Implementation

A Conditional Sum Adder is designed recursively using divide-and-conquer. We denote a Condi-
tional Sum Adder that implements an adder(n) by csa(n). A csa(1) is simply a Full-Adder.
A csa(n), for n > 1 is depicted in Figure 15.3. The input is partitioned into a lower part
consisting of the bits in positions [k−1 ∶ 0] and an upper part consisting of the bits in positions[n − 1 ∶ k]. The lower part (handled by Alice in our short tale) is fed to a csa(k) to produce
the sum bits S[k−1 ∶ 0] and the carry bit C[k]. The upper part (handled by Bob) is fed to two
csa(n − k) circuits. The first one is given a carry-in of 0 and the second is given a carry-in of
1. These two csa(n − k) circuits output n − k + 1 bits each. A multiplexer selects one of these
outputs according to the value of C[k] which arrives from the lower part.

1 0

csa(k)

k

A[k − 1 : 0]

k

B[k − 1 : 0]

k

C[0]

S[k − 1 : 0]

C[k]

csa(n − k)

n − k + 1

csa(n − k)

n − k + 1

n − k + 1

B[n − 1 : k] A[n − 1 : k]

n − k n − k

C0[n] · S0[n − 1 : k]

B[n − 1 : k] A[n − 1 : k]

n − k n − k

C1[n] · S1[n − 1 : k]

mux(n − k + 1)

C[n] · S[n − 1 : k]

01

Figure 15.3: A Conditional Sum Adder csa(n).

Claim 15.6 The csa(n) is a correct adder(n) design.
Proof: The proof is by complete induction on n. The induction basis, for n = 1, follows from
the correctness of a Full-Adder. The induction step is proved as follows. By the induction
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hypothesis and the functionality of a mux it follows that

C[k] ⋅ 2k + ⟨S[k − 1 ∶ 0]⟩ = ⟨A[k − 1 ∶ 0]⟩ + ⟨B[k − 1 ∶ 0]⟩ +C[0], (15.7)

2n−k ⋅C[n] + ⟨S[n − 1 ∶ k]⟩ = ⟨A[n − 1 ∶ k]⟩ + ⟨B[n − 1 ∶ k]⟩ +C[k]. (15.8)

We multiply Eq. 15.8 by 2k and add it to Eq. 15.7 to obtain

2n ⋅C[n] + ⟨S[n − 1 ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩,
and the claim follows. ✷

15.4.3 Delay and cost analysis

Simplifying assumptions. To simplify the analysis we assume that n = 2ℓ. To optimize the
delay, we use k = n/2.
Delay analysis. Let d(fa) denote the delay of a Full-Adder. The delay of a csa(n) satisfies
the following recurrence:

d(csa(n)) = ⎧⎪⎪⎨⎪⎪⎩
d(fa) if n = 1

d(csa(n/2)) + d(mux) otherwise.

By Problem 7.11 it follows that the delay of a csa(n) is
d(csa(n)) = ℓ ⋅ d(mux) + d(fa)

= Θ(logn).
Cost analysis. Let c(fa) denote the cost of a Full-Adder. The cost of a csa(n) satisfies the
following recurrence:

c(csa(n)) = ⎧⎪⎪⎨⎪⎪⎩
c(fa) if n = 1

3 ⋅ c(csa(n/2)) + (n/2 + 1) ⋅ c(mux) otherwise.

By Lemma 7.5, the solution of this recurrence is c(csa(n)) = Θ (nlog2 3).
Since log2 3 ≈ 1.58, we conclude that a csa(n) is rather costly - although, for the time

being, this is the only adder we know whose delay is logarithmic. We do point out that the
csa(n) design does allow us to use three half-size adders (i.e., adders with input length n/2) to
implement a full-size adder (i.e., input length n).

15.5 Compound Adder

The Conditional Sum Adder is a divide-and-conquer design that uses two adders in the upper
part, one with a zero carry-in and one with a one carry-in. This motivates the definition of an
adder that computes both the sum and the incremented sum. Surprisingly, this augmented spec-
ification leads to an asymptotically cheaper design. We refer to such an adder as a Compound
Adder.

Definition 15.4 A Compound Adder with input length n is a combinational circuit specified
as follows.



15.5. COMPOUND ADDER 237

Input: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n.
Output: S[n ∶ 0], T [n ∶ 0] ∈ {0,1}n+1.
Functionality:

⟨S⃗⟩ = ⟨A⃗⟩ + ⟨B⃗⟩
⟨T⃗ ⟩ = ⟨A⃗⟩ + ⟨B⃗⟩ + 1.

Note that a Compound Adder does not have carry-in input. To simplify notation, the carry-out
bits are denoted by S[n] for the sum and by T [n] for the incremented sum.
We denote a compound adder with input length n by comp-adder(n).
15.5.1 Implementation

We apply divide-and-conquer to design a comp-adder(n). For n = 1, we simply use a Full-
Adder and a Half-Adder (one could optimize this a bit and combine the Half-Adder and the
Full-Adder to reduce the constants). The design for n > 1 is depicted in Figure 15.4.

1 01 0

T ′[k] S′[k]

n − k + 1

mux(n − k + 1)

S[n : k]

S′[k]

n − k + 1

mux(n − k + 1)

T [n : k]

T ′[k]

T”[n : k] S”[n : k]

comp-adder(n − k)

n − k + 1 n − k + 1

A[n − 1 : k]

n − k

B[n − 1 : k]

n − k

T [k − 1 : 0]

T ′[k : 0]

S[k − 1 : 0]

S′[k : 0]

comp-adder(k)

k + 1 k + 1

k k

A[k − 1 : 0]

k

B[k − 1 : 0]

k

Figure 15.4: A Compound Adder comp-adder(n).

Example 15.1 Consider a comp-adder(4) with input A[3 ∶ 0] = 0110 and B[3 ∶ 0] = 1001.
The lower part computes S′[2 ∶ 0] = 011 and T ′[2 ∶ 0] = 100. The two lower bits of the outputs
are simply S[1 ∶ 0] = S′[1 ∶ 0] = 11 and T [1 ∶ 0] = T ′[1 ∶ 0] = 00. The upper part computes
S′′[4 ∶ 2] = 011 and T ′′[4 ∶ 2] = 100. The output S[4 ∶ 2] is selected to be S′′[4 ∶ 2] since
S′[2] = 0. The output T [4 ∶ 2] is selected to be T ′′[4 ∶ 2] since T ′[2] = 1. Hence S[4 ∶ 0] = 01111
and T [4 ∶ 0] = 10000.

15.5.2 Correctness

We prove the correctness of comp-adder(n).
Claim 15.7 The comp-adder(n) design depicted in Figure 15.4 is a correct adder.
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Proof: The proof is by induction on n. The case of n = 1 follows from the correctness of a Full-
Adder and a Half-Adder. We prove the induction step for the output S[n ∶ 0]; the correctness
of T [n ∶ 0] can be proved in a similar fashion and is left as an exercise.

The induction hypothesis implies that

⟨S′[k ∶ 0]⟩ = ⟨A[k − 1 ∶ 0]⟩ + ⟨B[k − 1 ∶ 0]⟩. (15.9)

Note that (i) the output S[k − 1 ∶ 0] equals S′[k − 1 ∶ 0], and (ii) S′[k] equals the carry bit C[k]
corresponding to the addition ⟨A[k − 1 ∶ 0]⟩ + ⟨B[k − 1 ∶ 0]⟩.
The induction hypothesis implies that

⟨S′′[n ∶ k]⟩ = ⟨A[n − 1 ∶ k]⟩ + ⟨B[n − 1 ∶ k]⟩⟨T ′′[n ∶ k]⟩ = ⟨A[n − 1 ∶ k]⟩ + ⟨B[n − 1 ∶ k]⟩ + 1.
(15.10)

It follows from Equations 15.9 and 15.10 that

⟨S′′[n ∶ k]⟩ ⋅ 2k + ⟨S′[k ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩ (15.11)

We consider two cases of the carry bit C[k]: C[k] = 0 and C[k] = 1.

1. If C[k] = 0, then S′[k] = 0. Equation 15.11 then reduces to

⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩ = ⟨S′′[n ∶ k]⟩ ⋅ 2k + ⟨S′[k − 1 ∶ 0]⟩
= ⟨S[n ∶ k]⟩ ⋅ 2k + ⟨S[k − 1 ∶ 0]⟩ = ⟨S[n ∶ 0]⟩.

2. If C[k] = 1, then S′[k] = 1. Equation 15.11 then reduces to

⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩ = ⟨S′′[n ∶ k]⟩ ⋅ 2k + 2k ⋅ 1 + ⟨S′[k − 1 ∶ 0]⟩
= 2k ⋅ (⟨S′′[n ∶ k]⟩ + 1) + ⟨S′[k − 1 ∶ 0]⟩
= 2k ⋅ ⟨T ′′[n ∶ k]⟩ + ⟨S[k − 1 ∶ 0]⟩ = ⟨S[n ∶ 0]⟩.

In both cases, the output S[n ∶ 0] is as required, and the claim follows. ✷

15.5.3 Delay and cost analysis

Simplifying assumptions. To simplify the analysis we assume that n = 2ℓ. To optimize the
delay, we use k = n/2.
Delay analysis. The delay of a comp-adder(n) satisfies the following recurrence:

d(comp-adder(n)) = ⎧⎪⎪⎨⎪⎪⎩
d(fa) if n = 1

d(comp-adder(n/2)) + d(mux) otherwise.

By Problem 7.11, it follows that the delay of a comp-adder(n) is
d(comp-adder(n)) = ℓ ⋅ d(mux) + d(fa)

= Θ(logn).
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Cost analysis. The cost of a comp-adder(n) satisfies the following recurrence:

c(comp-adder(n)) = ⎧⎪⎪⎨⎪⎪⎩
c(fa) + c(ha) if n = 1

2 ⋅ c(comp-adder(n/2)) + 2 ⋅ (n/2 + 1) ⋅ c(mux) otherwise.

By Lemma 7.4, the solution to this recurrence is c(comp-adder) = Θ(n logn).
15.6 Reductions between sum and carry bits

The correctness of rca(n) implies that, for every 0 ≤ i ≤ n − 1,

S[i] = xor(A[i],B[i],C[i]). (15.12)

This immediately implies that, for every 0 ≤ i ≤ n − 1,

C[i] = xor(A[i],B[i], S[i]). (15.13)

Equations 15.12 and 15.13 imply constant-time linear-cost reductions between the problems
of computing the sum bits S[n−1 ∶ 0] and computing the carry bits C[n−1 ∶ 0]. (This reduction
uses the addends A⃗ and B⃗.) The task of computing the sum bits is the task of an adder. In an
rca(n), the carry bit C[i] is computed first, and then the sum bit S[i] is computed according
to Eq. 15.12. The Parallel-Prefix Adder design [8, 4] is an asymptotically optimal adder that
first computes all the carry bits and then obtains the sum bits from the carry-bits by applying
Eq. 15.12.

15.7 Redundant and non-redundant representation

Consider Eq. 15.5 and let x = ⟨A⃗⟩ + ⟨B⃗⟩ + C[0]. Equation 15.5 means that the sum x admits
two representations. The representation of x on the right hand side is the standard binary
representation. This representation is non-redundant. This means that every number that is
representable by n+1 bits has a unique representation. (Note that we need to restrict ourselves
to n + 1 bits, otherwise leading zeros create multiple representations. For example: 1, 01, and
001 are different representations of the same number).

One nice characteristic of non-redundant representation is that comparison is easy. Suppose
that X[n − 1 ∶ 0] is a binary representation of x and that Y [n − 1 ∶ 0] is a binary representation
of y. If we wish to check if x = y, all we need to do is check if the binary strings X⃗ and Y⃗ are
identical.

The left hand side represents the same value represented by C[n] and S[n−1 ∶ 0]. However,
on the left hand side we have two binary strings and a carry-in bit. Given x, there are many
possible combinations of values of ⟨A⃗⟩, ⟨B⃗⟩ and C[0] that represent x. For example: 8 = 4+3+1
and also 8 = 5 + 3 + 0.

We refer to such a representation as redundant representation. Comparison of values rep-
resented in redundant representation is not as easy as it is with non-redundant representation.
For example, assume that

x = A⃗ + B⃗

x′ = A⃗′ + B⃗′.
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It is possible that x = x′ even though A ≠ A′ and B ≠ B′. Namely, in redundant representation
inequality of the representations does not imply inequality of the represented values.

Some of you might wonder at this point whether redundant representations are useful at all.
We just saw that redundant representation makes comparison non-trivial. The answer is that
redundant representation is most useful. Probably the most noted application of redundant
representation is fast multiplication. In fast multiplication, redundant representation is used
for fast (redundant) addition.

We summarize this discussion by noting that an alternative way to interpret an rca(n)
(or an adder(n), in general) is to say that it translates a redundant representation to a non-
redundant binary representation.

15.8 Summary

We started by defining binary addition. We reviewed the Ripple Carry Adder. We proved its
correctness rigorously and used it to define the carry bits associated with addition.

We showed that the problems of computing the sum bits and the carry bits are equivalent
modulo a constant-time linear-cost reduction. Since the cost of every adder is Ω(n) and the
delay is Ω(logn), we regard the problems of computing the sum bits and the carry bits as
equivalently hard.

We presented an adder design called Conditional Sum Adder (csa(n)). The csa(n) design
is based on divide-and-conquer. Its delay is asymptotically optimal (if fanout is not taken into
account). However, its cost is rather large, approximately Θ (n1.58).

We then considered the problem of simultaneously computing the sum and incremented sum
of two binary numbers. We presented a design called Compound Adder (comp-adder(n)).
This design is also based on divide-and-conquer. The asymptotic delay is also logarithmic,
however, the cost is Θ(n ⋅ logn).

This result is rather surprising: a comp-adder(n) is much cheaper asymptotically than
a csa(n)! You should make sure that you understand the rational behind this magic. More-
over, by adding a line of multiplexers controlled by the carry-in bit C[0], one can obtain an
adder(n) from a comp-adder(n). So, asymptotically, the design of a comp-adder(n) is a
real improvement over the csa(n).

There exists an adder design that is asymptotically optimal both with respect to delay
and with respect to cost. Moreover, the asymptotic delay and cost of this asymptotically
optimal design is not affected by considering fanout. This adder is often called a parallel prefix
adder [13, 2].

Problems

15.1 Manually simulate the following input on CSA(4) and comp-adder(4) with k = 2:

A[3 ∶ 0] = 0110,

B[3 ∶ 0] = 1001,

C[0] = 0.

15.2 (Effect of fanout on csa(n)) Consider the csa(n) design. The fanout of the net fed
by the carry-bit C[k] is n/2 + 1 if k = n/2.
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1. Suppose that we associate a delay of log2(f) with a fanout f . How would taking the fanout
into account change the delay analysis of a csa(n)?

2. Suppose that we associate a cost O(f) with a fanout f . How would taking the fanout into
account change the cost analysis of a csa(n)?

15.3 Complete the correctness of comp-adder(n), that is, prove that T [n ∶ 0] satisfies the
specification.

15.4 Prove the following claims.

1. Consider two binary strings S[k ∶ 0] and T [k ∶ 0]. Prove that if S[k] > T [k], then⟨S⃗⟩ > ⟨T⃗ ⟩.
2. (a) Implement comp-adder(2) by using two comp-adder(1). Print all possible out-

puts, and show that T ′[1] ≥ S′[1].
(b) Consider S′[k] and T ′[k] in the design of comp-adder(n). Prove that T ′[k] ≥ S′[k].
Prove that T ′[k] ≥ S′[k].

3. Present an example for comp-adder(4) in which T [4 ∶ 2] is selected to be S′′[4 ∶ 2].
Is it possible that S′[k] = 1 and T ′[k] = 0? Which combinations of S′[k] and T ′[k] are
possible?

15.5 (Effect of fanout on comp-adder(n)) Note that the fanout of S′[k] and T ′[k] is n/2+
1. Prove that, if the effect of fanout on delay is taken into account, then, as in the case of
csa(n), the delay is actually Θ(log2 n). Here we assume that the delay incurred by a fanout f
is Θ(log f).
15.6 Prove Equation 15.13, that is, for every 0 ≤ i ≤ n − 1,

C[i] = xor(A[i],B[i], S[i]).
15.7 (Subtraction) Consider the following definition of a subtractor.

Definition 15.5 A binary subtractor with input length n is a combinational circuit specified
as follows.

Input: X[n − 1 ∶ 0], Y [n − 1 ∶ 0] ∈ {0,1}n, and B[0] ∈ {0,1}.
Output: S[n − 1 ∶ 0] ∈ {0,1}n and B[n] ∈ {0,1}.
Functionality:

⟨S[n − 1 ∶ 0]⟩ − 2n ⋅B[n] = ⟨X[n − 1 ∶ 0]⟩ − ⟨Y [n − 1 ∶ 0]⟩ −B[0]. (15.14)

Our goal is to define a Ripple Borrow Subtractor, a combinational circuit that is analogous
to an rca(n).

1. Define a full-subtractor (analogous to a full adder).

2. Suggest an implementation of a full-subtractor that uses a full-adder and three inverters.

3. Build a binary subtractor by chaining together n full-subtractors.

4. Implement your circuit for n = 2 using Logisim, and simulate it for all possible inputs.

5. Prove the correctness of your design.
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So far we have dealt with the representation of nonnegative integers by binary strings. We
also designed combinational circuits that perform addition for nonnegative integers represented
by binary strings. How are negative integers represented? Can we add and subtract negative
integers?

We refer to integers that are either positive, zero, or negative as signed integers. In this
chapter we deal with the representation of signed integers by binary strings. We focus on a
representation that is called two’s complement. We present combinational circuits for adding and
subtracting signed integers that are represented in two’s complement representation. Although
the designs are obtained by very minor changes of a binary adder designs, the theory behind
these changes requires some effort.

16.1 Representation of negative integers

We use binary representation to represent non-negative integers. We now address the issue of
representing positive and negative integers. Following programming languages, we refer to non-
negative integers as unsigned integers and to negative and positive numbers as signed integers.

There are three common methods for representing signed integers: sign-magnitude, one’s
complements, and two’s complement.

Definition 16.1 The number represented in sign-magnitude representation by A[n − 1 ∶ 0] ∈{0,1}n and S ∈ {0,1} is (−1)S ⋅ ⟨A[n − 1 ∶ 0]⟩.
Definition 16.2 The number represented in one’s complement representation by A[n − 1 ∶ 0] ∈{0,1}n is

−(2n−1 − 1) ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩.
Definition 16.3 The number represented in two’s complement representation by A[n − 1 ∶ 0] ∈{0,1}n is

−2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩.
We denote the number represented in two’s complement representation by A[n−1 ∶ 0] as follows:

[A[n − 1 ∶ 0]] △= −2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩.
We often use the term “a two’s complement integer A[n − 1 ∶ 0]” as an abbreviation of the

longer phrase “the integer represented by A[n − 1 ∶ 0] in two’s complement representation”.

The most common method for representing signed integers is two’s complement representa-
tion. The main reason is that adding, subtracting, and multiplying signed integers represented
in two’s complement representation is almost as easy as performing these computations on
unsigned binary integers.

Example 16.1 Table 16.1 compares representations of negative integers. Note that the sign bit
in the last column is X[2].
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binary string X⃗ ⟨X⃗⟩ two’s complement one’s complement sign-magnitude

000 0 0 0 +0
001 1 1 1 1
010 2 2 2 2
011 3 3 3 3
100 4 −4 −3 −0
101 5 −3 −2 −1
110 6 −2 −1 −2
111 7 −1 0 −3

Table 16.1: Comparison between representation of negative integers. Note that zero has two
representations in one’s complement and sign-magnitude representations. In sign-magnitude,
one may distinguish between +0 and −0.

16.2 Computing a two’s complement representation

We denote the set of signed integers that are representable in two’s complement representation
using n-bit binary strings by Tn.

Claim 16.1
Tn = {−2n−1,−2n−1 + 1, . . . ,2n−1 − 1} .

Proof: Consider a binary string A[n − 1 ∶ 0]. Clearly,
[A[n − 1 ∶ 0]] △= −2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩

≤ ⟨A[n − 2 ∶ 0]⟩
≤ 2n−1 − 1.

Similarly,

[A[n − 1 ∶ 0]] △= −2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩
≥ −2n−1.

This proves that Tn ⊆ {−2n−1,−2n−1 + 1, . . . ,2n−1 − 1}. To prove the other direction, consider
an integer −2n−1 ≤ x ≤ 2n−1 − 1. We prove that x ∈ Tn by considering the following two cases:

1. If x ≥ 0, then x can represented in binary representation by a string A[n − 2 ∶ 0]. Hence,
x = [0 ○A[n − 2 ∶ 0]], as required.

2. If x < 0, let y
△

= x + 2n. Since −2n−1 ≤ x ≤ −1, it follows that 2n−1 < y ≤ 2n − 1. Thus y
can be represented in binary representation by Y [n− 1 ∶ 0], where Y [n − 1] = 1. We know
that y = ⟨Y [n − 1 ∶ 0]⟩. We now check which value is represented by Y [n − 1 ∶ 0] in two’s
complement representation.

[Y [n − 1 ∶ 0]] = ⟨Y [n − 2 ∶ 0]⟩ − 2n−1 ⋅ Y [n − 1]
= (y − 2n−1) − 2n−1 ⋅ 1

= y − 2n = x.

Hence x ∈ Tn, as required.
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✷

The proof of Claim 16.1 justifies the following algorithm for computing the two’s complement
representation of a number x ∈ Tn.

Algorithm 16.1 two-comp(x,n) - An algorithm for computing the two’s complement repre-
sentation of x using n bits.

1. If x /∈ Tn return (fail).

2. If x ≥ 0 return (0 ○ binn−1(x)).
3. If x < 0 return (binn(x + 2n)).

Example 16.2 Claim 16.1 implies that

T4 = {−23,−23 + 1, . . . ,23 − 1} .
Hence,

two-comp(8,4) = fail ,

two-comp(5,4) = (0 ○ bin3(5)) = 0101 ,

two-comp(−6,4) = (bin4(−6 + 24)) = 1010 ,

two-comp(−1,4) = (bin4(−1 + 24)) = 1111 .

16.3 Negation in two’s complement representation

The following claim deals with negating a value represented in two’s complement representation.

Claim 16.2
− [A[n − 1 ∶ 0]] = [inv(A[n − 1 ∶ 0])] + 1.

Proof: Recall that X + inv(X) = 1. By the definition of two’s complement representation,

[A[n − 1 ∶ 0]] + [inv(A[n − 1 ∶ 0])] = −(A[n − 1] + inv(A[n − 1]) ⋅ 2n−1
+

n−2

∑
i=0
(A[i] + inv(A[i])) ⋅ 2i

= −2n−1 +
n−2

∑
i=0

2i

= −2n−1 + 2n−1 − 1 = −1.

✷

Example 16.3 Let n = 4 and let A[3 ∶ 0] = 1001, then:

− [A[3 ∶ 0]] = 7 ,[inv(A[3 ∶ 0])] + 1 = [0110] + 1 = 6 + 1 = 7 .

Hence,
− [A[3 ∶ 0]] = [inv(A[3 ∶ 0])] + 1.
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In Figure 16.1 we depict a design for negating integers based on Claim 16.2. The circuit
is input A⃗ and is supposed to compute the two’s complement representation of − [A⃗]. The

bits in the string A⃗ are first inverted to obtain A[n − 1 ∶ 0]. An increment circuit outputs
C[n] ⋅B[n − 1 ∶ 0] such that

⟨C[n] ⋅B[n − 1 ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩ + 1.

Such an increment circuit can be implemented simply by using a binary adder with one addend
string fixed to 0n−1 ⋅ 1.

inv(n)

inc(n)

A[n − 1 : 0]

B[n − 1 : 0]

n

n

n

A[n − 1 : 0]

C[n]

Figure 16.1: A (wrong) circuit for negating a value represented in two’s complement represen-
tation.

We would like to claim that the circuit depicted in Fig. 16.1 is correct. Unfortunately, we
do not have yet the tools to prove the correctness. Let us try and see the point in which we run
into trouble.

Claim 16.2 implies that all we need to do to compute − [A⃗] is invert the bits of A⃗ and
increment. The problem is with the meaning of increment. The increment circuit computes:

⟨A[n − 1 ∶ 0]⟩ + 1.

However, Claim 16.2 requires that we compute

[A[n − 1 ∶ 0]] + 1.

Now, let C[n] ⋅B[n − 1 ∶ 0] denote the output of the incrementor. We know that

⟨C[n] ⋅B[n − 1 ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩ + 1.

One may suspect that if C[n] = 1, then correctness might fail due to the “lost” carry-bit.
Assume we are “lucky” and C[n] = 0. In this case,

⟨B[n − 1 ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩ + 1.
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Why should this imply that

[B[n − 1 ∶ 0]] = [A[n − 1 ∶ 0]] + 1?

At this point we leave this issue unresolved. We prove a more general result in Theorem 16.7.
Note, however, that the circuit errs with the input A[n− 1 ∶ 0] = 1 ⋅ 0n−1. The value represented
by A⃗ equals −2n−1. Inversion yields A[n − 1 ∶ 0] = 0 ⋅ 1n−2. Increment yields C[n] = 0 and
B[n − 1 ∶ 0] = 1 ⋅ 0n−2 = A[n − 1 ∶ 0]. This, of course, is not a counter-example to Claim 16.2.
It is an example in which an increment with respect to ⟨A[n − 1 ∶ 0]⟩ is not an increment with

respect to [A[n − 1 ∶ 0]]. This is exactly the point which concerned us. A more careful look at

this case shows that every circuit must err with such an input. The reason is that − [A⃗] /∈ Tn.
Hence, the negated value cannot be represented using an n-bit string, and negation had to fail.

Interestingly, as opposed to negation in two’s complement representation, negation in sign-
magnitude and one’s complement representation is very easy.

16.4 Properties of two’s complement representation

Alternative definition of two’s complement representation. Informally, the following
claim states that every number x ∈ Tn is represented in two’s complement representation by a
number y (where y is represented in binary presentation) such that y = mod(x,2n). This is no
surprise in light of Alg. 16.1. If x ≥ 0, then y = x. However, a negative number x = −z (i.e.,
z = ∣x∣) is represented by y = 2n + x = 2n − z.

Claim 16.3 For every A[n − 1 ∶ 0] ∈ {0,1}n
⟨A⃗⟩ =mod([A⃗] ,2n).

Proof: Indeed, ⟨A⃗⟩ − [A⃗] = −A[n − 1] ⋅ 2n ∈ {0,2n}, and the claim follows. ✷

Example 16.4 Let n = 4 and let A[3 ∶ 0] = 0110,B[3 ∶ 0] = 1001, then:

⟨A[3 ∶ 0]⟩ = 6 , [A[3 ∶ 0]] = 6 ,⟨B[3 ∶ 0]⟩ = 9 , [B[3 ∶ 0]] = −7 .
Hence,

⟨A⃗⟩ − [A⃗] = 6 − 6 = 0 = 0 (mod 24) ,
⟨B⃗⟩ − [B⃗] = 9 − (−7) = 16 = 0 (mod 24) .

Claim 16.3 provides an explanation for the term “two’s complement representation.” In fact,
the precise term is 2n complement representation. Moreover, one could define two’s complement
representation based on the claim. Namely, represent x ∈ [−2n−1,2n−1 − 1] by binn(x′), where
x′ ∈ [0,2n − 1] satisfies x′ =mod(x,2n).
Sign bit. The most significant bit A[n − 1] of a string A[n − 1 ∶ 0] that represents a two’s
complement integer is often called the sign-bit of A⃗. The following claim justifies this term.

Claim 16.4 [A[n − 1 ∶ 0]] < 0 ⇐⇒ A[n − 1] = 1.
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Proof: Consider a binary string A[n−1 ∶ 0]. IfA[n−1] = 0, then [A[n − 1 ∶ 0]] = ⟨A[n − 2 ∶ 0]⟩ ≥
0. On the other hand, if A[n − 1 ∶ 0] = 1, then

[A[n − 1 ∶ 0]] △= −2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩
≤ −2n−1 + (2n−1 − 1)
≤ −1.

✷

Do not be misled by the term sign-bit. Two’s complement representation is not sign-
magnitude representation. In particular, the prefix A[n − 2 ∶ 0] is not a binary representation
of the magnitude of [A[n − 1 ∶ 0]]. Computing the absolute value of a negative signed integer
represented in two’s complement representation involves inversion of the bits and an increment
(as suggested by Claim 16.2).

Sign extension. The following claim is often referred to as “sign-extension”. It basically
means that duplicating the most significant bit does not affect the value represented in two’s
complement representation. This is similar to padding zeros from the left in binary representa-
tion.

Claim 16.5 If A[n] = A[n − 1], then
[A[n ∶ 0]] = [A[n − 1 ∶ 0]] .

Proof:

[A[n ∶ 0]] = −2n ⋅A[n] + ⟨A[n − 1 ∶ 0]⟩
= −2n ⋅A[n] + 2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩
= −2n ⋅A[n − 1] + 2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩
= −2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩
= [A[n − 1 ∶ 0]] .

✷

We can now apply arbitrarily long sign-extension, as summarized in the following Corollary
(proved by induction on the length of the sign extension).

Corollary 16.6 [A[n − 1]∗ ○A[n − 1 ∶ 0]] = [A[n − 1 ∶ 0]] .
Where A[n − 1]∗ denotes an arbitrarily long binary string that consists of concatenations of
A[n − 1].
Example 16.5 Let n = 2 and let A[1 ∶ 0] = 10.

[A[1 ∶ 0]] = −2 + 0 = −2 ,

[A[1] ○A[1] ○A[1 ∶ 0]] = [1110] = −23 + 6 = −2 .

Also,

[11111111111111111110] = [10] = −2[11111111111111111111] = [1] = −1
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16.5 Reduction: two’s complement addition to binary addition

In Section 16.3 we tried (and partly failed) to use a binary incrementor for incrementing a two’s
complement signed integer. In this section we deal with a more general case, namely computing
the two’s complement representation of

[A⃗] + [B⃗] +C[0].
The following theorem deals with the following setting. Let

A[n − 1 ∶ 0],B[n − 1 ∶ 0], S[n − 1 ∶ 0] ∈ {0,1}n
C[0],C[n] ∈ {0,1}

satisfy ⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩ +C[0] = ⟨C[n] ⋅ S[n − 1 ∶ 0]⟩. (16.1)

Namely, A⃗, B⃗, and C[0] are fed to a binary adder adder(n) and S⃗ and C[n] are output by the
adder. The theorem addresses the following questions:

• When does the output S[n − 1 ∶ 0] satisfy:
[S⃗] = [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] +C[0]? (16.2)

• How can we know that Equation 16.2 holds?

Theorem 16.7 Let C[n − 1] denote the carry-bit in position [n − 1] associated with the binary
addition described in Equation 16.1 and let

z
△

= [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] +C[0].
Then,

C[n] −C[n − 1] = 1 Ô⇒ z < −2n−1 (16.3)

C[n − 1] −C[n] = 1 Ô⇒ z > 2n−1 − 1 (16.4)

z ∈ Tn ⇐⇒ C[n] = C[n − 1] (16.5)

z ∈ Tn Ô⇒ z = [S[n − 1 ∶ 0]] . (16.6)

Proof: Recall that the definition of the functionality of fan−1 in a Ripple-Carry Adder rca(n)
implies that

A[n − 1] +B[n − 1] +C[n − 1] = 2C[n] + S[n − 1].
Hence

A[n − 1] +B[n − 1] = 2C[n] −C[n − 1] + S[n − 1]. (16.7)

We now expand z as follows:

z = [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] +C[0]
= −2n−1 ⋅ (A[n − 1] +B[n − 1]) + ⟨A[n − 2 ∶ 0]⟩ + ⟨B[n − 2 ∶ 0]⟩ +C[0]
= −2n−1 ⋅ (2C[n] −C[n − 1] + S[n − 1]) + ⟨C[n − 1] ⋅ S[n − 2 ∶ 0]⟩,



16.5. REDUCTION: TWO’S COMPLEMENT ADDITION TO BINARY ADDITION 251

where the last line is based on Equation 16.7 and on

⟨A[n − 2 ∶ 0]⟩ + ⟨B[n − 2 ∶ 0]⟩ +C[0] = ⟨C[n − 1] ⋅ S[n − 2 ∶ 0]⟩.
Commuting S[n − 1] and C[n − 1] implies that

z = −2n−1 ⋅ (2C[n] −C[n − 1] −C[n − 1]) + [S[n − 1] ⋅ S[n − 2 ∶ 0]]
= −2n ⋅ (C[n] −C[n − 1]) + [S[n − 1 ∶ 0]] .

We distinguish between three cases:

1. If C[n] −C[n − 1] = 1, then

z = −2n + [S[n − 1 ∶ 0]]
≤ −2n + 2n−1 − 1 = −2n−1 − 1.

Hence Equation 16.3 follows.

2. If C[n] −C[n − 1] = −1, then
z = 2n + [S[n − 1 ∶ 0]]
≥ 2n − 2n−1 = 2n−1.

Hence Equation 16.4 follows.

3. If C[n] = C[n − 1], then z = [S[n − 1 ∶ 0]], and obviously z ∈ Tn.

The converse direction of Equation 16.5 follows from the fact that if C[n] ≠ C[n−1], then either
C[n] −C[n − 1] = 1 or C[n − 1] −C[n] = 1. In both these cases z /∈ Tn. Equation 16.6 follows
from the third case as well, and the theorem follows. ✷

16.5.1 Detecting overflow

Overflow occurs when the sum of signed integers is not in Tn. Using the notation of Theo-
rem 16.7, overflow is defined as follows.

Definition 16.4 Let z
△

= [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] + C[0]. The signal ovf is defined as
follows:

ovf
△

=

⎧⎪⎪⎨⎪⎪⎩
1 if z /∈ Tn
0 otherwise.

Note that overflow means that the sum is either too large or too small. Perhaps the term
“out-of-range” is more appropriate than “overflow” (which suggests that the sum is too big).
We choose to favor tradition here and follow the common term overflow rather than introduce
a new term.

By Theorem 16.7, overflow occurs iff C[n − 1] ≠ C[n]. Namely,

ovf = xor(C[n − 1],C[n]).
Moreover, if overflow does not occur, then Equation 16.2 holds. Hence, we have a simple way
to answer both questions raised before the statement of Theorem 16.7. The signal C[n − 1]
may not be available if one uses a “black-box” binary-adder (e.g., a library component in which
C[n − 1] is an internal signal). In this case we detect overflow based on the following claim.

Claim 16.8

xor(C[n − 1],C[n]) = xor4(A[n − 1],B[n − 1], S[n − 1],C[n]).
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Proof: By Eq. 15.13,

C[n − 1] = xor3(A[n − 1],B[n − 1], S[n − 1]).
✷

16.5.2 Determining the sign of the sum

How do we determine the sign of the sum z? Obviously, if z ∈ Tn, then Claim 16.4 implies that
S[n − 1] indicates whether z is negative. However, if overflow occurs, this is not true.

We would like to be able to know whether z is negative regardless of whether overflow occurs.
We define the neg signal.

Definition 16.5 The signal neg is defined as follows:

neg
△

=

⎧⎪⎪⎨⎪⎪⎩
1 if z < 0

0 if z ≥ 0.

A brute force method based on Theorem 16.7 for computing the neg signal is as follows:

neg =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S[n − 1] if no overflow

1 if C[n] −C[n − 1] = 1

0 if C[n − 1] −C[n] = 1.

(16.8)

Although this computation obviously signals correctly whether the sum is negative, it requires
some further work if we wish to obtain a small circuit for computing neg that is not given
C[n − 1] as input.
Instead pursuing this direction, we compute neg using a more elegant method.

Claim 16.9
neg = xor3(A[n − 1],B[n − 1],C[n]).

Proof: The proof is based on playing the following “mental game”. We extend the computa-
tion to n + 1 bits. We then show that overflow does not occur. This means that the sum bit in
position n indicates correctly the sign of the sum z. We then express this sum bit using n-bit
addition signals.
Let

Ã[n ∶ 0] △= A[n − 1] ○A[n − 1 ∶ 0]
B̃[n ∶ 0] △= B[n − 1] ○B[n − 1 ∶ 0]

⟨C̃[n + 1] ○ S̃[n ∶ 0]⟩ △= ⟨Ã[n ∶ 0]⟩ + ⟨B̃[n ∶ 0]⟩ +C[0].
Since sign-extension preserves value (see Claim 16.5), it follows that

z = [Ã[n ∶ 0]] + [B̃[n ∶ 0]] +C[0].
We claim that z ∈ Tn+1. This follows from

z = [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] +C[0]
≤ 2n−1 − 1 + 2n−1 − 1 + 1

≤ 2n − 1.



16.6. A TWO’S-COMPLEMENT ADDER 253

Similarly z ≥ 2−n. Hence z ∈ Tn+1, and therefore, by Theorem 16.7

[S̃[n ∶ 0]] = [Ã[n ∶ 0]] + [B̃[n ∶ 0]] +C[0].
We conclude that z = [S̃[n ∶ 0]]. It follows that neg = S̃[n]. However,

S̃[n] = xor3(Ã[n], B̃[n], C̃[n])
= xor3(A[n − 1],B[n − 1],C[n]),

and the claim follows. ✷

Example 16.6 Let n = 4. Claim 16.1 implies that

T4 = {−23,−23 + 1, . . . ,23 − 1} .
Table 16.2 presents the values of C[n],C[n − 1], [S[n − 1 ∶ 0]], and z for various values of A,B
and C[0].

[A[3 ∶ 0]] −3 −4 −6 7[B[3 ∶ 0]] −5 −5 5 1
C[0] 1 0 0 1

C[n] 1 1 1 0
C[n − 1] 1 0 1 1[S[n − 1 ∶ 0]] −7 7 −1 −7

z −7 −9 −1 9

Table 16.2: Values of C[n],C[n − 1], [S⃗], and z for various values of [A⃗] , [B⃗] and C[0].
16.6 A two’s-complement adder

In this section we define and implement a two’s complement adder.

Definition 16.6 A two’s-complement adder with input length n is a combinational circuit spec-
ified as follows.

Input: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n, and C[0] ∈ {0,1}.
Output: S[n − 1 ∶ 0] ∈ {0,1}n and neg,ovf ∈ {0,1}.
Functionality: Define z as follows:

z
△

= [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] +C[0].
The functionality is defined as follows:

z ∈ Tn Ô⇒ [S[n − 1 ∶ 0]] = z
ovf =

⎧⎪⎪⎨⎪⎪⎩
0 if z ∈ Tn

1 if z /∈ Tn.
neg =

⎧⎪⎪⎨⎪⎪⎩
0 if z ≥ 0

1 if z < 0.
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Note that no carry-out C[n] is output. We denote a two’s-complement adder by s-adder(n).
The implementation of an s-adder(n) is depicted in Figure 16.2 and is as follows:

1. The outputs C[n] and S[n − 1 ∶ 0] are computed by a binary adder adder(n) that is fed
by A[n − 1 ∶ 0],B[n − 1 ∶ 0], and C[0].

2. The output ovf is simply xor(C[n − 1],C[n]) if C[n − 1] is available. Otherwise, we
apply Claim 16.8, namely, ovf = xor4(A[n − 1],B[n − 1], S[n − 1],C[n]).

3. The output neg is computed according to Claim 16.9. Namely, neg = xor3(A[n−1],B[n−
1],C[n]).

C[n]

xor

C[n − 1]

ovf

adder(n)

B[n − 1 : 0]A[n − 1 : 0]

S[n − 1 : 0]C[n]

C[0]

C[n]A[n − 1]

neg

B[n − 1]

xor3

Figure 16.2: A two’s complement adder s-adder(n)
Note that, except for the circuitry that computes the flags ovf and neg, a two’s complement
adder is identical to a binary adder. Hence, in an arithmetic logic unit (ALU), one may use the
same circuit for signed addition and unsigned addition.

16.7 A two’s complement adder/subtractor

In this section we define and implement a two’s complement adder/subtractor. A two’s com-
plement adder/subtractor is used in ALUs to implement addition and subtraction of signed
integers.

Definition 16.7 A two’s-complement adder/subtractor with input length n is a combinational
circuit specified as follows.

Input: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n, and sub ∈ {0,1}.
Output: S[n − 1 ∶ 0] ∈ {0,1}n and neg,ovf ∈ {0,1}.
Functionality: Define z as follows:

z
△

=

⎧⎪⎪⎨⎪⎪⎩
[A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] if sub = 0[A[n − 1 ∶ 0]] − [B[n − 1 ∶ 0]] if sub = 1.
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The functionality is defined as follows:

z ∈ Tn Ô⇒ [S[n − 1 ∶ 0]] = z
ovf =

⎧⎪⎪⎨⎪⎪⎩
0 if z ∈ Tn

1 if z /∈ Tn.
neg =

⎧⎪⎪⎨⎪⎪⎩
0 if z ≥ 0

1 if z < 0.

We denote a two’s-complement adder/subtractor by add-sub(n). Note that the input sub
indicates if the operation is addition or subtraction. Note also that no carry-in bit C[0] is input
and no carry-out C[n] is output.

An implementation of a two’s-complement adder/subtractor add-sub(n) is depicted in
Figure 16.3. The implementation is based on a two’s complement adder s-adder(n) and
Claim 16.2.

S[n − 1 : 0]

ovf,neg

s-adder(n)

xor(n)

B[n − 1 : 0]

sub

A[n − 1 : 0]

Figure 16.3: A two’s-complement adder/subtractor add-sub(n).
Claim 16.10 The implementation of add-sub(n) depicted in Figure 16.3 is correct.

Proof: The correctness follows from Claim 16.2 and the correctness of s-adder(n). ✷

16.8 Summary

In this chapter we presented circuits for adding and subtracting two’s complement signed inte-
gers. We started by describing three ways for representing negative integers: sign-magnitude,
one’s-complement, and two’s complement. We then focused on two’s complement representa-
tion.

The first task we consider is negating. We proved that negating in two’s complement repre-
sentation requires inverting the bits and incrementing. The claim that describes negation was
insufficient to argue about the correctness of a circuit for negating a two’s complement signed
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integer. We also noticed that negating the represented value is harder in two’s complement
representation than in the other two representations.

In Section 16.4 we discussed a few properties of two’s complement representation: (i) We
showed that the values represented by the same n-bit string in binary representation and in
two’s complement representation are congruent modulo 2n. (ii) We showed that the most-
significant bit indicates whether the represented value is negative. (iii) Finally, we discussed
sign-extension. Sign-extension enables us to increase the number of bits used to represent a
two’s complement integer while preserving the represented value.

The main result of this chapter is presented in Section 16.5. We reduce the task of two’s
complement addition to binary addition. Theorem 16.7 also provides a rule that enables us to
tell when this reduction fails. The rest of this section deals with: (i) the detection of overflow
- this is the case that the sum is out of range; and (ii) determining the sign of the sum even if
an overflow occurs.

In Section 16.6 we present an implementation of a circuit that adds two’s complement
integers. Finally, in Section 16.7 we present an implementation of a circuit that can add and
subtract two’s complement integers. Such a circuit is used in arithmetic logic units (ALUs) to
implement signed addition and subtraction.

Problems

16.1 Recall the definition of one’s complement representation (see Definition 16.2). We denote
the integer represented in one’s complement representation A[n − 1 ∶ 0] by one’s(A⃗).
Definition 16.8 A one’s complement negating circuit with input length n is a combinational
circuit specified as follows.

Input: A[n − 1 ∶ 0] ∈ {0,1}n.
Output: B[n − 1 ∶ 0] ∈ {0,1}n.
Functionality:

one’s(A⃗) = −one’s(B⃗)
1. Design a circuit that implements a one’s complement negator.

2. Prove the correctness of your design.

16.2 Prove the following claim.

Claim 16.11 If x ∈ Tn and x < 0, then x = [1 ○ binn−1(x + 2n−1)].
16.3 Prove that

ovf = A[n − 1] ⋅B[n − 1] ⋅ inv(S[n − 1]) + inv(A[n − 1]) ⋅ inv(B[n − 1]) ⋅ S[n − 1]
16.4 Provide an example in which the sign of z is not signaled correctly by S[n − 1].
16.5 Prove that neg = xor(ovf, S[n − 1]).



16.8. SUMMARY 257

c[0]

B[n − 1 : 0]A[n − 1 : 0]

S[n − 1 : 0]

C[n]

B[2n − 1 : n]A[2n − 1 : n]

adder(n)s-adder(n)

S[2n− 1 : n]C[2n]

ovf,neg

Figure 16.4: Concatenating an s-adder(n) with an adder(n).
16.6 Prove the correctness of the implementation of s-adder(n) depicted in Figure 16.2.

16.7 Is the design depicted in Figure 16.4 a correct s-adder(2n)?
16.8 (back to the negation circuit) Consider the negation circuit depicted in Figure 16.1.

1. When is the circuit correct?

2. Suppose we wish to add a signal that indicates whether the circuit satisfies [B⃗] = − [A⃗].
How should we compute this signal?

16.9 (wrong implementation of add-sub(n)) Find a input for which the circuit depicted
in Figure 16.5 errs. Can you list all the inputs for which this circuit outputs a wrong output?

mux(n)

inc(n)

inv(n)

S[n − 1 : 0]

ovf,neg

s-adder(n)

A[n − 1 : 0]

10

0

B[n − 1 : 0]

sub

Figure 16.5: A wrong implementation of add-sub(n).
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16.10 (ovf and neg flags in high level programming) High level programming languages
such as C and Java do not enable one to see the value of the ovf and neg signals (although
these signals are computed by adders in all microprocessors).

1. Write a short program that deduces the values of these flags. Count how many instructions
are needed to recover these lost flags.

2. Short segments in a low level language (Assembly) can be integrated in C programs. Do
you know how to see the values of the ovf and neg flags using a low level language?

16.11 (bi-directional cyclic shifting) The goal in this question is to design a bi-directional
barrel-shifter.

Definition 16.9 A bi-directional barrel-shifter bi-barrel-shifter(n) is a combinational cir-
cuit defined as follows:

Input: x[n − 1 ∶ 0], dir ∈ {0,1}, and sa[k − 1 ∶ 0] where k = ⌈log2 n⌉.
Output: y[n − 1 ∶ 0].
Functionality: If dir = 0 then y⃗ is a cyclic right shift of x⃗ by ⟨s⃗a⟩ positions. Formally,

∀j ∈ [n − 1 ∶ 0] ∶ y[j] = x[mod(j + ⟨s⃗a⟩, n)].
If dir = 1 then y⃗ is a cyclic left shift of x⃗ by ⟨s⃗a⟩ positions. Formally,

∀j ∈ [n − 1 ∶ 0] ∶ y[j] = x[mod(j − ⟨s⃗a⟩, n)].
1. Suggest a reduction of right cyclic shifting to left cyclic shifting for n = 2k. (Hint: shift by

x to the right is equivalent to shift by 2k − x to the left.)

2. If your reduction includes an increment, suggest a method that avoids the Ω(logk) delay
associated with incrementing.

16.12 (Comparison) Design a combinational circuit compare(n) defined as follows.

Inputs: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n.
Output: LT,EQ,GT ∈ {0,1}.
Functionality:

(GT,EQ,LT ) △=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1,0,0), if [A⃗] > [B⃗] ,(0,1,0), if [A⃗] = [B⃗] ,(0,0,1), if [A⃗] < [B⃗] .

1. Design a comparator based on a two’s complement subtractor and a zero-tester.

2. Implement your design in Logisim. Verify by yourself that your design is correct. Submit
a printout of your implementation.

16.13 (one’s complement adder/subtractor) Design an adder/subtractor with respect to
one’s complement representation.

16.14 (sign-magnitude adder/subtractor) Design an adder/subtractor with respect to sign-
magnitude representation.
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So far we have focused only on combinational circuits. It is time to deal with circuits that
have a memory. Memory, in principle, means that the output depends not only on the input
but also on the “history”. However, if we wish to refer to the history, then we need a notion of
time. So before we consider a memory device we must address the issue of time.

Time in digital logic is defined by a special signal called the clock. The clock signal is not
a clock in everyday terms; it is simply a periodic signal that alternates between zero and one.
The alternations help us partition time into disjoint intervals, called clock cycles.

Bits are stored in a special memory device called a flip-flop. The definition of flip-flops
is rather elaborate and requires that the input be stable during a critical segment. One may
wonder why such a complicated definition is required. We prove that flip-flops with empty
critical segments do not exist.

17.1 The clock

Synchronous circuits depend on a special signal called the clock. In practice, the clock is
generated by rectifying and amplifying a signal generated by special non-digital devices (e.g.,
crystal oscillators). Since our course is about digital circuits, we use the following abstraction
to describe the clock.

Definition 17.1 A clock is a periodic logical signal that oscillates instantaneously between
logical one and logical zero. There are two instantaneous transitions in every clock period:
(i) in the beginning of the clock period, the clock transitions instantaneously from zero to one;
and (ii) at some time in the interior of the clock period, the clock transitions instantaneously
from one to zero.

Figure 17.1 depicts a clock signal. We use the convention that the clock rise occurs in the
beginning of the clock period. Note that we assume that the transitions of the clock signal are
instantaneous; this is obviously impossible in practice. We show later how we get around this
unrealistic assumption.

logical level

0

1
pulse width

time

clock fall clock rise

clock period

Figure 17.1: A clock signal.

Notation and Terminology. We denote the clock signal by clk. The clock pulse is the
period of time within a clock period during which the clock equals one (see Fig. 17.1). The
duration of the clock pulse is denoted by clkpw. The clock period is denoted by ϕ(clk). A
clock signal clk is symmetric if clkpw = ϕ(clk)/2. A clock is said to have narrow pulses if
clkpw < ϕ(clk)/2. A clock is said to have wide pulses if clkpw > ϕ(clk)/2. See Figure 17.2
for three examples.
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logical level

0

1

time

(A)

(B)

(C)

logical level

0

1

time

logical level

0

1

time

Figure 17.2: (A) A symmetric clock (B) A clock with narrow pulses (C) A clock with wide
pulses.
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Clock cycles. A signal clock partitions time into discrete intervals. Throughout this chapter
we denote the starting time of the ith clock periods by ti. We refer to the half-closed interval[ti, ti+1) as clock cycle i. This convention avoids overlaps or gaps between clock periods. From
a practical point of view, one could use open or closed intervals instead to defined clock cycles.

17.2 Edge-triggered Flip-Flop

In this section we define edge-triggered flip-flops.

Definition 17.2 An edge-triggered flip-flop is defined as follows.

Inputs: A digital signal D(t) and a clock clk.

Output: A digital signal Q(t).
Parameters: Four parameters are used to specify the functionality of a flip-flop:

• Setup-time denoted by tsu,

• Hold-time denoted by thold,

• Contamination-delay denoted by tcont, and

• Propagation-delay denoted by tpd.

These parameters satisfy −tsu < thold < tcont < tpd. We refer to the interval (ti−tsu, ti+thold)
as the critical segment Ci and to the interval [ti + tcont, ti + tpd] as the instability segment
Ai. See Figure 17.3 for a depiction of these parameters.

Functionality: If D(t) is stable during the critical segment Ci, then Q(t) = D(ti) during the
interval (ti + tpd, ti+1 + tcont).

Ci

clk

Ai

Figure 17.3: The critical segment Ci = (ti − tsu, ti + thold) and instability segment Ai = [ti +
tcont, ti + tpd] corresponding the clock period starting at ti.

The definition of edge-triggered flip-flops is a rather complicated, so we elaborate.

1. The assumption −tsu < thold < tcont < tpd implies that the critical segment Ci and the
instability segment Ai are disjoint.
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2. If D(t) is stable during the critical segment Ci, then the value of D(t) during the critical
segment Ci is well defined and equals D(ti).

3. The flip-flop samples the input signal D(t) during the critical segment Ci. The sampled
value D(ti) is output during the interval (ti + tpd, ti+1 + tcont). Sampling is successful only
if D(t) is stable while it is sampled. This is why we refer to Ci as a critical segment.

4. If the input D(t) is stable during the critical segments {Ci}i, then the output Q(t) is
stable in between the instability segments {Ai}i.

5. The stability of the input D(t) during the critical segments depends on the clock period.
We will later see that slowing down the clock (i.e., increasing the clock period) helps in
achieving a stable signal D(t) during the critical segments.

Figure 17.4 depicts a simplified timing diagram of a flip-flop. The x-axis corresponds to time.
A light gray interval means that the signal is stable during this interval. A dark gray interval
means that the signal may be unstable. Note that if D(t) = x during the critical segment Ci,
then Q(t) = x during the interval (ti + tpd, ti+1 + tcont).

Ci Ai Ci+1 Ai+1

tpd

tcont tcont

clk

D(t)
tsu

thold

Q(t)

x

x

y

y

Figure 17.4: A simplified timing diagram of an edge-triggered flip-flop

Figure 17.5 depicts a schematic of an edge-triggered flip-flop. Note the special “arrow” that
marks the clock input port. We refer to an edge-triggered flip-flop, in short, as a flip-flop.

Q

clk ff

D

Figure 17.5: A schematic of an edge-triggered flip-flop

17.3 Arbitration∗

Arbitration in the context of digital design is the problem of deciding which event occurs first.
For the sake of simplicity we focus on the event that the digital interpretation of an analog
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signal becomes 1. Hence, an arbiter is supposed to determine which of two signals reaches first
the value one. We formally define arbitration as follows.

Definition 17.3 An arbiter is a circuit defined as follows.

Inputs: Non-decreasing analog signals A0(t),A1(t) defined for every t ≥ 0.

Output: An analog signal Z(t).
Functionality: Assume that A0(0) = A1(0) = 0. Define Ti, for i = 0,1, as follows:

Ti
△

= inf{t ∣ dig(Ai(t)) = 1}.
Let t′

△

= 10 +max{T0, T1}. The output Z(t) must satisfy, for every t ≥ t′,

dig(Z(t)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if T0 < T1 − 1

1 if T1 < T0 − 1

0 or 1 otherwise.

Note that if T0 or T1 equals infinity, then t′ equals infinity, and there is no requirement on the
output Z(t). The idea is that the arbiter circuit is given 10 time units starting from max{T0, T1}
to determine if T0 < T1 or T1 < T0. We refer to the case in which ∣T0 − T1∣ ≤ 1 as a “tie”. The
arbiter is not required to make a specific decision if a tie occurs. However, even in the case of
a tie, the arbiter must make some decision after 10 time units and its output Z(t) must have a
logical value.

Arbiters are very important in many applications since an arbiter determines the order
between events. For example, an arbiter can determine which message arrived first in a network
switch.

We will show in this chapter that, under very reasonable assumptions, arbiters do not exist.
Moreover, we will show that a flip-flop with an empty critical segment can be used to implement
an arbiter. The lesson is that flip-flops without critical segments do not exist.

17.4 Arbiters - an impossibility result∗

In this section we prove that arbiters do not exist.

Claim 17.1 There does not exist a circuit C that implements an arbiter.

Proof: Let C denote an analog circuit with inputs A0(t),A1(t) and output Z(t). Define A0(t)
to be the analog signal that rises linearly in the interval [0,100] from 0 to Vin,high, and for every
t ≥ 100, A0(t) = Vin,high. Let x denote a parameter that defines A1(t) as follows: A1(t) rises
linearly in the interval [0,100 + x] from 0 to Vin,high, and for every t ≥ 100 + x, A1(t) = Vin,high.
Let f(x) denote the function that describes the value of Z(200) (i.e., the value of Z(t) at time
t = 200) when fed by the signals A0(t) and A1(t). We study the function f(x) in the interval
x ∈ [−2,2]. We make the following observations:

1. f(−2) ≥ Vout,high. The reason is that if x = −2, then T0 = 100 and T1 = 98. Hence A1(t)
“wins”, and by time t = 200, the arbiter’s output should stabilize on the logical value 1.
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2. f(2) ≤ Vout,low. The reason is that if x = 2, then T0 = 100 and T1 = 102. Hence A0(t)
“wins”, and dig(Z(200)) = 0.

3. f(x) is continuous in the interval [−2,2]. This is not a trivial statement and its formal
proof is not within the scope of this course. We provide an intuitive proof of this fact.
The idea of the proof of the continuity of f(x) is that the output Z(200) depends on the
following: (i) The initial state of the device C at time t = 0. We assume that the device
C is in a stable state and that the charge is known everywhere. (ii) The signal Ai(t) is
continuous in the interval [0,200], for i = 0,1.

An infinitesimal change in x affects only A1(t) (i.e., the initial state of the circuit and
A0(t) are not affected by x). Moreover, the difference in energy of A1(t) corresponding
to two very close values of x is infinitesimal. Hence, the difference in Z(200) for two very
close values of x is also infinitesimal. This is the same assumption that we make with
respect to noise, namely, since noise is small, its effect on the output is also small.

If this were not the case, then noise would cause uncontrollable changes in Z(t) and the
circuit C would not be useful anyhow.

By the Mean Value Theorem, it follows that, for every y ∈ [Vout,low, Vout,high], there exists an
x ∈ [−2,2] such that f(x) = y. In particular, choose a value y for which dig(y) is not logical.
We conclude that circuit C is not a valid arbiter since its output can be forced to be non-logical
way past the time it should be logical. ✷

Claim 17.1 and its proof are very hard to grasp at first. It seems to imply some serious flaw
in our perception. Among other things, the claim implies that there does not exist a perfect
judge who can determine the winner in a 100-meters dash. This statement remains true even
in the presence of high speed cameras located at the finish line and even if the runners run
slowly. Moreover, the judge is given several hours to decide, and if the running times of the
winner and runner-up are within a second, then the judge may decide arbitrarily! Does this
mean that races are pointless?! We just proved that, for every judge, there exist two runners
whose running times are such that the judge still hangs after an hour?

Our predicament can be clarified by the following example depicted in Figure 17.6. Consider
a player whose goal is to throw a ball past an obstacle so that it rolls past point P . If the ball is
rolled at a speed above v′, then it will pass the obstacle and then roll past point P . If the ball is
thrown at a speed below v′ it will not pass the obstacle. The judge is supposed to announce her
decision 24 hours after the player throws the ball. The judge’s decision must be either “passed”
or “did not pass”. Seems like an easy task. However, if the player throws the ball at speed
v′, then the ball reaches the tip of the obstacle and may remain there indefinitely long! If the
ball remains on the obstacle’s tip 24 hours past the throw, then the judge cannot announce her
decision.

We refer to the state of the ball when resting on the tip of the obstacle as a meta-stable
state of equilibrium (see Fig. 17.7). Luckily, throwing the ball so that it rests on the tip of
the obstacle is a very hard task. Suppose there is some probability distribution for the speed
of the ball when thrown. Unless this probability distribution is pathological, the probability
of obtaining a meta-stable state is small. Moreover, the probability of meta-stability occurring
can be reduced by sharpening the tip of the obstacle or giving the arbiter more time to decide.
This ability to control the probability of the event that a decision cannot be reached plays
a crucial role in real life. In VLSI chips, millions of transistors transition from one state to
another millions of times per second. If even one transistor is “stuck” in a meta-stable state,
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player

ball

obstacle

P

Figure 17.6: A player attempting to roll a ball so that it passes point P .

Figure 17.7: The event of metastability

then the chip might output a wrong value. By reducing the probability of meta-stability, one
can estimate that meta-stability will not happen during the life-time of the chip (a lightening
will hit the chip before meta-stability happens).

The consequence of this discussion is that Claim 17.1 does not make judges unemployed
just as a coin toss is not likely to end up with the coin standing on its perimeter (but bear in
mind that it could!). The moral of Claim 17.1 is that: (i) Certain tasks are not achievable with
probability 1. If we consider the random nature of noise, we should not be surprised at all. In
fact, noise could be big enough to cause the digital value of a signal to flip from zero to one. If
the noise margin is large enough, then such an event is not likely to occur. However, there is
always a positive probability that such an error will occur. (ii) Increasing the amount of time
during which the arbiter is allowed to reach a decision (significantly) decreases the chances of
meta-stability. As time progresses, even if the ball is resting on the tip of the obstacle, it is likely
to fall to one of the sides. Note, however, that increasing the clock rate means that “decisions”
must be made faster (i.e., within a clock period) and the chance of meta-stability increases.

17.5 Necessity of critical segments∗

In this section we present a reduction from flip-flops without critical segments to arbiters. Since
arbiters do not exist, the implication of this reduction is that flip-flops without critical segments
do not exist as well.

We define a flip-flop without a critical segment as a flip-flop in which the setup-time and
hold-time satisfy tsu = thold = 0. The functionality is defined as follows: For every i, Q(t) is
logical (either zero or one) during the interval t ∈ (ti + tpd, ti+1 + tcont) regardless of whether
D(ti) is logical. If dig(D(ti)) ∈ {0,1}, then dig(Q(t)) = dig(D(ti)) during the interval t ∈(ti + tpd, ti−1 + tcont).
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The definition of a flip-flop without a critical segment is similar to an arbiter. Just as the
arbiter’s decision is free if a tie occurs, the flip-flop is allowed to output zero or one if D(ti) is
not logical. However, the output of the flip-flop must be logical once the instability segment
ends.

Consider the circuit depicted in Figure 17.8 in which the flip-flop is without a critical seg-
ment. Assume that the parameters tcont and tpd are significantly smaller than one time unit
(e.g., at most 10−9 second, where one time unit equals one second). Assume also that the in-
tervals during which the inputs A0(t) and A1(t) are non-logical are also very short (e.g., 10−9

second). Let ε = 10−9, and define the signals A0(t) and A1(t) as follows.

A0(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if t < T0 − ε

Vin,high if t > T0
t−(T0−ε)

ε
⋅ Vin,high if t ∈ (T0 − ε,T0).

A1(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if t < T1 − ε

Vin,high if t > T1
t−(T1−ε)

ε
⋅ Vin,high if t ∈ (T1 − ε,T1).

Z(t)

A0(t) ff

A1(t)

Figure 17.8: An arbiter based on a flip-flop without a critical segment.

Note that the signal A0(t) is input as a clock to the flip-flop. This is not a standard clock
signal; it has one single transition from low to high. This transition occurs at time t = T0.
Claim 17.2 uses only one “tick of the clock”, so we may regard A0(t) as a clock with a very
long period.

Claim 17.2 The circuit depicted in Figure 17.8 is an arbiter.

Proof: We need to show that: (i) if T1 < T0 − 1, then dig(Z(t)) = 1, for every t ≥ T0 + tpd, and
(ii) if T0 < T1 −1, then dig(Z(t)) = 0, for every t ≥ T0 + tpd. The case T1 −1 ≤ T0 ≤ T1 +1 is solved
because the flip-flop’s output Z(t) is always logical at time T0 + tpd.

Indeed, the transition of the clock input from zero to one is completed at time T0. At
this time, the flip-flop samples its input A1(T0). If dig(A1(T0)) ∈ {0,1}, then dig(Z(t)) =
dig(A1(T0)) during the interval (T0 + tpd,∞). Note that the signal A1(t) transitions from zero
to one at time T1.

If T1 < T0 − 1, then at time T0, the signal A1(t) is already high. Thus, dig(A1(T0)) = 1, and
hence, dig(Z(t)) = 1, for every t ≥ T0 + tpd, as required.

If T0 < T1 − 1, then dig(A1(T0)) = 0. It follows that dig(Z(t)) = 0, for every t ≥ T0 + tpd, as
required. ✷

Claims 17.1 and 17.2 imply that a flip-flop without a critical segment does not exist. In
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other words, for every flip-flop, if there is no critical segment requirement, then there exist input
signals that can cause it to output a non-logical value outside of the instability segment.

Corollary 17.3 There does not exist an edge-triggered flip-flop without a critical segment.

17.6 A Timing Example

Figure 17.9a depicts a circuit consisting of two identical flip-flops and a combinational circuit C
in between. A simplified timing diagram of this circuit is depicted in Figure 17.9b. Instead of
drawing the clock signal, only the times ti and ti+1 are marked on the time axis. In addition, the
critical segment and instability segment are depicted for each clock period. The digital signals
D0(t),Q0(t),D1(t),Q1(t) are depicted using a simplified timing diagram. In this diagram,
intervals during which a digital signal is guaranteed to be stable are marked by a light gray
block. On the other hand, intervals during which a digital signal is possibly non-logical are
marked by a dark gray block.

In this example, we make the pessimistic assumption that the signal D0(t) is stable only
during the critical segments. As a result, the signal Q0(t) is stable in the complement of the
instability segments Ai and Ai+1. The signal D1(t) is output by the combinational circuit C.
We assume that the contamination delay of the combinational circuit is zero, and thus, the
signal D1(t) becomes instable as soon as Q0(T ) (the input of C) becomes instable. We denote
the propagation delay of the combinational circuit C by d(C). The signal D1(t) stabilizes at
most d(C) time units after Q0(t) stabilizes.The signal D1(t) is stable during the critical segment
Ci+1, and therefore, Q1(t) is stable during the complement of the instability segments.

From a functional point of view, stability of D0(t) during the critical segments implies that
D0(ti) is logical. We denote D0(ti) by X ∈ {0,1}. During the interval (ti + tpd, ti+1 + tcont) the
flip-flop’s output Q0(t) equals X. The circuit C outputs a logical value f(X) ∈ {0,1} which is a
Boolean function of X. The value f(X) is output by C during the interval (ti+ tpd+d(C), ti+1+
tcont). It follows that Q1(t) equals f(X) during the interval (ti+1 + tpd, ti+2 + tcont).
17.6.1 Non-empty intersection of Ci and Ai

The timing analysis fails if the critical segment Ci and the instability segment intersect, namely,

Ci ∩Ai ≠ ∅.

This could happen, if thold > tcont (in contradiction to Definition 17.2).

We now explain why this can cause the circuit to fail (see Figure 17.10). The period during
which D1(t) is guaranteed to be stable is (ti + tpd + d(C), ti+1 + tcont). However, if tcont < thold,
then D1(t) is not guaranteed to be stable during the critical segment Ci+1. This is a violation
of the assumptions we require in order to guarantee correct functionality. As a result of this
violation, the signal Q1(t) is unspecified outside the instability segments.

In many flip-flop implementations it so happens that thold > tcont. How are such flip-flops
used? The answer is that one needs to rely on the contamination delay of the combinational
circuit C. Let cont(C) denote the contamination delay of C. The interval during which D1(t)
is guaranteed to be stable is

(ti + tpd + d(C), ti+1 + tcont + cont(C)).
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(a) A circuit with two identical flip-flops and a combinational circuit in between.
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(b) A simplified timing diagram. Dark gray areas denote potential instability
of a signal. Light gray areas denote intervals during which the signal is
guaranteed to be stable.
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(c) Flow of data.

Figure 17.9: A circuit and its simplified timing analysis.
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D0(t)
tsu

thold

D1(t)

Q0(t)

Q1(t)
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tcont

tpd

tcont
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Figure 17.10: The simplified timing diagram in the case that Ai ∩ Ci ≠ ∅. Note that D1(t)
is not guaranteed to be stable during the critical segment Ci+1. The hatched pattern denotes
intervals during which the signal is unspecified.

If tcont + cont(C) > thold, then the signal D1(t) is stable during the critical segment Ci+1, and
correct functionality is obtained.

In this book we simplify by adopting the pessimistic assumption that the contamination
delay of every combinational circuit is zero. This means that we need to be more restrictive
with respect to flip-flops and require that the critical segment and the instability segments are
disjoint. Note, however, that even if the contamination delay of C is positive (although we
assumed it is zero), then our analysis is still valid. Hence, assuming zero contamination delay
of combinational circuits does not introduce errors even if the contamination delay is positive.

17.7 Bounding Instability

Flip-flops play a crucial role in bounding the segments of time during which signals may be
instable. Informally, uncertainty increases as the segments of stability become shorter. In this
section we discuss the role of flip-flops in bounding instability.

Figure 17.11 depicts two circuits: (a) a chain of k = 3 inverters, and (b) a chain of k = 3 flip-
flops. We use the same naming convention in both circuits. Namely, we index the k components
from 0 to k − 1. The input of the ith component is denoted by Di, and the output is denoted
by Qi(t). Note that Di+1(t) is fed by Qi(t).

The timing diagrams of the two chains are depicted in Figure 17.12. Part (a) shows the
timing analysis for a chain of k inverters. The input D0(t) is stable for a “long” time. Each
inverter along the chain decreases the segment of stability by tpd(inv). Thus, uncertainty
increases along the chain of inverters.

On the other hand, instability in a chain of flip-flops is confined to the instability segments{Ai}i of the flip-flops. Formally, if Dj(t) is stable during the interval (ti − tsu, ti + thold), then
Qj(t) is stable during the interval (ti + tpd, ti+1 + tcont).
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Figure 17.11: A chain of k inverters and a chain of k flip-flops.
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(a) Timing diagram of a chain of k inverters
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(b) Timing diagram of a chain of k flip-flops

Figure 17.12: Comparison of segments of instability in two chains.
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Figure 17.13: A timing diagram of a D-Latch.

17.8 Other types of memory devices

Edge triggered flip-flops are not the only memory device that exist. We briefly overview some
of these devices.

17.8.1 D-Latch

A D-latch, unlike an edge-triggered flip-flop, is characterized by three parameters tsu, thold, and
d. The critical segment is defined with respect to the falling edge of the clock. Let t′i denote
the time of the falling edge of the clock during the ith clock cycle. The critical segment of a
D-latch is defined to be Ci

△

= (t′i − tsu, t′i + thold). In addition, the D-latch is characterized by a
combinational delay d. The functionality of a D-latch is defined as follows (see Figure 17.13).

1. During the interval [ti + d, t′i), the output Q(t) satisfies: Q(t) =D(t), provided that D(t)
is stable during the interval (t − d, t). We say that the D-latch is transparent during the
interval [ti + d, t′i).

2. During the interval (t′i + thold, ti+1), if D(t) is stable during the critical segment (t′i −
tsu, t

′
i + thold), then Q(t) = D(t′i). We say that the D-latch is opaque during the interval(t′i + thold, ti+1).

Figure 17.13 depicts a timing diagram of a D-latch. During the pulse (ti, t′i) the input D(t)
stabilizes on the value x. Since the D-latch is transparent, after a delay of d, the output Q(t)
equals x. During the critical segment Ci, the input D(t) is stable and equals y. The D-latch is
opaque when the clock is zero. Therefore, during the interval (t′i + d, ti+1) the output equals y.
Note that during the interval (t′i + d, ti+1), the output is not affected by changes in the input.
The input stabilizes on z before ti+1. But the value of D(t) during the interval (t′i + thold) does
not affect the output. After the clock rise in ti+1, the D-latch is transparent again. Therefore,
the output Q(t) equals z after a delay of d.

D-latches are very important devices. In fact, D-latches are the building blocks of flip-flops.
A flip-flop can be built from two D-latches and additional inverters (required to restore the
signals). Design based on D-latches lead to faster designs. However, such designs based on D-
latches require multiple clock phases and are harder to analyze. Although timing with multiple
clock phases is an important and interesting topic, we do not deal with it in this book.
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ce-ff
clk

Q

D

ce(t)

Figure 17.14: A a schematic of a clock enabled flip-flop.

17.8.2 Clock enabled flip-flops

We use the terminology and notation of an edge-triggered flip-flop in the definition of a clock
enabled flip-flop.

Definition 17.4 A clock enabled flip-flop is defined as follows.

Inputs: Digital signals D(t),ce(t) and a clock clk.

Output: A digital signal Q(t).
Functionality: If D(t) and ce(t) are stable during the critical segment Ci, then for every

t ∈ (ti + tpd, ti+1 + tcont)
Q(t) = ⎧⎪⎪⎨⎪⎪⎩

D(ti) if ce(ti) = 1

Q(ti) if ce(ti) = 0.

Figure 17.14 depicts a schematic of a clock enabled flip-flop. Note the additional ce(t) port.
We refer to the input signal ce(t) as the clock-enable signal. Note that the input ce(t)

indicates whether the flip-flop samples the input D(t) or maintains its previous value.

Part (A) of Figure 17.15 depicts a successful implementation of a clock enabled flip-flop.
This implementation uses a mux and an edge-triggered flip-flop. Part (B) of Figure 17.15
depicts a weak implementation of a clock enabled flip-flop.

clk ff

mux

01

Q(t)

D(t)

ce(t)

(A)

ff

Q(t)

(B)

D(t)

clk

ce(t)
and

Figure 17.15: (A) a successful implementation of a clock enabled flip-flop. (B) A wrong design.
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Non-Logical Level

t

Ai(t)Ai(t)

t

(A) (B)

Non-Logical Level

ε

Figure 17.16: (A) Slowly rising signals Ai(t) used in proof of Claim 17.1. (B) Fast signals Ai(t).

The main weakness of the design depicted in part (B) is that the output of the and-gate is
not a clock signal. For example, the output of the and-gate is allowed to fluctuate when ce(t)
is not logical. Such fluctuations (called glitches) can cause the flip-flop to sample the input
when not needed. In addition, the transitions of the output of the and-gate might be slow and
require increasing the hold time. Moreover, in some technologies, the flip-flop does not retain
the stored bit forever. For example, consider the case in which the stored value is retained only
for 2-3 clock cycles. In such a case, if the clock-enable signal is low for a long period then the
flip-flop’s output may become non-logical.

17.9 Summary

In this chapter we presented memory devices called flip-flops. We consider using flip-flops in
the presence of a clock signal. The flip-flop samples the value of the input towards the end of a
clock cycle and outputs the sampled value during the next clock cycle. Flip-flops play a crucial
role in bounding the segments of time during which signals may be instable.

In a sense, flip-flops and combinational circuits have opposite roles. Combinational circuits
compute interesting Boolean functions but increase uncertainty (namely, lengthen segments of
time during which signals may be instable). Flip-flops, on the other hand, output the same
value that is fed as input but they increase certainty.

We considered a task called arbitration. We proved that no circuit can implement an arbiter.
We then proved that a flip-flop with an empty critical segment can be used to build an arbiter.
This proves that a flip-flop must have a non-empty critical segment.

Problems

17.1 Is an edge-triggered flip-flop a combinational gate?

17.2 Does the proof of Claim 17.1 hold only if the signals Ai(t) rise “slowly”? Prove the claim
with respect to non-decreasing signals Ai(t) such that the length of the interval during which
dig(Ai(t)) is non-logical equals ε. (Figure 17.16 depicts slow and fast signals.)



17.9. SUMMARY 277

ffnew

ff

C1

C2

D

clk

Q

Figure 17.17: A schematic of a “new” flip-flop that is composed of a flip-flop and two additional
combinational circuits C1 and C2.

17.3 Assume that we have an edge-triggered flip-flop ff in which thold > tcont. Suppose that
we have an inverter with a contamination delay cont(inv) > 0. Suggest how to design an edge-
triggered flip-flop ff′ that satisfies thold(ff′) < tcont(ff′). What are the parameters of ff′?

17.4 Compute the parameters of the clock-enabled flip-flop depicted in part (A) of Figure 17.15
in terms of the parameters of the edge-triggered flip-flop and the mux.

17.5 Figure 17.17 depicts a schematic of a flip-flop ffnew. This new flip-flop is composed
of a regular flip-flop and two combinational circuits C1 and C2. The parameters of the flip-
flop ff are tsu ,thold , tcont and tpd. The propagation delay and contamination delay of the
combinational circuit Ci are tpd(Ci), cont(Ci) respectively, for i ∈ {1,2}.
What are the parameters t′su ,t′hold , t′cont and t

′

pd of the new flip-flop ffnew?

17.6 Design a circuit that satisfies the following specification:

Input: {X(t)}∞t=0, where X(t) ∈ {0,1} for every clock cycle t, and a clock signal clk.

Output: {Y (t)}∞t=0, where Y (t) ∈ {0,1} for every clock cycle t. {Z(t)}∞t=0, where Z(t) ∈ {0,1}
for every clock cycle t.

Functionality:

∀t ≥ 1 ∶ Y (t) =xor(X(0), . . . ,X(t − 1)) ,
∀t ≥ 0 ∶ Z(t) =xor(X(0), . . . ,X(t)) .

1. Implement your design using Logisim. Submit a printout of your design.

2. Simulate two different inputs of length 5: (i) 01010, (ii) 11111 . Verify by yourself that
your design is correct (make sure you know how to initialize the flip-flops, and to see the
values of a signal in each clock cycle).
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In this chapter we present circuits that serve as memory modules. The first type of circuit,
called a parallel load register, is simply built of identical copies of clock enabled flip-flops. The
second type, called a shift register, remembers the input from k clock cycles ago. Such a shift
register is build from k clock enabled flip-flops connected in chain.

We also consider memory circuits. The first circuit, called a Random Access Memory (RAM)
is capable of storing and reading values. It is like a blackboard divided into many cells. We
can write a value in each cell, and we can read the value written in a cell. When we write in a
cell, it erases the previous value so that only the new value is written in the cell. The second
memory circuit is called a Read Only Memory (ROM). It is like a blackboard in which a value
has been written in each cell with permanent ink. The contents of each cell can not be erased
or written over, and we can only read values stored in the cells.

The functionality of a flip-flop is complicated and following the timing is tedious. Instead, we
propose an abstract model called the zero delay model. In this simplified model, all transitions
are instantaneous. The zero delay model enables us to separate between functionality and
timing so that we can focus on functionality.

18.1 The Zero Delay Model

In the zero delay model transitions of all signals are instantaneous. This means that the propaga-
tion delay and contamination delay of combinational circuits is zero. In addition, the parameters
of flip-flops satisfy:

tsu = ti+1 − ti,

thold = tcont = tpd = 0.

We emphasize that this model is used only as a simplified model for specifying and simulating
the functionality of circuits with flip-flops.

The clock period, in the zero delay model, equals 1. That is, ti+1 − ti = 1, for every i. Hence,
the duration of the ith clock cycle is the interval [ti, ti+1) = [i, i + 1).

Since all transitions are instantaneous, we may assume that each signal is stable during each
clock cycle. Let Xi denote the digital value of the signal X during the i’th clock cycle.

Under the zero delay model, the functionality of a flip-flop is specified as follows:

Q(t) =D(t − 1).
Since each signal is stable during each clock cycle, we could also write Qi =Di−1. The meaning
of this specification is that as follows. The critical segment Ci equals [ti−1, ti). The value of
D(t) is stable during the critical segment [ti−1, ti). This value, denoted by Di−1, is sampled by
the flip-flop during the clock cycle (i−1). In the next clock cycle [ti, ti+1), the flip-flop’s output
Q(t) equals the value of the input sampled during the previous cycle.

18.1.1 Example: Sequential xor

Consider the circuit depicted in Figure 18.1. Let Ai denote the value of the input A during the
interval [ti, ti+1).
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clk

Q

D
ff

A

xor

Z

Y

(a)

i Ai Yi Zi
0 0 0 0
1 0 0 0
2 1 1 0
3 0 1 1
4 0 1 1
5 1 0 1
6 0 0 0
7 1 1 0
8 0 1 1

(b)

Figure 18.1: A sequential xor circuit. (a) schematic (b) logical simulation in the zero delay
model. We assume that the flip-flop is initialized to zero. Note that Zi+1 = Yi and Yi =
xor(Ai,Zi).
18.2 Registers

A term register is used to define a memory device that stores a bit or more. There are two
main types of register depending on how their contents are loaded.

18.2.1 Parallel Load Register

Definition 18.1 An n-bit parallel load register is specified as follows.

Inputs: (i) D[n − 1 ∶ 0](t), (ii) ce(t), and (iii) a clock clk.

Output: Q[n − 1 ∶ 0](t).
Functionality:

Q[n − 1 ∶ 0](t + 1) = ⎧⎪⎪⎨⎪⎪⎩
D[n − 1 ∶ 0](t) if ce(t) = 1

Q[n − 1 ∶ 0](t) if ce(t) = 0.

An n-bit parallel load register is simply built from n clock enabled flip-flops. The ith flip-flop
is fed by D[i] and CE and outputs Q[i]. Fig. 18.2 depicts a 4-bit parallel load register.

18.2.2 Shift Register

A shift register is also called a serial load register.

Definition 18.2 A shift register of n bits is defined as follows.
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Figure 18.2: A 4-bit parallel load register:(a) a shorthand drawing of the schematics of a 4-
bit parallel load register. (b) an elaborated drawing of the schematics of a 4-bit parallel load
register.

Inputs: D[0](t) and a clock clk.

Output: Q[n − 1](t).
Functionality: Q[n − 1](t + n) =D[0](t).

An n-bit shift register is built from a chain of n flip-flops, indexed from 0 to n − 1. The
ith flip-flop is fed by D[i] and outputs Q[i]. Since the flip-flops are chained, D[i + 1] ← Q[i].
Fig. 18.3 depicts a 4-bit shift register.

Q[3]

clk clk clk clk

1

1

1

1

1

1

1

1

ff0ff1ff2ff3

D[3] D[2] D[1] D[0]

Q[0]Q[1]Q[2]

Figure 18.3: A 4-bit shift register.

18.3 Random Access Memory (RAM)

The module called Random Access Memory (RAM) is an array of memory cells. Each memory
cell stores a single bit. In each cycle, a single memory cell is accessed. Two operations are
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i D[3 ∶ 0] ce Q[3 ∶ 0]
0 1010 1 0000
1 0101 1 1010
2 1100 0 0101
3 1100 1 0101
4 0011 1 1100

(a) Simulation of parallel load reg-
ister

i D[0] Q[3 ∶ 0]
0 1 0000
1 1 0001
2 1 0011
3 0 0111
4 1 1110

(b) Simulation of shift
register

Table 18.1: Comparison of simulations of a parallel load register and a shift register. We assume
all flip-flops are initialized to zero.

supported: read and write. In a read operation, the contents of the accessed memory is output.
In a write operation, a new value is stored in the accessed memory.

The number of memory cells is denoted by 2n. Each cell has a distinct address between 0
and 2n − 1. The cell to be accessed is specified by an n-bit string called Address.

The array of memory cells is denoted by M[2n − 1 ∶ 0]. Let M[i](t) denote the value stored
in the ith entry of the array M during clock cycle t.

The module ram(2n) is specified using the zero-delay model as follows (a schematic symbol
is depicted in Figure 18.4):

Definition 18.3 A ram(2n) is specified as follows.

Inputs: Address[n − 1 ∶ 0](t) ∈ {0,1}n,Din(t) ∈ {0,1}, R/W (t) ∈ {0,1} and a clock clk.

Output: Dout(t) ∈ {0,1}.
Functionality : The functionality of a ram is specified by the following program:

1. data: array M[2n − 1 ∶ 0] of bits.
2. initialize: ∀i ∶M[i] ← 0.

3. For t = 0 to ∞ do

(a) Dout(t) =M[⟨Address⟩](t).
(b) For all i ≠ ⟨Address⟩: M[i](t + 1)←M[i](t).
(c)

M[⟨Address⟩](t + 1)← ⎧⎪⎪⎨⎪⎪⎩
Din(t) if R/W (t) = 0

M[⟨Address⟩](t) else.
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We note that the value of Dout(t) in a write cycle (i.e., when R/W (t) = 0) is not really
important. For simplicity we defined it to be the “old” value of the memory entry, i.e., the
value before Din(t) is stored in M[⟨Address⟩].

Din

clk

R/W
ram(2n)

Dout

Address[n − 1 : 0]

Figure 18.4: A schematic of a ram(2n).

18.3.1 A simple Implementation of a RAM

In this section we present a simple implementation of a ram(2n), the schematics of which is
depicted in Figure 18.5. The implementation consists of the following three parts:

1. An address decoder.

2. An array of 2n memory cells.

3. A (2n ∶ 1)-mux.
Each memory cell is specified as follows:

Definition 18.4 A single bit memory cell is defined as follows.

Inputs: Din(t), R/W (t), sel(t), and a clock clk.

Output: Dout(t).
Functionality: Assume that Dout is initialized zero, i.e., Dout(0) = 0. The functionality is de-

fined according to the following cases. Dout(t+1)← ⎧⎪⎪⎨⎪⎪⎩
Din(t) if sel(t) = 1 and R/W (t) = 0

Dout(t) otherwise.

Note that we do not need to specify the value of Dout(t) if sel(t) = 0. We do so for simplicity.
An implementation of a memory cell is depicted in Fig. 18.6.

18.4 Read-Only Memory (ROM)

The module called Read-Only Memory (ROM) is similar to a RAM, except that write operations
are not supported. This means that the contents stored in each memory cell are preset and
fixed. ROMs are used to store information that should not be changed. For example, the ROM
stores the program that is executed when the computer is turned on.

Definition 18.5 A rom(2n) that implements a Boolean function M ∶ [0..2n − 1] → {0,1} is
defined as follows.

Inputs: Address[n − 1 ∶ 0](t).



18.4. READ-ONLY MEMORY (ROM) 285

M(2n)

2n

2n

1

Address[n− 1 : 0]

n

R/W
1

1

decoder(n)

(2n : 1)− mux

Dout

D[2n − 1 : 0]

B[2n − 1 : 0]

n
Address[n− 1 : 0]

Din

(a)

Address[n − 1 : 0]

2n

2n

1

1

1

Din

1 1

111

R/W
1

R/W
1

R/W
1

Address[n − 1 : 0]

n

decoder(n)

(2n : 1) − mux

Dout

M2n
−1

D[2n
− 1]

Din

1

D[2n
− 1 : 0]

B[2n
− 1 : 0]

1

M1

D[1]

M0

D[0]

DinB[2n
− 1] B[1] B[0]

n

(b)

Figure 18.5: A simplified implementation of a ram(2n): (a) a shorthand drawing of the schemat-
ics of ram(2n). (b) an elaborated drawing of the schematics of ram(2n).
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sel ∧ not(R/W )
ff

clk
ce

Din

Dout

Figure 18.6: An implementation of a memory cell.

Output: Dout(t).
Functionality :

Dout =M[⟨Address⟩] .
A rom(2n) can be implemented by a (2n ∶ 1)-mux, where the ith data input equals M[i].

An implementation is depicted in Fig. 18.7.

Address[n− 1 : 0]

1

2n

(2n : 1)−muxn

Dout

M [2n − 1 : 0]

Figure 18.7: An implementation of a rom(2n).

18.5 Summary

In this chapter we defined four major memory modules and presented simple implementations
for each module. In practice, memory modules such as RAMs are highly optimized circuits that
are implemented using analog methods.

Problems

18.1 Define and implement a shift register with a clock enable signal ce. When ce = 1, a shift
occurs. When ce = 0, the contents of the register remain unchanged.

18.2 A shift register with a parallel load is a shift register with additional inputs, as follows.
This register has an input D[n− 1 ∶ 0] and an extra input called load ∈ {0,1}. When load = 0, a
shift takes place. When load = 1, the vector D[n − 1 ∶ 0] is stored in the register. Design a shift
register with a parallel load that satisfies this definition.

18.3 Design a random access memory with 2n memory cells, where each cell can store k bits.
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18.4 Design a dual port random access memory with 2n memory cells, where each cell can
store 1 bits. In a dual port memory there are two address inputs A1 and A2, and two data
outputs D1 and D2. In each cycle, either a write operation takes place to the cell M[⟨A1⟩], or
two read operations take place, namely,

D1(t)←M[⟨A1(t)⟩](t) D2(t)←M[⟨A2(t)⟩](t).
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In this chapter we deal with synchronous circuits. We begin with a formal definition that
builds on the definition of combinational circuits. This definition is syntactic, and we must
prove that a circuit that satisfies this definition does what we expect it to do. But how do
we define what it should do? Namely, how do we specify functionality and how do we specify
timing?

We begin with a simple form of synchronous that we call the canonic form. In the canonic
form it is clear what the flip-flops do, where the output is computed, and where we compute the
inputs of the flip-flops. We begin by analyzing the timing of a synchronous circuit in canonic
form. We show that stability during the critical segments of the flip-flops can be achieved
if the clock period is sufficiently long. We also address the painful issue of initialization. The
functionality of a synchronous circuit in canonic form is specified using an abstract model called
a finite state machine.

We then proceed with the timing analysis of synchronous circuit in general. We present two
algorithms for timing analysis. The first algorithm, FEAS, tells us if the timing constraints of
the circuit are feasible. The second algorithm, Min- −Φ, finds the minimum clock period. We
also present an algorithm for simulating a synchronous circuit.

Two tasks are often associated with synchronous circuit. The first task, called analysis, is
to find the finite state machine that specifies the functionality of a given synchronous circuit.
The second task, called synthesis, is to design a synchronous circuit, the functionality of which
is specified by a given finite state machine.

19.1 Definition

The building blocks of a synchronous circuit are combinational gates, wires, and flip-flops. As
in the case of a combinational circuit, a synchronous circuit is a netlist H = (V,N,π). However,
the requirements are somewhat different. First, the graph DG(H) is directed but may contain
cycles. Second, we also use flip-flops, hence Γ includes combinational gates, input/output gates,
and flip-flops (ff and ce-ff). Thus, a vertex may be labeled as a flip-flip.

Since a flip-flop has two inputs D and clk that play quite different roles, we must make
sure that we know the input port of each incoming edge. This task is quite easy since the clock
signal must be fed to the clk input port of each and every flip-flop!

In the following definition we do not deal with the graph G and the labeling π. Instead, we
transform the circuit C to a different circuit C ′ and require that C ′ is a combinational circuit.

Definition 19.1 A synchronous circuit is a circuit C composed of combinational gates, wires,
and flip-flops that satisfies the following conditions:

1. There is an input gate that feeds the clock signal clk.

2. The set of ports that are fed by the clock clk equals the set of clock-inputs of the flip-flops.

3. Let C ′ denote a circuit obtained from C by the following changes: (i) Delete the input
gate that feeds the clock clk and all the wires carrying the clock signal. (ii) Replace each
flip-flop with an output gate (instead of the port D) and an input gate (instead of the port
Q). We require that the circuit C ′ is a combinational circuit.

We emphasize again that in a synchronous circuit the clock signal is connected only to the clock
port of the flip-flops; the clock may not feed other inputs (i.e. inputs of combinational gates or
the D-port of flip-flops). Moreover, every clock-port of a flip-flop is fed by the clock signal.



19.1. DEFINITION 291

Part 3 in the definition of synchronous circuit considers the circuit after the flip-flops are
removed. We refer to this transformation as stripping away the flip-flops. Figure 19.1 depicts
a synchronous circuit C and the corresponding combinational circuit C ′ obtained from C by
stripping away the flip-flops.

clk

ff

and3

clk

ff

or

and3

or

Figure 19.1: A synchronous circuit C and the combinational circuit C ′ obtained from C by
stripping away the flip-flops.

An equivalent way to define a synchronous circuit is to start with a combinational circuit
C ′. Now, flip-flips are added as follows. Of course, the clock port of each flip-flip is fed by the
clock signal. In addition, for each flip-flop, designate a pair consisting of an output-gate and an
input-gate of C ′. We replace this pair by a flip-flop. The D-port of the flip-flop is fed by the
signal that feeds the output-gate, and the Q-port of the flip-flop feeds the signal that is fed by
the input-gate.

Finally, we point out that it is easy to check if a given circuit C is a synchronous circuit. We
simply check if there is a clock signal that is connected to all the clock terminals of the flip-flops
and only to them. Strip the flip-flops away to obtain the circuit C ′. Now, all we need to do is
to check if C ′ is a combinational circuit; a task we have already discussed in Chapter 11.
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Claim 19.1 Every cycle in a synchronous circuit traverses at least one flip-flop.

Proof: Consider a cycle p in a synchronous circuit C. Clearly, p cannot contain an edge that
carries the clock signal. Indeed, the clock signal emanates from an input gate, which is a source,
and cycle cannot contain a source.

Consider the circuit C ′ obtained from C by stripping away the flip-flops. Since p does not
contain edges that carry the clock signal, all the edges of p are also edges in C ′. Since C ′ is
acyclic, it follows that one of the vertices in p is split into a sink and a source. This implies
that p contains a flip-flop, as required. ✷

19.2 The Canonic Form of a Synchronous Circuit

Consider the synchronous circuit depicted in Figure 19.2. The circuit has an input IN , and
output OUT , and internal signals S (for “state”) and NS (for “next state”). We abuse notation
and refer to the combinational circuits λ and δ by the Boolean functions that they implement.
In this example, all the signals in the circuit carry single bits (as normal signals do). However,
we could easily deal with the case in which IN,OUT,S,NS are buses (i.e. multiple-bit signals).

One can transform every synchronous circuit so that it fits the description in Figure 19.2.
This is achieved by: (i) gathering the flip-flops into one group and (ii) duplicating the combi-
national circuits (if necessary) so that we can separate between the combinational circuits that
produce output signals and combinational circuits that produce signals that are fed back to the
flip-flops. This is why we refer to the circuit depicted in Figure 19.2 as a canonic form of a
synchronous circuit.

comb. circuit
λ

comb. circuit
δ

Q D

clk

IN

OUT

S NS

Figure 19.2: A synchronous circuit in canonic form.

19.3 Timing Analysis: the canonic form

In this section we analyze the timing constraints of a synchronous circuit that is given in canonic
form.
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Stability interval. We associate with each signal an interval corresponding to the ith clock
cycle during which the signal is supposed to be stable. We refer to this interval as the stability
interval. We denote the stability interval corresponding to the ith clock cycle of a signal X by
stable(X)i. We denote the digital value of X during the interval stable(X)i by Xi.

The stability interval is part of the specification. When referring to an input X, this means
that we are guaranteed that the input will stable during stable(X)i. When referring to an
output Y , this means that we must design the circuit so that Y will be stable during stable(Y )i.
19.3.1 An Easy Example

Consider the simple synchronous circuit depicted in Fig. 19.3a. A simplified timing diagram of
this circuit is depicted in Figure 19.3b. In this example we do not assume that the two flip-flops
have the same parameters.

We require that the input D0(t) to flip-flop FF1 is stable during the critical segments of
FF1, namely, for every i ≥ 0:

stable(D0)i △= Ci+1(FF1) (19.1)

= (ti+1 − tsu(FF1), ti+1 + thold(FF1)). (19.2)

Note, that the stability interval corresponding to the ith clock cycle of an input of a flip-flop
must contain the critical segment Ci+1. Indeed, in the ith clock cycle, the flip-flop samples its
input at the end of the cycle, at time ti+1.

The stability interval of the output Q0(t) of flip-flop FF1 is defined by

stable(Q0)i △= (ti + tpd(FF1), ti+1 + tcont(FF1)). (19.3)

The rational behind this definition is that if the input D0(t) is stable during every critical
segment Ci, then the output Q0(t) of the flip-flop is stable in the above interval.

Note that we have a problem with the guarantee for the stability interval of Q0 during clock
cycle zero. This is not a minor technical issue! How can we argue anything about the output of
FF1 during clock cycle zero?! To solve this problem, we need an initialization assumption that
tells us what the value of the the output of the flip-flop is during the first clock cycle, and when
is it stable. Indeed, the issue of proper initialization has the role of the induction basis in the
timing analysis of synchronous circuits. We elaborate on this important issue in Section 19.3.5.
In the meantime, assume that Eq. 19.3 holds also for i = 0.

To ensure proper functionality, the input D1(t) must be stable during the critical segments
of flip-flop FF2. Therefore, we define the stability interval of D1(t) as follows:

stable(D1)i △= Ci+1(FF2) (19.4)

= (ti+1 − tsu(FF2), ti+1 + thold(FF2)). (19.5)

The following claim provides a sufficient condition that guarantees that D1(t) is indeed stable
during the stability intervals {stable(D1)i}i≥0.
Claim 19.2 The signal D1(t) is stable during the critical segments of flip-flop FF2 if

∀i ≥ 0 ∶ tpd(FF1) + pd(C) + tsu(FF2) ≤ ti+1 − ti, and (19.6)

thold(FF2) ≤ tcont(FF1) + cont(C). (19.7)
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Proof: The signal D1(t) is output by the combinational circuit C. The circuit C has a
contamination delay cont(C) and a propagation delay pd(C). Since stable(Q0)i satisfies Eq. 19.3
and since D1(t) is output by C, the signal D1(t) is stable during the intervals:

(ti + tpd(FF1) + pd(C), ti+1 + tcont(FF1) + cont(C)). (19.8)

Thus, we require that

Ci+1(FF2) ⊆ (ti + tpd(FF1) + pd(C), ti+1 + tcont(FF1) + cont(C)). (19.9)

Note that Eq. 19.9 is in fact two inequalities:

ti+1 − tsu(FF2) ≥ ti + tpd(FF1) + pd(C)
ti+1 + thold(FF2) ≤ ti+1 + tcont(FF1) + cont(C).

These two inequalities are equivalent to Equations 19.6 and 19.7, respectively, and the claim
follows. ✷

clk

ff1

clk

ff2

combinational
circuit

C

D0(t) Q1(t)
D1(t)Q0(t)

(a) A circuit with two flip-flops and a combinational circuit in between.

pd(C)cont(C)

clk

D0(t)
tsu(FF1)

thold(FF1)

D1(t)

tpd(FF1)
Q0(t)

tcont(FF1)

thold(FF2)

tsu(FF2)

Ci Ai Ci+1 Ai+1

(b) A simplified timing diagram.

Figure 19.3: A simple synchronous circuit. In this example the two flip-flops have different
parameters: tsu(FF2) > tsu(FF1) and thold(FF2) > thold(FF1).
Claim 19.2 teaches us two important lessons:

Minimum clock period: To ensure proper functionality, the clock period cannot be too short.
Namely, the time ti+1 − ti between two consecutive rising clock edges must be longer than
tpd(FF1) + pd(C) + tsu(FF2).
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Use simple flip-flops: Inequality 19.7 is satisfied if tcont(FF1) ≥ thold(FF2). When we defined
a flip-flop we assumed that tcont ≥ thold so that the critical segment and the segment of
instability are disjoint. There are many ways to complicate the task of designing correct
synchronous circuits. One possibility for such a complication is to use two or more types
of flip-flops FF1 and FF2 in which tcont(FF1) < thold(FF2). In such a case, one has to
rely on the contamination delay of the combinational logic between the flip-flop.

19.3.2 Input/Output Timing Constraints

The input/output timing constraints formulate the timing interface between the circuit and
the “external world”. The constraint corresponding to the input tells us when the input is
guaranteed to be stable, and the constraint corresponding to the output tells us when the
circuit’s output is required to be stable. Usually the external world is also a synchronous
circuit. This means that the signal IN is an output of another synchronous circuit. Similarly,
the signal OUT is an input of another synchronous circuit. Hence, it is helpful to think of IN
as the output of a flip-flop and of OUT as the input of a flip-flop.

1. The timing constraint corresponding to IN is defined by two parameters: pd(IN) >
cont(IN) as follows. The stability intervals of signal IN are defined, for every i ≥ 0 by:

stable(IN)i △= (ti + pd(IN), ti+1 + cont(IN)). (19.10)

Recall that ti denotes the starting time of the ith clock period. Note that if pd(IN) ≤
cont(IN), then the stability intervals stable(IN)i and stable(IN)i+1 overlap. This means
that IN is always stable, and hence, constant, which is obviously not an interesting case.
Hence, we require that pd(IN) > cont(IN).

2. The timing constraint corresponding to OUT is defined by two parameters: setup(OUT )
and hold(OUT ) as follows. The stability intervals of signal OUT are defined, for every
i ≥ 0 by:

stable(OUT )i △= (ti+1 − setup(OUT ), ti+1 + hold(OUT )). (19.11)

Note that, as in Eq. 19.1, the timing constraint of OUT is given relative to the end of the
ith cycle (i.e. ti+1) .

Note that there is an asymmetry in the terminology regarding IN and OUT . The parameters
associated with IN are pd(IN) and cont(IN), whereas the parameters associated with OUT
are setup(OUT ) and hold(OUT ). This is not very aesthetic if OUT is itself an input to another
synchronous circuit. The reason for this asymmetric choice is that it is useful to regard IN as
an output of a flip-flip and OUT as an input of a flip-flop (even if they are not). Hence, there
is an analogy between the signals IN and S. Similarly, there is an analogy between the signals
OUT and NS.

19.3.3 Sufficient Conditions

In this section we formulate sufficient conditions for guaranteeing correct functionality and
satisfying the timing constraints of the output signal.
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Timing constraints of internal signals. The only constraint we have for an internal signal
is that the signal NS that feeds a flip-flop is stable during the critical segments. Namely, for
every i ≥ 0,

stable(NS)i △= Ci+1. (19.12)

Note that, as in Eq 19.1, the timing constraint of NS corresponding to clock cycle i is relative
to the end of the ith clock cycle (i.e. the critical segment Ci+1).

When performing a timing analysis of a synchronous circuit in canonic form, we notice that
there are only four maximal paths without flip-flops:

1. the path IN → δ → NS,

2. the path S → δ → NS,

3. the path IN → λ→ OUT , and

4. the path S → λ→ OUT .

If we regard the signal IN to be the output of a flip-flop, and the signal OUT to be an input
to a flip-flop, then we have four paths of the type studied in Fig. 19.3a.

Consider the two paths that end in NS. By Claim 19.2, the timing constraints of NS are
satisfied if:

∀i ≥ 0 ∶ max{pd(IN), tpd(FF )} + pd(δ) + tsu(FF ) ≤ ti+1 − ti, and (19.13)

min{cont(IN), tcont(FF )} + cont(δ) ≥ thold(FF ). (19.14)

Consider the two paths that end in OUT . By Claim 19.2, the timing constraints of OUT
are satisfied if:

∀i ≥ 0 ∶ max{pd(IN), tpd(FF )} + pd(λ) + setup(OUT ) ≤ ti+1 − ti, and (19.15)

min{cont(IN), tcont(FF )} + cont(λ) ≥ hold(OUT ). (19.16)

This leads us to the following claim which is proved by induction on the clock cycle t. (See
Claim 19.6 for a proof of a more general Claim.)

Claim 19.3 The timing constraints of the signals OUT and NS (as stated in Equations 19.11
and 19.12) are satisfied if Equations 19.13-19.16 hold.

We point out that we are left with the assumption that the flip-flop is properly initialized
so that S is stable during stable(S)0. We deal with issue of initialization in Section 19.3.5.

19.3.4 Satisfying the Timing Constrains

What do we need to do to make sure that the timing constraints of a synchronous circuit are
satisfied? In this section we considered the canonic form of synchronous circuit. Claim 19.3
gives us two types of constraints: a minimum clock period and contamination delay greater
than hold time.

The constraints in Eqs. 19.13 and 19.15 are lower bounds on the clock period. All we need to
do is to use a clock period Φ

△

= ti+1 − ti that is large enough. Clearly the longer the propagation
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delay of the combinational logic, the longer Φ must be. This is an important reason to be
interested in combinational circuits with a short propagation delay.

The constraints in Eqs. 19.14 and 19.16 can be regraded as technological constraints. If
we use simple flip-flops in which tcont ≥ thold, then these constraints are satisfied without any
further requirements. If not, then we may need to add extra combinational circuitry (such as
two cascaded inverters) to increase the contamination delay. This extra combinational circuitry
also increases the lower bound on the clock period. So we stick to our recommendation: use
flip-flops with tcont ≥ thold.

We return to the issue of satisfying the timing constraints even when the synchronous circuit
is not in canonic form in Section 19.6.

19.3.5 Initialization

Meeting the timing constraints relies on the circuit being properly initialized. Specifically,
we require that the output of every flip-flop be defined and stable during the interval (t0 +
tpd(FF ), t1 + tcont(FF )).

Consider the flip-flop in the circuit depicted in Fig. 19.3a. How is the first clock cycle [t0, t1)
defined? It is natural to define it as the first clock cycle after power is turned on. In this case,
we know nothing about the output of each flip-flop. In fact, the outputs of flip-flops might be
metastable, and their output might not even be logical!

The natural solution to the problem of initialization is to introduce a reset signal. There are
other situations where resetting the circuit is desirable. For example, a human user presses a
reset button or the operating system decides to reset the system. However, the situation after
power-up combines all the complications associated with reset.

Here we are confronted with a boot-strapping problem: How is a reset signal generated?
Why does a reset signal differ from the the output of the flip-flop? After all, the reset signal
might be metastable. So we must address the issue of guaranteeing a stability interval for the
reset signal.

Not surprisingly, there is no solution to this problem within the digital abstraction. The
reason is that a circuit attempting to generate a reset signal might be in a metastable state.
All we can try to do is reduce the probability of such an event.

We have already discussed two methods to reduce the probability of metastability: (i) allow
slow decisions and (ii) increase the “slope” (i.e., the derivative of the energy). Slowing down
the decision is achieved by using a slow clock in the circuit that generates the reset signal. For
example, the reset circuitry might use a clock frequency of 1KHz while the clock frequency
of the synchronous circuit can be a million times larger). Increasing the slope is achieved by
cascading (i.e., connecting in series) edge-triggered flip-flops. In practice, a special circuit, often
called a reset controller, generates a reset signal that is stable during the first clock period with
very high probability. In fact, the first clock period of the synchronous circuit is defined by the
reset controller.

Assume that the reset signal is output by a flip-flop so that it satisfies two conditions:

reset(t) △= ⎧⎪⎪⎨⎪⎪⎩
1 if t ∈ (t0 + tpd(FF ), t1 + tcont(FF )),
0 if t > t1 + tpd(FF ). (19.17)

Such a reset signal is employed in as depicted in Figure 19.4. We must take into account
the possibility that the output Q of each flip-flop is not logical or stable during the first clock
cycle. Hence, the implementation of the mux that selects between the initial state (a constant
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string) and Q should be such that if reset = 1, then the mux outputs the initial state even Q is
not logical. Again, the details of such an implementation is not within the scope of the digital
abstraction.

comb. circuit

λ

comb. circuit
δ

Q D

clk

IN

OUT

NSS

reset

initial state

0

1
sel

mux

2 : 1-

Figure 19.4: A synchronous circuit in canonic form with reset.

Usually the flip-flop with the multiplexer are encapsulated into a single module called an edge
triggered flip-flop with a reset . Of course, the propagation delay and the contamination delay of
the multiplexer are added to tpd(FF ) and tcont(FF ). Let FF ′ denote an edge triggered flip-flop
with a reset, then tpd(FF ′) = tpd(FF ) + pd(mux) and tcont(FF ′) = tcont(FF ) + cont(mux). On
the other hand, tsu(FF ′) = tsu(FF ) and thold(FF ′) = thold(FF ).

We conclude with the following claim, that resolves the issue of the value of the signal S
and its stability interval in the first clock cycle.

Claim 19.4 If the reset signal satisfies Eq. 19.17, then S(t) is stable during the interval

(t0 + tpd(FF ) + pd(mux), t1 + tcont(FF ) + cont(mux)).
Note that the stability interval of S in the first clock cycle does not depend on the stability of
the flip-flop’s output.

19.4 Functionality: the canonic form

In this section we deal with the functionality of a synchronous circuit in canonic form. Func-
tionality is well defined provided that the following conditions hold:

1. Initialization: the signal S satisfies

(t0 + tpd(FF ), t1 + tcont(FF )) ⊆ stable(S)0 (19.18)

2. Clock period is long enough: Let Φ denote the clock period (i.e., Φ = ti+1 − ti, for every
i ≥ 0). Then,

max{pd(IN), tpd(FF )} + pd(δ) + tsu(FF ) ≤ Φ, and (19.19)

max{pd(IN), tpd(FF )} + pd(λ) + setup(OUT ) ≤ Φ. (19.20)
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3. Hold times are smaller than the contamination delays: formally, we require that:

min{cont(IN), tcont(FF )} + cont(δ) ≥ thold(FF ). (19.21)

min{cont(IN), tcont(FF )} + cont(λ) ≥ hold(OUT ). (19.22)

We denote the logical value of a signal X during the stability interval stable(X)i by Xi.

Claim 19.5 If Equations 19.18- 19.22 hold, then the following relations hold for every i ≥ 0:

NSi = δ(INi, Si)
OUTi = λ(INi, Si)
Si+1 = NSi.

Proof: The proof is by induction on i. The induction basis for i = 0 is proved as follows.
Since S0 is properly initialized (see Eq. 19.18), and since IN is stable during stable(IN)0 (see
Eq. 19.10), it follows that they are both stable during the interval

(t0 +max{pd(IN), tpd(FF )}, t1 +min{cont(IN), tcont(FF )}).
This implies that the signal NS is stable during the interval

(t0 +max{pd(IN), tpd(FF )} + pd(δ), t1 +min{cont(IN), tcont(FF )} + cont(δ)).
By Eq. 19.19 and Eq. 19.21,

(t1 − tsu(FF ), t1 + thold(FF ))
⊆ (t0 +max{pd(IN), tpd(FF )} + pd(δ), t1 +min{cont(IN), tcont(FF )} + cont(δ))

Hence, NS is stable during the critical segment C1 and NS0 = δ(IN0, S0), as required.
The induction step, for i > 0, is proved in the same fashion. Simply replace t0 by ti, and t1

by ti+1. The only difference is that we do not rely on initialization. To show that Si+1 is well
defined, note that NSi is stable during the critical segment Ci. It follows that the flip-flop’s
output Si+1 equals NSi. We omit the proof for OUTi+1 since it follows the same lines. ✷

19.5 Finite State Machines

The functionality of a synchronous circuit in the canonic form is so important that it justifies
a term called finite state machines.

Definition 19.2 A finite state machine (FSM) is a 6-tuple A = ⟨Q,Σ,∆, δ, λ, q0⟩, where
• Q is a set of states.

• Σ is the alphabet of the input.

• ∆ is the alphabet of the output.

• δ ∶ Q ×Σ → Q is a transition function.

• λ ∶ Q ×Σ→∆ is an output function.
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• q0 ∈ Q is an initial state.

Other terms for a finite state machine are a finite automaton with outputs and transducer. In
the literature, an FSM according to Definition 19.2 is often called a Mealy Machine. Another
type of machine, called Moore Machine, is an FSM in which the domain of output function λ
is Q (namely, the output is only a function of the state and does not depend on the input).

An FSM is an abstract machine that operates as follows. The input is a sequence {xi}n−1i=0 of
symbols over the alphabet Σ. The output is a sequence {yi}n−1i=0 of symbols over the alphabet ∆.
An FSM transitions through the sequence of states {qi}ni=0. The state qi is defined recursively
as follows:

qi+1
△

= δ(qi, xi)
The output yi is defined as follows:

yi
△

= λ(qi, xi).
State Diagrams. FSMs are often depicted using state diagrams.

Definition 19.3 The state diagram corresponding to an FSM A is a directed graph G = (Q,E)
with edge input/output labels (x, y) ∈ Σ ×∆. The edge set E is defined by

E
△

= {(q, δ(q, x)) ∶ q ∈ Q and x ∈ Σ}.
Each edge (q, δ(q, x)) is labeled (x,λ(q, x)).
Consider an edge from vertex q to vertex q′ labeled by (x, y). This means that if the input
equals x when the FSM is in state q, then the FSM outputs y and transitions to the state
q′
△

= δ(q, x).
The vertex q0 corresponding to the initial state of an FSM is usually marked in an FSM by

a double circle.
We remark that a state diagram is in fact a multi-graph, namely, one allows more than one

directed edge between two vertices. Such edges are often called parallel edges. Note that the
out-degree of every vertex in a state diagram equals ∣∆∣.
Example 19.1 Figure 19.5 depicts a state diagram of an FSM that outputs ‘y’ if the weight of
the input so far is divisible by 4, and ‘n’ otherwise.

19.6 Timing analysis: the general case

In this section we present a timing analysis of a synchronous circuit that is not in canonic form.
Indeed, the timing analysis of synchronous circuits in canonic form is overly pessimistic. The
problem is that each of the combinational circuits λ and δ is regarded as a “macro gate” with a
propagation delay. In practice it may be the case that the accumulated delay from the input IN
to the output OUT is significantly different than the accumulated delay from S to the output
OUT . The situation is even somewhat more complicated in the case of multi-bit signals. Hence,
dealing with the general case is interesting.
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Figure 19.5: A state diagram of an FSM that counts (mod 4).
Example 19.2 Consider the synchronous circuit depicted in Fig. 19.6. Assume that pd(IN) =
9 while tpd(FF ) = pd(mux) = pd(and) = 1 and tsu(FF ) = setup(OUT ) = 1. Moreover, assume
that pd(INC) = 7. The timing analysis for the canonic form encapsulates the incrementer and
the and-gate into one combinational circuit δ whose propagation delay is 8. The clock period
has to be at least

ti+1 − ti ≥max{tpd(FF ) + pd(mux),pd(IN)} + pd(δ) + tsu(FF )
= 9 + 9 + 1 = 19.

However, the output of the incrementer is valid starting ti + tpd(FF ) + pd(mux) + pd(INC) =
ti + 9. Thus, the output of the and-gate is valid starting ti + 10, and hence the clock period has
to be only at least 11.

In this section we present timing constraints for the signals in a synchronous circuit. We
then present an algorithm that decides whether the timing constraints are feasible (i.e., can
be satisfied). If the timing constraints are feasible, then the algorithm computes the minimum
clock period.

19.6.1 Timing Constraints

Given a synchronous circuit C, we distinguish between four types of signals:

1. Inputs - these are signals that are fed by input gates.

2. Outputs - these are signals that are fed to output gates.

3. Inputs to the D-ports of flip-flops.

4. Outputs of flip-flops.
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Figure 19.6: An example in which the timing analysis for the canonic form is overly pessimistic.

The timing constraints of general synchronous circuits are identical to those of the canonic
form. For completeness, we list them below:

Input constraints: For every input signal IN , it is guaranteed that the stability intervals of
IN satisfy, for every i ≥ 0:

stable(IN)i △= (ti + pd(IN), ti+1 + cont(IN)). (19.23)

Output constraints: For every output signal OUT , it is required that the stability intervals
of OUT satisfy:

stable(OUT )i △= (ti+1 − setup(OUT ), ti+1 + hold(OUT )). (19.24)

Critical segments: For every signal NS that feeds a D-port of a flip-flop, it is required that
NS is stable during the critical segments, namely:

stable(NS)i △= Ci+1. (19.25)

We say that a timing constraint of signal X is satisfied if the signal X is indeed stable during
the intervals {stable(X)i}i≥0.
Definition 19.4 The timing constraints are feasible if there exists a clock period Φ such that
all timing constraints are satisfied if ti+1 − ti = Φ.

19.6.2 Algorithms: feasibility and minimum clock period

We now present two algorithms:

1. Algorithm FEAS(C), decides whether the timing constraints of a synchronous circuit C
are feasible.



19.6. TIMING ANALYSIS: THE GENERAL CASE 303

2. Algorithm Min-Φ(C) computes the minimum clock period of C if the timing constraints
are feasible.

The two algorithms are quite similar: FEAS(C) computes a lightest path in a DAG, and
decides that the timing constraints are feasible if the lightest path is nonnegative. On the other
hand, Min-Φ(C) computes a longest path in a DAG.

For simplicity, we assume that all the flips-flops in the synchronous circuit C are identical
and have the same parameters (i.e., tsu(FF ), thold(FF ), tcont(FF ), tpd(FF )).
Algorithm FEAS(C). Algorithm FEAS(C) is listed as Algorithm 19.1. The input of algo-
rithm FEAS(C) consists of:

1. A description of the circuit C, namely, a directed graph G = (V,E) and a labeling π ∶ V →
Γ ∪ IO ∪ {FF},

2. cont(IN) for every input signal IN , and

3. hold(OUT ) for every output signal OUT .

Algorithm 19.1 FEAS(C) - an algorithm that decides if the timing constraints of a syn-
chronous circuit C are feasible.

1. Let C ′ denote the combinational circuit obtained from C by stripping away the flip-flops
(see item 3 in Definition 19.1).

2. Assign weights w(v) to vertices in C ′ as follows.

w(v) △=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cont(IN) if v is an input gate of C and v feeds the input signal IN .

tcont(FF ) if v corresponds to a Q-port of a flip-flop.

−hold(OUT ) if v is an output gate of C and v is fed by the output signal OUT .

−thold(FF ) if v corresponds to a D-port of a flip-flop.

cont(π(v)) if π(v) is a combinational gate.

3. Compute
w∗

△

=min{w(p) ∣ p is a path from a source to a sink in C ′}.
4. If w∗ ≥ 0, then return(“feasible”), else return(“not feasible”).

Algorithm Min-Φ(C). Algorithm Min-Φ(C) is listed as Algorithm 19.2. The input of algo-
rithm Min-Φ(C) consists of:

1. A description of the circuit C, namely, a directed graph G = (V,E) and a labeling π ∶ V →
Γ ∪ IO ∪ {FF},

2. pd(IN) for every input signal IN , and

3. setup(OUT ) for every output signal OUT .
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Algorithm 19.2 Min-Φ(C) - an algorithm that computes the minimum clock period of a
synchronous circuit C.

1. Let C ′ denote the combinational circuit obtained from C by stripping away the flip-flops
(see item 3 in Definition 19.1).

2. Assign delays d(v) to vertices in C ′ as follows.

d(v) △=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pd(IN) if v is an input gate of C and v feeds the input signal IN .

tpd(FF ) if v corresponds to a Q-port of a flip-flop.

setup(OUT ) if v is an output gate of C and v is fed by the output signal OUT .

tsu(FF ) if v corresponds to a D-port of a flip-flop.

pd(π(v)) if π(v) is a combinational gate.

3. Compute
Φ∗

△

=max{d(p) ∣ p is a path from a source to a sink in C ′}.
4. Return(Φ∗).

Algorithm Min-Φ(C) reduces the problem of computing the minimum clock period to the
problem of computing a longest path in a DAG. Since a longest path in a DAG is computable
in linear time, the algorithm runs in linear time as well.

19.6.3 Algorithms: correctness

In this section we prove that the algorithms FEAS(C) and Min-Φ(C) are correct. The idea is
that algorithm FEAS(C) checks if the upper limit of each stability interval can be satisfied. On
the other hand, Min-Φ computes a lower bound on the clock period that guarantees that the
lower limit of each stability interval is satisfied.

Notation. Given a vertex v ∈ C ′, let c∗(v) denote lightest weight of a path from a source to
v. Similarly, let d∗(v) denote the largest delay of a path from a source to v.

Using this notation, we have a simple description of the algorithms: (i) FEAS(C) decides
that the timing constraints are feasible if and only if minv c

∗(v) ≥ 0. (ii) Min-Φ(C) returns
Φ∗ =maxv d

∗(v).
Assume that the flip-flops are reset so that their outputs are stable during (t0+tpd(FF ), t1+

tcont(FF )). Assume also that the inputs satisfy the input constraints in Eq. 19.23.
In the following claim we abuse notation and mix between the vertices of the synchronous

circuit C and the combinational circuit C ′ obtained by stripping away the flip-flops of C. This
notation should not cause any confusion at all. A source in C ′ is either an input gate or an
output of a flip-flop. A sink in C ′ is either an output gate or an input to a D-port of a flip-flop.
Interior vertices are the same in C and in C ′.

Claim 19.6 If minv c
∗(v) ≥ 0 and ti+1 − ti ≥maxv d

∗(v), then, for every vertex v, every output
of v is stable during the interval

(ti + d∗(v), ti+1 + c∗(v)).
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Moreover, the inputs to flip-flops are stable during the critical segments and the output con-
straints are satisfied.

Proof: The proof uses double induction. The outer induction is on i, and the inner induction
is on the topological ordering of the vertices of C ′.

Let us begin with the induction basis of the outer induction for i = 0. The proof of the
induction basis requires applying the inner induction on the topological ordering of the vertices
of C ′. The induction basis of the inner induction considers the sources. Indeed, suppose v is a
source in C ′. For simplicity assume that it is an output of a flip-flop. Since flip-flops are reset
properly, the output of v is stable during the interval (t0 + tpd(FF ), t1 + tcont(FF )). Moreover,
d∗(v) = tpd(FF ) and c∗(v) = tcont(FF ). A similar argument holds if v is an input gate. Thus
the inner induction basis holds for sources.

The proof of the inner induction step for the case that v is not a source proceeds as follows.
If v is not a sink, then it is a combinational gate. The output of v is stable pd(π(v)) time units
after all its inputs are stable. Thus, every output of v is stable starting t0+d

∗(v). On the other
hand, every output of v remains stable cont(π(v)) time units after the first input to v becomes
unstable. Thus, every output of v remains stable until t1 + c

∗(v). Finally, if v is a sink, then
it has no outputs, and the claim trivially holds for it. This completes the proof of the outer
induction basis for i = 0.

The proof of the outer induction step, for i > 0, is quite similar. The only important
difference is the proof of the inner induction basis. Here, we cannot rely on the initialization.
Instead, we need to show that the input of each flip-flop is stable during the critical segment Ci,
and hence, the output of the flip-flop is stable during the interval (ti+tpd(FF ), ti+1+tcont(FF )).

Consider a node v, the output of which feeds the D-port of a flip-flop u. The outer induction
hypothesis states that the output of v is stable during the interval (ti−1+d∗(v), ti+c∗(v)). Hence,
it suffices to prove that

Ci ⊆ (ti−1 + d∗(v), ti + c∗(v)).
Namely, we want to prove that

ti − tsu(FF ) ≥ ti−1 + d∗(v), and (19.26)

ti + thold(FF ) ≤ ti + c∗(v). (19.27)

But ti−ti−1 ≥ d
∗(u) = d∗(v)+tsu(FF ), and hence Eq. 19.26 holds. Similarly, c∗(u) = −thold(FF )+

c∗(v) ≥ 0, and hence Eq. 19.27 holds.

A similar argument proves that the output constraints are satisfied, and the claim follows.
✷

We close this section by remarking that the timing analysis is tight. Let p denote a path in
C ′ with a maximum delay. Suppose ti+1− ti < d(p). If the actual propagation delays along p are
maximal, then the signal feeding v is not stable at time ti+1 − d(p). If v is a flip-flop, then its
input is not stable during the critical segment. If v is an output gate, then its input does not
meet the output constraint. We point out that the actual delay along p may indeed be d(p).
For example, in a Ripple Carry Adder rca(n), we might have a ripple of n carries from zeros
to ones.
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19.7 Simulation of Synchronous Circuits

In this section we present an algorithm for logical simulation of synchronous circuits. The
algorithm works under the assumption that the timing constraints are satisfied.

Simulation of synchronous circuit in the zero delay model during cycles i = 0, . . . , n − 1 is
listed as Algorithm 19.3. The correctness of the simulation algorithm can be proved by double
induction as in the proof of Claim 19.6.

Let F denote the set of flip-flops in the synchronous circuit. Let Si ∶ F → {0,1} denote a
function that specifies the values output by each flip-flop in the ith clock cycle. For i = 0, the
function S0 specifies the initialization of the flip-flops. Let I denote the set of input gates in
the synchronous circuit. Let INi ∶ I → {0,1} denote a function that specifies the input value
fed by each input gate in clock cycle i. Let NSi ∶ F → {0,1} denote a function that specifies
the input to each flip-flop in the (end of the) ith clock cycle. Similarly, let Z denote the set
of output gates in the synchronous circuit. Let OUTi ∶ Z → {0,1} denote the value fed to each
output gate in the ith clock cycle.

Algorithm 19.3 SIM(C,S0,{INi}n−1i=0 ) - An algorithm for simulating a synchronous circuit C
with respect to an initialization S0 and a sequence of inputs {INi}n−1i=0 .

1. Construct the combinational circuit C ′ obtained from C by stripping away the flip-flops.

2. For i = 0 to n − 1 do:

(a) Simulate the combinational circuit C ′ with input values corresponding to Si and INi.
Namely, every input gate in C feeds a value according to INi, and every Q-port of
a flip-flop feeds a value according to Si. The outcome of the simulation determines
the functions OUTi and NSi.

(b) Define Si+1 ← NSi.

19.8 Synthesis and Analysis

Two tasks are often associated with synchronous circuits. These tasks are defined as follows.

1. Analysis: given a synchronous circuit C, describe its functionality by an FSM.

2. Synthesis: given an FSM A, design a synchronous circuit C that implements A.

19.8.1 Analysis

The task of analyzing a synchronous circuit C is carried out as follows.

1. Define the FSM A = ⟨Q,Σ,∆, δ, λ, q0⟩ as follows.
(a) The set of states is Q ⊆ {0,1}k , where k denotes the number of flip-flops in C.

(b) Define the initial state q0 to be the initial outputs of the flip-flops.

(c) Σ = {0,1}ℓ, where ℓ denotes the number of input gates in C.
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(d) ∆ = {0,1}r , where r denotes the number of output gates in C.

(e) Transform C to a functionally equivalent synchronous circuit C̃ in canonic form.
Compute the truth tables of the combinational circuits λ and δ. Define the Boolean
functions according to these truth tables.

19.8.2 Synthesis

Given an FSM A = ⟨Q,Σ,∆, δ, λ, q0⟩, the task of designing a synchronous circuit C that imple-
ments A is carried out as follows.

1. Encode Q,Σ and ∆ by binary strings. Formally, let f, g, h denote one-to-one functions,
where

f ∶Q → {0,1}k
g ∶Σ→ {0,1}ℓ
h ∶∆→ {0,1}r .

2. Design a combinational circuit Cδ that implements the (partial) Boolean function Bδ ∶{0,1}k × {0,1}ℓ → {0,1}k defined by

Bδ(f(x), g(y)) △= f(δ(x, y)), for every (x, y) ∈ Q ×Σ.

3. Design a combinational circuit Cλ that implements the (partial) Boolean function Bλ ∶{0,1}k × {0,1}ℓ → {0,1}r defined by

Bλ(f(x), g(z)) △= h(λ(x, z)), for every (x, z) ∈ Q ×∆.

4. Let C denote the synchronous circuit in canonic form constructed from k flip-flops and
the combinational circuits Cδ for the next state and Cλ for the output.

The description of the encoding step leaves a great deal of freedom. Since ∣{0,1}k ∣ ≥ ∣Q∣,
it follows that k ≥ log2 ∣Q∣, and similar bounds apply to ℓ and r. However, it is not clear that
using the smallest lengths is the best idea. Certain encodings lead to more complicated Boolean
functions Bδ and Bλ. Thus, the question of selecting a “good” encoding is a very complicated
task, and there is no simple solution to this problem.

19.9 Summary

This chapter deals with the fundamental issues relating to synchronous circuits. We began by
defining synchronous circuits. We first focused on synchronous circuits in canonic form. Timing
analysis of synchronous circuits in canonic form is a simple task. However, it requires proper
initialization of the flip-flops. Thus, we introduced edge-triggered flip-flops with a reset.

The timing analysis leads to a functional specification of synchronous circuit in canonic
form. We introduced finite-state machines to describe this functionality.

Since timing analysis in canonic form might be overly pessimistic, we presented algorithms
for timing analysis in the general case. Two algorithms are presented: one verifies whether the
timing constraints are feasible. The second algorithm computes the minimum clock period.

We then turned to describing a simulation algorithm. This simulation is based on a reduction
to simulating a combinational circuit. We ended this chapter with a description of two tasks:
analysis and synthesis of synchronous circuits.
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19.10 Problems

19.1 Consider the circuit depicted in Figure 19.7. Is this circuit Combinational? Synchronous?
Explain your answer.

clk

ff

y(t)

D(t)
Q(t)

x(t)

Figure 19.7: A circuit.

19.2 Design a synchronous circuit that indicates whether the number of ones in the input so
far is divisible by n.

Input: X(t) ∈ {0,1} and a clock signal clk.

Output: Y (t) ∈ {0,1}.
Functionality: The output Y (t) should satisfy:

Y (t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if mod(∑t−1i=0X(t), n) = 0

0 otherwise.

Remarks: (1) You may assume that the flip-flops are initialized to zero. (2) The output in clock
cycle 0 is not specified.

1. Describe an FSM that satisfies the specification.

2. Synthesize the FSM to obtain an synchronous circuit. Use as few flip-flop as possible.

3. Compute the minimum clock period of your design.

4. Suggest another synthesis of the FSM so that the clock period is constant. (Hint: use a
“cyclic shift register” of n flip-flips.)

19.3 (MSB to LSB Sequential Comparator.) Design a synchronous circuit S that satis-
fies the following specification.

Input: x(t), y(t) ∈ {0,1}, for every clock cycle t.

Output: EQ(t),LT (t),GT (t) ∈ {0,1}, for every clock cycle t.
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Functionality: • Let

Xt
△

=
t

∑
i=0
x(i) ⋅ 2t−i ,

Yt
△

=
t

∑
i=0
y(i) ⋅ 2t−i .

• For every clock cycle t ≥ 0:

EQ(t) = ⎧⎪⎪⎨⎪⎪⎩
1, if Xt = Yt,

0, otherwise .
LT (t) = ⎧⎪⎪⎨⎪⎪⎩

1, if Xt < Yt,

0, otherwise .
GT (t) = ⎧⎪⎪⎨⎪⎪⎩

1, if Xt > Yt,

0, otherwise .

Answer the following questions:

1. Define the finite state machine FSM(S) = ⟨Q,Σ,∆, δ, λ, q0⟩ that satisfies the above
specification.

2. Implement S by synthesizing FSM(S). Hint: use the canonic form.

3. Implement your design in Logisim. Verify by yourself that your design is correct.
Submit your design.

4. Assume that: (i) tsu = thold = 1, tcont = 2, tpd = 3, (ii) also assume that cont(C) =
0,pd(C) = 1, for every combinational gate, i.e., or, nand, not, and, xor, nxor,
nor, (2 ∶ 1)-mux, (iii) assume that the inputs x(t), y(t) are outputs of a ff, more-
over, the outputs EQ(t),LT (t),GT (t) are fed to a ff.
Execute Min-Φ(S). What is the minimum clock period?

5. Under the same assumptions as in the last bullet. Execute FEAS(S). Are the timing
constraints of the circuit feasible?

19.4 (LSB to MSB Sequential Comparator.) Design a synchronous circuit S that imple-
ments the following specification:

Input: x, y ∈ {0,1}
Output: EQ,LT,GT ∈ {0,1}
Functionality: • Let xt = ⟨x[t ∶ 0]⟩,

• let yt = ⟨y[t ∶ 0]⟩, then
• for every t ≥ 0,

EQ(t) = ⎧⎪⎪⎨⎪⎪⎩
1, if xt = yt,

0, o.w,
LT (t) =

⎧⎪⎪⎨⎪⎪⎩
1, if xt < yt,

0, o.w,
GT (t) = ⎧⎪⎪⎨⎪⎪⎩

1, if xt > yt,

0, o.w.

1. Define an FSM that models this sequential comparator. Draw its state diagram (write
explicitly the set of states, input/output alphabet, transition function, output function,
and initial state).
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2. Synthesize your FSM.

3. Implement your design in Logisim. Verify by yourself that your design is correct. Submit
a printout of your implementation.

4. Assume that: (i) tsu = thold = 1, tcont = 2, tpd = 3, (ii) also assume that cont(C) =
0,pd(C) = 1, for every combinational gate, i.e., or, nand, not, and, xor, nxor, nor,(2 ∶ 1)-mux, (iii) assume that the inputs x(t), y(t) are outputs of a ff, moreover, the out-
puts EQ(t),LT (t),GT (t) are fed to a ff.
Execute Min-Φ(S). What is the minimum clock period?

5. Under the same assumptions as in the last bullet. Execute FEAS(S). Are the timing
constraints of the circuit feasible?

19.5 Let σ ∈ {0,1}n be a fixed binary string. Design a shift register with a reset signal that
initializes the register to D[n − 1 ∶ 0] = σ.
19.6 Consider the synchronous circuit depicted in Figure 19.8. This circuit is called a Linear
Feedback Shift Register (LFSR).
The ff’s of the LFSR are initialized at t = 0 to D[3 ∶ 0] = 0001. The output is Q[3] ∈ {0,1}.
Note that D[0] is a function of Q[3],Q[1], and Q[0]. Answer the following questions.

D[0]

clk clk clk clk

1

1

1

1

1

1

1

1

ff0ff1ff2ff3

D[3] D[2] D[1]

Q[0]Q[1]Q[2]

Q[3]

Figure 19.8: An LFSR synchronous circuit with four ff’s. The ⊕ denotes a xor gate.

1. Assume that: (i) tsu = thold = 1, tcont = 2, tpd = 3, (ii) also assume that cont(xor) =
0,pd(xor) = 1, (iii) assume that the output Q[3] is fed to a ff.
Execute Min-Φ(S). What is the minimum clock period?

2. Under the same assumptions as in the last bullet. Execute FEAS(S). Are the timing
constraints of the circuit feasible?

3. Present the LFSR in the form of a canonic synchronous circuit.

4. Analyze the LFSR, i.e., define the corresponding FSM A = ⟨Q,Σ,∆, δ, λ, q0⟩. Draw the
state diagram of the FSM A.

5. Implement the LFSR in Logisim. Simulate the circuit with the initial value of 0001, for
10 time steps. How many states has A “visited”?
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In this chapter we practice the method of analysis and synthesis of synchronous circuits.
We begin with two-state finite state machines. First we synthesize a synchronous circuit, and
the we analyze a serial adder. Another simple case is finite state machines, the state diagram of
which is simple cycle. These FSMs are called counters. We then define, implement, and analyze
counters. We also discuss how initialization effects the corresponding FSM.

Finally, we revisit the synchronous circuits described earlier (shift registers and RAM). We
analyze these circuits and show that their state diagrams are important graphs.

20.1 Example: a two-state FSM

In this section we synthesize a two-state FSM. In this example, the encoding of the alphabets
and the states are trivial.

Consider the FSM A = ⟨Q,Σ,∆, δ, λ, q0⟩ depicted in Figure 20.1a, where

Q = {q0, q1},
Σ =∆ = {0,1}.

We now apply the synthesis procedure to the FSM A to obtain an implementation by a
synchronous circuit C (see Section 19.8.2 for a description of synthesis).

1. Encoding. We need to encode Q,Σ and ∆. In this case we use the trivial encoding where
each state qi is encoded by the bit i. Similarly, the alphabets Σ and ∆ are encoded by
the identity functions. Namely g(σ) = h(σ) = σ, for σ ∈ {0,1}.
This encoding implies that: (i) the state is stored by a single flip-flop, and (ii) the input
and output are single bits.

2. We need to design a combinational circuit Cδ that computes the next state. Since the
transition function δ ∶ Q ×Σ → Q satisfies:

δ(qi, σ) = inv(σ),
the Boolean circuit Cδ is simply an inverter.

3. We need to design a combinational circuit Cλ that implements the output function λ ∶

Q × Σ → ∆. The truth table of λ is listed as Table 20.1. It follows that λ(qi, σ) = i ∨ σ.
qi σ λ(qi, σ)
0 0 1
1 0 1
0 1 0
1 1 1

Table 20.1: The truth table of λ.

Hence, the circuit Cλ is built from an inverter and an or-gate.

4. The synchronous circuit in canonic form constructed from one flip-flop and two combina-
tional circuits is depicted in Figure 20.1b.

We remark that one could share the inverters in Cδ and Cλ to obtain a circuit C that uses
only an inverter and an or-gate.
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(1, 1)

(1, 0)

(0, 1)

q0 q1

(0, 1)
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Cλ
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Q D

(b)

Figure 20.1: (a) A two-state FSM A. (b) An implementation of A by a synchronous circuit in
canonic form.
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20.2 Sequential Adder

Definition 20.1 A sequential adder is defined as follows.

Inputs: A,B, reset and a clock signal clk, where Ai,Bi, reseti ∈ {0,1}.
Output: S, where Si ∈ {0,1}.
Functionality: The reset signal is an initialization signal that satisfies:

reseti =

⎧⎪⎪⎨⎪⎪⎩
1 if i = 0,

0 if i > 0.

Then, for every i ≥ 0, ⟨A[i ∶ 0]⟩ + ⟨B[i ∶ 0]⟩ = ⟨S[i ∶ 0]⟩ (mod 2i+1).
What happens if the value of the input reset equals 1 in more than once cycle? Following the
above definition, if reset i = 1, then we forget about the past, we treat clock cycle (ti, ti+1) as
the first clock cycle.

Formally, we define the last initialization r(i) as follows:
r(i) △=max{j ≤ i ∶ reset j = 1}.

Namely, r(i) specifies the last time reset j = 1 not after cycle i. If reset j = 0, for every j ≤ i, then
r(i) is not defined, and functionality is unspecified. If r(i) is well defined, then the specification
is that, for every i ≥ 0,

⟨A[i ∶ r(i)]⟩ + ⟨B[i ∶ r(i)]⟩ = ⟨S[i ∶ r(i)]⟩ (mod 2i+1).
20.2.1 Implementation

An implementation of a sequential adder is depicted in Figure 20.2a. Note that the minimum
clock period of the sequential adder is constant. However, computing the sum of two n-bit
numbers requires n clock cycles.

We now prove the correctness of this implementation.

Theorem 20.1
i

∑
j=0

Aj ⋅ 2
j
+

i

∑
j=0

Bj ⋅ 2
j =

i

∑
j=0

Sj ⋅ 2
j
+Cout(i) ⋅ 2i+1 .

Proof: The proof is by induction on i. The induction basis for i = 0 is simple because
Cin(0) = 0. Hence, the functionality of the full-adder implies that:

A0 +B0 +Cin(0) = 2 ⋅Cout(0) + S0 ,
and the induction basis follows.



20.2. SEQUENTIAL ADDER 315

clk
D

Q
ff

A

SC

BCin

Full-Adder

S
Cout

reset

(a)

((reset = 1, A+B = 2), 0)

0

((A+B ≤ 1), A⊕B)

((reset = 0, A+B = 0), 1)

(A+B = 2, 0)

((reset = 1, A+B ≤ 1), A⊕B)

1

((reset = 0, A+B ≥ 1), 1⊕A⊕B)

(b)

Figure 20.2: A sequential adder:(a) a synchronous circuit that implements a sequential adder,
and (b) an FSM of a sequential adder (each transition is labeled by a pair: the condition that
the input satisfies and the value of the output).

We now prove the induction step for i > 0.

i

∑
j=0

Aj ⋅ 2
j
+

i

∑
j=0

Bj ⋅ 2
j = (Ai +Bi) ⋅ 2i + i−1

∑
j=0

Aj ⋅ 2
j
+

i−1

∑
j=0

Bj ⋅ 2
j

= (Ai +Bi) ⋅ 2i + i−1

∑
j=0

Sj ⋅ 2
j
+Cout(i − 1) ⋅ 2i

= (Cin(i) +Ai +Bi) ⋅ 2i + i−1

∑
j=0

Sj ⋅ 2
j

= (Si + 2 ⋅Cout(i)) ⋅ 2i + i−1

∑
j=0

Sj ⋅ 2
j

=
i

∑
j=0

Sj ⋅ 2
j
+Cout(i) ⋅ 2i+1.

The first line is simply a rearrangement, the second line follows from the induction hypothesis,
the third line follows from the functionality of a flip-flop in cycle i, the fourth line follows from
the functionality of the full-adder in cycle i, and the fifth line is a rearrangement. ✷
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20.2.2 Analysis

We analyze the implementation of the sequential adder to obtain an FSM that describes the
functionality of the sequential adder.

The set of state Q = {0,1}. The initial state q0 = 0. The input alphabet is {0,1}3, where the
coordinates correspond to the values of reset i,Ai, and Bi, respectively. The output alphabet is
∆ = {0,1}.

Let carry3 ∶ {0,1}3 → {0,1} denote the 3-bit carry function. The output function λ and the
transition function δ are defined as follows:

λ(q, (reset ,A,B)) △= ⎧⎪⎪⎨⎪⎪⎩
xor3(q,A,B) if reset = 0

xor3(0,A,B) if reset = 1.

δ(q, (reset ,A,B)) △= ⎧⎪⎪⎨⎪⎪⎩
carry3(q,A,B) if reset = 0

carry3(0,A,B) if reset = 1.

The state diagram of the resulting FSM is depicted in Figure 20.2b.

20.3 Initialization and the Corresponding FSM

Suppose we have a synchronous circuit C without an initialization signal. Now we introduce
an initialization signal reset that initializes the outputs of all flip-flops (namely, it cause the
outputs of the flip-flops to equal a value that encodes the initial state). This is done by replacing
each edge triggered D-flop-flop by an edge triggered D-flip-flop with a reset input. The reset
signal is fed to the reset input port of each flip-flop. We denote the new synchronous circuit by
Ĉ.

Let A and Â denote the FSMs that model the functionality of C and Ĉ, respectively. What
is the relation between A and Â?

In the following theorem we show how the FSM Â can be derived from the FSM A.

Theorem 20.2 Let A = ⟨Q,Σ,∆, δ, λ, q0⟩ denote the FSM that models the functionality of the
synchronous circuit C. Let Â = ⟨Q′,Σ′,∆′, δ′, λ′, q′0⟩ denote the FSM that models the syn-
chronous circuit Ĉ. Then,

Q′
△

= Q,

q′0
△

= q0,

Σ′
△

= Σ × {0,1},
∆′

△

=∆,

δ′(q, (σ, reset)) △= ⎧⎪⎪⎨⎪⎪⎩
δ(q, σ), if reset = 0,

δ(q0, σ), if reset = 1,

λ′(q, (σ, reset)) △= ⎧⎪⎪⎨⎪⎪⎩
λ(q, σ), if reset = 0,

λ(q0, σ), if reset = 1.
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Proof: The proof is straightforward. The last bit in the input alphabet Σ is the initialization
signal reset . Let (σ, reset) ∈ Σ × {0,1} denote the input to the FSM Â. If reset = 0, then the
FSM Â simulates the FSM A on the input σ from the current state q. If reset = 1, then the
FSM Â simulates the FSM A on the input σ from the initial state q0. ✷

We often ignore initialization or postpone its implementation. The reason is that one can
always introduce initialization later. Thus, we can focus on the more “interesting” issues first.

20.4 Counter

Definition 20.2 An n-bit counter is defined as follows.

Inputs: A clock signal clk.

Output: N[n − 1 ∶ 0].
Functionality: Let Ni[n − 1 ∶ 0] denote the value of N[n − 1 ∶ 0] in clock cycle i. We require

that, for every i ≥ 0, ⟨Ni[n − 1 ∶ 0]⟩ = i (mod 2n).
The counter is an unusual synchronous circuit because it does not have any input apart from

the clock signal. We are, of course, interested in a counter with initialization. But, as discussed
in Sec. 20.3, this is a modification we prefer to perform after we complete the implementation.

20.4.1 Implementation

In Figure 20.3a we depict a synchronous circuit that implements a counter with a reset signal
that initializes all the flip-flops to zero. An incrementer is simply an n-bit binary adder in which:
(i) one addend is 0n−1 ○1, and (ii) there is no carry-out output. Note that the propagation delay
of the incrementer is Θ(logn), hence the minimum clock period of the counter is also Θ(logn).
20.4.2 Analysis

The task of analyzing a synchronous circuit in which the input alphabet Σ is empty needs to
be defined. The reason is that we defined analysis only for FSMs in which the input alphabet
is not empty. The required modification is quite simple. Simply consider the input alphabet Σ
as a set with a single input. That means that the input is constant and does not change from
one clock cycle to the next one.

We now analyze the n-bit counter design to obtain an FSM that models its functionality.
Define the FSM A = ⟨Q,Σ,∆, δ, λ, q0⟩ as follows.

1. The set of states is Q
△

= {0,1}n.
2. Define the initial state q0 to be q0 = 0n.

3. Σ = ∅.

4. ∆ = {0,1}n.
5. The output function λ simply outputs the current state, i.e., λ(q) = q. The transition

function δ is defined as follows:

δ(q) = binn(⟨q⟩ + 1 (mod 2n)).
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n

n

n

D

ff(n)

incrementer(n)

Q

clk

N

(a)

10

3 2

(b)

Figure 20.3: (a) A synchronous circuit that implements an n-bit counter, and (b) a state diagram
of a counter with n = 2. The output always equals the state from which the edge emanates.

20.5 Revisiting Shift Registers

Recall the definition of an n-bit shift-register (see Definition 18.2), that is:

Inputs: D[0](t) and a clock clk.

Output: Q[n − 1](t).
Functionality: Q[n − 1](t + n) =D[0](t).
An implementation of an 4-bit shift-register is depicted in Figure 20.4a.

20.5.1 Analysis

We now analyze an n-bit shift register to obtain an FSM that models its functionality. Define
the FSM A = ⟨Q,Σ,∆, δ, λ, q0⟩ as follows.

1. The set of states is Q
△

= {0,1}n.
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2. Define the initial state q0 to be 0n.

3. Σ = {0,1}.
4. ∆ = {0,1}.
5. The output function is simply δ(q[n−1 ∶ 0]) = q[n−1]. The transition function δ is defined

by

δ(q[n − 1 ∶ 0], σ) △= q[n − 2 ∶ 0] ○ σ.
The state diagram of the FSM corresponding to a 2-bit shift register is depicted in Fig-

ure 20.4b. The state diagram of an n-bit diagram is an important graph. It is called the
n-dimensional De Bruijn Graph.

Q[3]

clk clk clk clk

1

1

1

1

1

1

1

1

ff0ff1ff2ff3

D[3] D[2] D[1] D[0]

Q[0]Q[1]Q[2]

(a)

00

10 11

01

(0, 0)

(1, 0)

(1, 0)
(0, 0)

(1, 1)

(1, 1)

(0, 1)

(0, 1)

(b)

Figure 20.4: (a) A 4-bit shift-register, and (b) an FSM of a 2-bit shift-register

20.6 Revisiting RAM

Recall the definition of a ram(2n) (see Definition 18.3).
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20.6.1 Analysis

We now analyze a ram(2n) to obtain an FSM that models its functionality. Define the FSM
A = ⟨Q,Σ,∆, δ, λ, q0⟩ as follows.

1. The set of states is Q
△

= {0,1}2n .
2. Define the initial state q0 to be 02

n

.

3. Σ = {0,1}n × {0,1} × {0,1}.
4. ∆ = {0,1}.
5. The output function is simply

λ(q[2n − 1 ∶ 0],Address,Din,R/W ) = q[⟨Address[n − 1 ∶ 0]⟩] .
The transition function δ is defined by

δ(q[2n − 1 ∶ 0],Address,Din,R/W ) △= ⎧⎪⎪⎨⎪⎪⎩
q[2n − 1 ∶ 0] if R/W = 1,

q′[2n − 1 ∶ 0] if R/W = 0,

where q′[i] = q[i], for all i, except q′[⟨Address[n − 1 ∶ 0]⟩] =Din.

The state diagram of the FSM corresponding to a ram(21) is depicted in Figure 20.5b.
The state diagram of an n-bit diagram is an important graph. The subgraph corresponding to
transitions in which a write operation takes place is called the n-dimensional Hypercube.

20.6.2 Synthesis and Analysis

Problems

20.1 For each of the following specifications, write an FSM that satisfies the specification, and
synthesize corresponding synchronous circuit.

1. The output is one iff the number of ones in the input so far is even.

2. The output is one iff the number of ones in the input so far is odd.

3. The output is one iff the the input so far is all ones.

4. The output is one iff the the input so far is all zeros.

5. The output is zero iff every block of zeros in the input so far was followed by a block of
ones.

6. The output is zero iff the number of blocks of zeros in the input so far is even.

7. The output is zero iff the number of blocks of ones in the input so far is even.

Does one of these specifications match the FSM described in Section 20.1?
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Figure 20.5: (a) A schematic of a ram(2n), and (b) an FSM of a ram(21) (transition conditions
and the output bit are written next to each edge.

20.2 (adapted from [5]) Consider the toy depicted in Figure 20.6. In each cycle, a marble is
dropped in A or B (but not both). Levers x, y, z cause the marble to fall either to the left or to
the right. If a marble encounters a lever, then it causes the lever to change its state, so that the
next marble to encounter the same lever will take the opposite branch.

1. Define an FSM that models this toy and draw its state diagram (state explicitly the set
of states, input/output alphabet, transition function, output function, and initial state).
Make sure that: (1) your FSM has the minimum number of states, (2) ∣Σ∣ is minimal,
and (3) ∣∆∣ is minimal.

2. Synthesis and Simulation.

(a) Synthesize your FSM. Use the Logisim schematic entry to implement the synchronous
circuit.

(b) Find an input sequence that causes your FSM to traverse all the states.

(c) Simulate your FSM implementation with the above input sequence, using the Logisim
simulator.
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(d) Submit: schematics and simulation results.

3. Let C denote the synchronous circuit that implements the toy. Let C ′ denote the combi-
national circuit obtained by stripping away the flip-flops. Execute the algorithm FEAS(C)
on your circuit. Assume that all the parameters are equal to ‘1’.

4. Let C denote the synchronous circuit that implements the toy. let C ′ denote the combina-
tional circuit obtained by stripping away the flip-flops. Execute the algorithm Min-Φ(C)
on your circuit. Assume that all the parameters are equal to ‘1’.

R

A B

z

x y

L

Figure 20.6: A toy.

20.3 The synchronous circuit C(n) is specified as follows. Let n = 2k.

Input: n inputs {Xi}ni=1, where each Xi ∈ {0,1}k. Assume that the inputs are valid and stable
from clock cycle 0 to clock cycle n.

Output: A single bit Y .

Functionality: The circuit C(n) satisfies the following condition: The output Y should satisfy
in every clock cycle t ≥ n:

Y (t) = ⎧⎪⎪⎨⎪⎪⎩
1, if all {Xi}ni=1 are distinct,

0, otherwise .

Note that n strings are distinct if no two are equal.

1. How many states does the corresponding FSM have?

2. Conclude that you cannot design C(n) by synthesizing an FSM, hence an ad-hoc design
is required.

3. Design C(n) so that it meets the following goals:

(a) Number of flip-flops should be at most n ⋅ k + 1.
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(b) The minimum clock period should be O(k) = O(logn).
4. Implement your design for k = 2 in Logisim. Verify by yourself that your design is correct.

Submit a printout of your implementation.
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In this chapter we describe a specification of a simple microprocessor called the simplified
DLX. The specification of the microprocessor is done by an instruction set architecture (ISA).
The ISA is a simple programming language, called machine language, that defines manipulations
of data as well as control of the program.

The simplified DLX is a stored-program computer. This term means that both the data
and the instructions are stored in the same memory. In 1945, John von Neumann proposed how
to build such a computer. This proposal was influenced by the concept of a universal Turing
machine. Modern computers are based on the same principles but include many techniques for
speeding up the execution of programs. These techniques include: cache memories, pipelining,
running instructions in parallel and even out of order, predicting branches, etc. These topics
are discussed in books on Computer Architecture.

21.1 Why use abstractions?

The term architecture according to the Collins Dictionary means the art of planning, designing,
and constructing buildings. Computer architecture refers to computers instead of buildings.
Computers are rather complicated; even a very simple microprocessor is built from tens of
thousands of gates and an operating system spans thousands of lines of instructions. To simplify
things, people focus at a given time on certain aspects of computers and ignore other aspects.
For example, the hardware designer ignores questions such as: which programs will be executed
by the computer? The programmer, on the other hand, often does not even know exactly
which type of computer will be executing the program she is writing. It is the task of the
architect to be aware of different aspects so that the designed system meets the required price
and performance goals.

To facilitate focusing on certain aspects, abstractions are used. Several abstractions are used
in computer systems. For example, the C programmer uses the abstraction of a computer that
runs C programs, owns a private memory, and has access to various peripheral devices (such as
a printer, a monitor, a keyboard, etc.). Supporting this abstraction requires software tools (e.g.,
editor, compiler, linker, loader, debugger). The user, who runs various applications, uses the
abstraction of a computer that is capable of running several applications concurrently, supports
a file system, and responds to mouse movements and typing on the keyboard. Supporting the
user’s abstraction requires an operating system (to coordinate between several programs running
in the same time and manage the file system), and hardware (that executes programs, but not
in C). The hardware designer, is given a specification, called the Instruction Set Architecture (in
short, ISA). Her goal is to design a circuit that implements this specification while minimizing
cost and delay.

The architect is supposed to be aware of these different viewpoints. The architect’s main
goal is to suggest an ISA. On one hand, this ISA should provide support for the users of the ISA
(these are the programmer, the end user, and even the operating system). On the other, the ISA
should be simple enough so that the hardware designer can come up with an implementation
that is not too expensive or slow.

What exactly is the ISA? The ISA is a specification of the microprocessor from the program-
mer’s point of view. However, this is not a C programmer or a programmer that is programming
in a high level language. Instead, this is a programmer programming in machine language. Since
it is not common anymore for people to program in machine language, the machine language
programmer is actually a program!

Programs in machine language are output by a program called an assembler . The input of
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an assembler is a program in assembly language. Most assembly programs are also written by
programs called compilers. Compilers are input a program in a high level language and output
assembly programs. Hence a C program undergoes the following sequence of translations: 1.
The compiler translates it to an assembly program. 2. The assembler translates it to a machine
language program.

This two-stage sequence of translations starting from a C program and ending with a machine
language program has several advantages:

1. The microprocessor executes programs written in a very simple language (machine lan-
guage). This facilitates the design of the microprocessor.

2. The C programmer need not think about the actual platform that executes the program.

3. Only one compiler is required. For each platform, there is an assembler that translates
the assembly programs to the machine language of the platform.

4. Every stage of the translation works in a certain abstraction. The amount of detail
increases as one descends to lower level abstractions. In each translation step, decisions
can be made that are optimal with respect to the current abstraction.

One can see that all these advantages have to do with good engineering practice. Namely, a
task is partitioned in smaller subtasks that are simpler and easier. Clear and precise borderlines
between the subtasks guarantee correctness when the subtasks are “glued” together.

21.2 Instruction set architecture

We now describe the ISA of the simplified DLX. The term instruction set architecture refers to
the specification of the computer from the point of view of the machine language programmer.
This abstraction consists of two main components:

• The objects that are manipulated. The objects are words (i.e. binary strings) stored in
registers or in memory.

• The instructions (or commands) that tell the computer what to do to the objects.

21.2.1 Architectural Registers and Memory

Both the registers and the memory store words. In the DLX ISA, a word is a 32-bit string. The
memory is often called also the main memory.

The memory. The memory is used to store both the program itself (i.e., instructions) and
the data (i.e., constant and variables used by the program). We regard the memory as an array
M[0 ∶ 232 − 1] of words. Each element M[i] in the array holds one word. The memory is
organized like a Random Access Memory (RAM). This means that the processor can access the
memory in one of two ways:

• Read or load M[i]. Request to copy the contents of M[i] to a register called MDR
(Memory Data Register).

• Write or store in M[i]. Request to store the contents of a register called MDR in M[i].
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Note that writing to the memory require two “operands”. Namely, we need to specify the
value we would like to store and we need to specify where we wish to store it. As mentioned
above, a special register, called theMDR, stores the word that we wish to write to the memory.
The index or address i in which we would like to store the contents of the MDR is output by
a register called the MAR (Memory Address Register).

Hence the (partial) semantics of a write operation are:

M[⟨MAR⟩]←MDR.

Note the angular brackets around the MAR; they signify that we interpret the binary string
stored in the MAR as a binary number.

Similarly, the (partial) semantics of a read operation are:

MDR ←M[⟨MAR⟩].
The reason that we refer to this description as a partial semantics is that an actual read or

write operation involves additional computations. For example, in a read operation we need to
(i) compute the address and store it in the MAR, (ii) copy the contents of the accessed word in
the memory to theMDR, and (iii) copy the contents of theMDR to a general purpose register.
However, from the point of view of the memory, the interaction with the microprocessor is via
the MAR and MDR.

This relatively neat description is incorrect when we consider the task of reading an instruc-
tion from the memory. As we will see later, the address of an instruction is stored in a register
called PC and M[PC] is stored in a register called IR.

Registers. The registers serve as the working space of the microprocessor. They have three
main purposes: (1) to control the microprocessor (e.g., the PC and IR), (2) to serve as the
scratch pad for data (e.g., the GPRs), or (3) an interface with the main memory (e.g., MAR
and MDR). The architectural registers of the simplified DLX are all 32 bits wide and listed
below.

• 32 General Purpose Registers (GPRs) index from 0 to 31. Informally, we refer to these
registers as R0 to R31. Loosely speaking, the general purpose registers are the objects
that the program directly manipulates. Register R0 is an exception, as its contents always
equals 032, and cannot be modified.

• Program Counter (PC). The PC stores the address (i.e., index in memory) of the in-
struction that is currently being executed.

• Instruction Register (IR). The IR stores the current instruction (i.e., IR =M[PC]).
• Special Registers: MAR, MDR. As mentioned above, these registers serve as the interface
between the microprocessor and the memory when data is written and read. MAR and
MDR

Example 21.1 Consider a high level instructions z ∶= x+y. Such an instruction is implemented
by the following sequence of instructions. Suppose that x is stored in M[1], y is stored in M[2],
and z is stored in M[3]. We first need to copy x and y to the GPRs. Namely, we first need
to perform two read operations that copy M[1] to R1 and M[2] to R2. We then perform the
actual addition: R3 ← R1 +R2. Finally, we copy R3 using a write operation to the memory
location M[3].
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21.2.2 Instruction Set

The machine language of a processor is often called an instruction set. In general, a machine
language has very few rules and a very simple syntax. In the case of the simplified DLX, every
sequence of instructions constitutes a legal program (is this the case in C or in Java?). This
explains why the machine language is referred to simply as a set of instructions.

Instruction formats. Every instruction in the instruction set of the simplified DLX is repre-
sented by a single word. There are two instruction formats: I-type and R-type. The partitioning
of each format into fields is depicted in Figure 21.1. The opcode field encodes the instruction
(e.g., load, store, add, jump). The RS1,RS2,RD fields encode (in binary representation) the
indexes of general purpose registers. Since there are 32 general purpose register, their indexes
are encoded using 5-bit strings. The immediate field encodes (in two’s complement represen-
tation) a constant. The function field (in an R-type instruction format) is used to encode the
instruction.

I−type:

R−type:

Opcode RS1 RD immediate

6 5 165

Opcode RS1 RDRS2 Function

6 5 65 5 5

Figure 21.1: Instruction formats of the simplified DLX. (Bits are ordered in descending order;
namely, the leftmost bit is in position [31] and the rightmost bit is in position [0].)

Assembly language. Reading and writing instructions as 32-bit binary strings is not a task
for humans. The solution is to write instructions using text and numbers. This form of writing
instructions is called assembly language.

Each instruction in assembly starts with a text that describes the operation (e.g., add,
shift, jump). This text is an abbreviation that consists of 2-4 letters and is called a mnemonic.
For example, the mnemonic for “load word” is lw. A full list of the mnemonics appears in
Tables 21.1-21.2.

The remaining part of an assembly instruction consists of operands in decimal or hexadecimal
representation. These operands correspond to the contents of the fields RS1,RS2,RD and the
immediate constant. Namely, the operands are either indexes of general purpose registers or
the immediate constant. To ease the task of reading assembly instructions, we add the prefix
“R” to an index of a register.

The order of the fields in an assembly instruction is not the same order of the fields in the
machine code instruction. The order of fields in an assembly instruction is as follows: (1) a
mnemonic that represents the operation, (2) the index of the register where the result should
be stored, and (3) the operands. An operand is either a register or constant. A constant is
represented in decimal or hexadecimal notation. If an operand is a register, then the index of
the register appears as the operand.

Example 21.2 The assembly instruction addi R4 R8 -10 means add (−10) to the contents of
register R8 and store the sum in register R4. Note that in this example the constant is negative.
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List of instructions. We list below the instruction set of the simplified DLX. In this list,
imm ∈ {0,1}16 denotes the immediate field in an I-Type instruction and sext(imm) ∈ {0,1}32
denotes a two’s complement sign extension of imm to 32 bits. The semantics of each instruction
are informally abbreviated and are formally explained after each group of instructions.

Note that every instruction (except for jump instructions and halt), has the side effect of
incrementing the PC. Namely, apart from doing whatever the instructions says, the micropro-
cessor also performs the operation:

PC← bin(mod(⟨PC⟩ + 1,232)). (21.1)

Informally, Equation 21.1 simply means add one to the binary number represented by the
PC. To be precise, the sum is computed modulo 232, namely, if the sum equals 232, then replace
the sum by zero. Note that (unsigned) binary representation is used for storing the address of
the current instruction in the PC.

Load/Store Instructions (I-type). Load and store instructions deal with copying words
between the memory and the GPRs. Below we write the assembly instructions for load and
store instructions. We also write an informal and abbreviated interpretation of the load and
store instruction next to each instruction.

Load/Store Semantics

lw RD RS1 imm RD := M[sext(imm)+RS1]
sw RD RS1 imm M[sext(imm)+RS1] := RD

The precise semantics of load and store instructions are rather complicated. We first define
the effective address; informally, the effective address is the index of the memory word that is
accessed in a load or store instruction.

Definition 21.1 The effective address in a load or store instruction is defined as follows. Let
j = ⟨RS1⟩, namely the binary number represented by the 5-bit field RS1 in the instruction. Let
Rj denote the word stored in the register of the GPR whose index is j. Let ⟨Rj⟩ denote the
binary number represented by Rj. Recall that [imm] denotes the two’s complement number
represented by the 16-bit field imm. We denote the effective address by ea. Then,

ea
△

=mod(⟨Rj⟩ + [imm] ,232).
We point out that the event that ⟨Rj⟩+[imm] /∈ {0, . . . ,232−1} is (most likely) an indication

of a programming error. In certain architectures, such an event creates a segmentation fault . In
the simplified DLX, we do not consider this event to be an error, and the modulo operation is a
side effect of using a simple adder for computing the effective address (see Questions 21.4- 21.6).

The semantics of load and store instructions are as follows.

Definition 21.2 Let i = ⟨RD⟩, namely i is the number represented in binary representation by
the 5-bit field RD in the instruction. Let Ri denote the word stored in the ith register in the
GPR.

1. A load instruction has the following meaning:

Ri←M[ea].
This means that the word stored in M[ea] is copied to register Ri. Of course, M[ea]
retains its value.
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2. A store instruction has the following meaning:

M[ea]← Ri.

This means that the word stored in Ri is copied to M[ea]. Of course, Ri retains its value.

Note that an implementation of load and store instructions uses the MAR and MDR. In
particular, (i) the effective address is stored in the MAR, and (ii) copying a word from Ri to
M[ea] (or vice-versa) is done indirectly via the MDR.

Notation. Following the notation used for load and store instructions, we use the following
notation:

• Ri denotes the word stored in the register of the GPR whose index is ⟨RD⟩.
• Rj1 denotes the word stored in the register of the GPR whose index is ⟨RS1⟩.
• Rj2 denotes the word stored in the register of the GPR whose index is ⟨RS2⟩.
Obviously, ⟨Rj1⟩ denotes the binary number represented by the word Rj1. Similarly, [Rj2]

denotes the two’s complement number represented by the word Rj2.

Example 21.3 The assembly instruction lw R7 R0 15 means copy the word stored in the mem-
ory in address ⟨R0⟩+15 to R7. Note that ‘0’ stands for R0, which, as we shall see later, always
stores the value ‘0’. The assembly instruction sw R7 R4 0 means copy the word stored in register
R7 to the memory in address ⟨R4⟩ + 0.

Add Instruction (I-type). There are two add instructions in the ISA. We describe below
the add instruction that belongs to the I-type format. The assembly instruction for addition
appears in the table below with an informal description.

Instruction Semantics

addi RD RS1 imm RD := RS1 + sext(imm)

The precise semantics of an add-immediate instruction are as follows.

Ri← bin(mod([Rj1] + [imm] ,232)). (21.2)

Equation 21.2 is rather terse; we clarify it now. The goal is to add two numbers. The first
addend is the two’s complement number represented by the word stored in the register whose
index is ⟨RS1⟩. The second addend is the two’s complement number represented by the string
stored in the immediate field of the instruction. The addition is modulo 232. The binary
representation of the sum is stored in the register whose index is ⟨RD⟩.

This definition is a bit confusing. One might ask why not encode the sum as a two’s
complement number? Namely, why not simply use the definition [Ri] = [Rj1] + [imm]? The
problem with this “simple” specification is what happens if the result overflows.

Question 21.7 shows that if no overflow occurs, then Equation 21.2 is identical to “ordinary”
two’s complement addition.

We remark that if interrupts are considered, then one must define two additional “side-
effects” of addition instructions, namely, the setting of the overflow flag and negative flag. This
is beyond the scope of this chapter.

Example 21.4 The assembly instruction addi R5 R5 1 means increment the contents of reg-
ister R5 by 1.
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Shift Instructions (R-type). The shift instructions perform a logical shift by one position
either to the left or to the right. The input is word Rj1 and the shifted word is stored in Ri.
The assembly instructions for logical shift left and logical shift right are listed below.

Instruction Semantics

sll RD RS1 RD := RS1 << 1
srl RD RS1 RD := RS1 >> 1

Example 21.5 The assembly instruction sll R4 R8 means: logically shift the contents of reg-
ister R8 by one position to the left, and store the shifted word in register R4.

The assembly instruction srl R4 R8 means: logically shift the contents of register R8 by
one position to the right, and store the shifted word in register R4.

ALU Instructions (R-type). The R-type arithmetic and logical unit (ALU) instructions
are: add, subtract, and logical bitwise operations (e.g., or, and, xor). The assembly instruc-
tions for ALU instructions are listed below with an informal description.

Instruction Semantics

add RD RS1 RS2 RD := RS1 + RS2
sub RD RS1 RS2 RD := RS1 − RS2
and RD RS1 RS2 RD := and(RS1, RS2)
or RD RS1 RS2 RD := or(RS1, RS2)
xor RD RS1 RS2 RD := xor(RS1, RS2)

Formally, the semantics of the add and subtract instructions are:

Ri← bin(mod([Rj1] + [Rj2] ,232))
Ri← bin(mod([Rj1] − [Rj2] ,232)).

The semantics of the bitwise logical instructions are simple. For example, in an and in-
struction Ri[ℓ] = and(Rj1[ℓ],Rj2[ℓ]).
Example 21.6 The assembly instruction add R4 R8 R12 means store in R4 the sum of the
contents of registers R8 and R12. The assembly instruction or R1 R2 R3 means store in R1
the bitwise or the contents of registers R2 and R3. Hence, if R2 = (01)16 and R3 = (10)16,
then R1← 132.

Test Instructions (I-type). The test instructions compare the two’s complement numbers[Rj1] and [imm]. The result of the comparison is stored in Ri.

For example, consider the slti instruction. The semantics of the slti instruction are:

Ri =

⎧⎪⎪⎨⎪⎪⎩
1 if [Rj1] < [imm]
0 otherwise.

There are six different test instructions: slti, seqi, sgti, slei, sgei, snei. We sum-
marize there functionality below.
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Instruction Semantics

sreli RD RS1 imm RD := 1, if condition is satisfied,
RD := 0 otherwise

if rel =lt test if RS1 < sext(imm)
if rel =eq test if RS1 = sext(imm)
if rel =gt test if RS1 > sext(imm)
if rel =le test if RS1 ≤ sext(imm)
if rel =ge test if RS1 ≥ sext(imm)
if rel =ne test if RS1 ≠ sext(imm)

Example 21.7 The assembly instruction slti R4 R8 -12 means store in R4 the value ‘1’ if[R8] < −12, otherwise store in R4 the value ‘0’. The assembly instruction snei R1 R8 9 means
store in R1 the value ‘1’ if [R8] ≠ 9, otherwise store in R1 the value ‘0’.

Branch/Jump Instructions (I-type). Branch and jump instructions modify the value
stored in the the PC. Recall that during the execution of every instruction the PC is in-
cremented. In a branch or jump instruction an additional change is made to the PC.

The simplest instruction in this set is the “jump register” (jr) instruction. It simply changes
the PC so that PC← Rj1. Hence the next instruction to be executed is the instruction stored
in M[Rj1].

A somewhat more evolved instruction is the “jump and link register” (jalr) instruction.
This instruction saves the incremented PC in R31. The idea is that this instruction is used for
calling a procedure and the return address is stored in R31. Formally, the semantics of jalr
are:

R31← bin(mod(⟨PC⟩ + 1,232))
PC← Rj1.

We also have two branch instructions: “branch if zero” (beqz) and “branch if not zero”
(bnez). In a beqz instruction, if Rj1 = 032 then a branch takes place and the address of the
next instruction is PC + 1 + [imm]. If Rj1 ≠ 032, then the branch is not taken, and the address
of the next instruction is PC + 1. In a bnez instruction, the conditions are reversed.
We summarize these four instructions in the following table.

Instruction Semantics

beqz RS1 imm PC = PC + 1 + sext(imm), if RS1 = 0
PC = PC + 1, if RS1 ≠ 0

bnez RS1 imm PC = PC + 1, if RS1 = 0
PC = PC + 1 + sext(imm), if RS1 ≠ 0

jr RS1 PC = RS1
jalr RS1 R31 = PC+1; PC = RS1

See Section 21.3 for examples of branch instructions.

Miscellaneous Instructions (I-type). There are a few special instructions in the I-type
format. The first special instruction is a the “no operation” (special-nop) instruction. This
instruction has a null effect, and the only thing that happens during its execution is that the
PC is incremented.
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The second special instruction is the “halt” (halt) instruction. This instruction causes the
microprocessor to “freeze” and stop the execution of the program. Halting is implemented
simply by not updating the PC.

21.2.3 Encoding of the Instruction Set

Tables 21.1 and 21.2 suggest binary encoding of the instructions.

IR[31 ∶ 26] Mnemonic Semantics

Data Transfer

100 011 lw RD = M[sext(imm)+RS1]

101 011 sw M[sext(imm)+RS1] = RD

Arithmetic, Logical Operation

001 011 addi RD = RS1 + sext(imm)

Test Set Operation

011 rel s rel i RD = (RS1 rel sext(imm))

011 001 sgti RD = (RS1 > sext(imm))
011 010 seqi RD = (RS1 = sext(imm))
011 011 sgei RD = (RS1 ≥ sext(imm))
011 100 slti RD = (RS1 < sext(imm))
011 101 snei RD = (RS1 ≠ sext(imm))
011 110 slei RD = (RS1 ≤ sext(imm))

Control Operation

000 100 beqz PC = PC + 1 + (RS1 = 0 ? sext(imm) ∶ 0)
000 101 bnez PC = PC + 1 + (RS1 ≠ 0 ? sext(imm) ∶ 0)
010 110 jr PC = RS1
010 111 jalr R31 = PC + 1; PC = RS1

Miscellaneous Instructions

110 000 special NOP no operation
111 111 halt stop program

Table 21.1: I-type Instructions
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IR[5 ∶ 0] Mnemonic Semantics

Shift Operation

000 000 sll RD = RS1 << 1
000 010 srl RD = RS1 >> 1

Arithmetic, Logical Operation

100 011 add RD = RS1 + RS2
100 010 sub RD = RS1 − RS2
100 110 and RD = RS1 ∧ RS2
100 101 or RD = RS1 ∨ RS2
100 100 xor RD = RS1 ⊕ RS2

Table 21.2: R-type Instructions (in R-type instructions IR[31 ∶ 26] = 06)
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Variable Register

f R1

g R2

h R3

i R4

j R5

Table 21.3: Register assignment for Example 21.8

C code DLX assembly

if (i==j) xor R6 R4 R5

goto L1; beqz R6 1

f=g+h; add R1 R2 R3

L1: f=f-i; sub R1 R1 R4

Table 21.4: Conversion of the program segment in Example 21.8 to the instruction set of the
DLX.

21.3 Examples of Program Segments

Example 21.8 Convert the C code segment below to a simplified DLX’s machine code.

if (i==j)

goto L1;

f=g+h;

L1: f=f-i;

First, we assign a register to each of the variables in program segment. The register assignment
appears in Table 21.3.

Now, we convert the C code to a DLX’s machine code. The conversion is depicted in
Table 21.4.

In Example 21.8, every C instruction is mapped to a single machine code instruction. This
is not always the case, as we are about to see in the following example.

Example 21.9 Convert the C code segment below to a simplified DLX’s machine code.

LOOP: g=g+A[i];

i=i+j;

if (i!=h) goto LOOP;

Again, we assign a register to each of the variables in program segment. The register assign-
ment appears in Table 21.5.

The evaluation of the program segment requires temporarily storing some values in the reg-
isters. We assume that these registers are free. In particular, the address of A[0] (i.e., the
address of the first entry of the array A) is held in register R5. We later refer to this address
simply by A. Register R6 is used as a temporary place holder for storing the value of A+ i. This
is the address of A[i]. Register R7 is used as a temporary place holder for A[i]. Finally, register
R8 stores the outcome of the comparison i ≠ h.

Now, we convert the C code to a DLX’s machine code. The conversion is depicted in
Table 21.6.
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Variable Register

g R1

h R2

i R3

j R4

A R5

A+i R6

A[i] R7

i!=h R8

Table 21.5: Register assignment. The variables below the line are temporary registers used for
evaluating the program segment in Example 21.9.

C code DLX assembly

LOOP: g=g+A[i]; add R6 R5 R3

lw R7 R6 0

add R1 R1 R7

i=i+j; add R3 R3 R4

if (i!=h) goto LOOP; xor R8 R3 R2

bnez R8 -6

Table 21.6: Conversion of the program segment in Example 21.9 to the instruction set of the
DLX.

21.4 Summary

In this chapter we described the ISA of the simplified DLX. Even though the ISA is rather
simple, C instructions and programs can be translated to the DLX machine language. Missing
in this description are issues such as: supporting systems calls, distinguishing between protected
mode and user mode, etc. These important issues are beyond the scope of this chapter.

Problems

21.1 Explain why it is not common anymore for people to program in assembly or machine
code. Consider issues such as: cost of programming in a high level language compared to assem-
bly or machine code, ease of debugging programs, protections provided by high level programming,
and length and efficiency of final machine code program.

21.2 Parts of the main memory in many computers are nonvolatile and even read-only mem-
ory. Nonvolatile means that the contents are kept even when power is turned off. Read-only
means that the contents cannot be changed. Can you explain why such read-only nonvolatile
memory is required?

21.3 We said that the same memory is used to store operating system programs and data as
well as the user’s program and data. How can we make sure that the user program does not
write to areas in the memory that “belong” to the operating system?
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21.4 If we ignore the issue of overflow, then the effective address is simply ⟨Rj⟩ + [imm].
Recall that in two’s complement representation the largest representable number is roughly half
the largest representable number in binary representation. Since we have only 16 bits for the
immediate constant, is better to define the effective address by ⟨Rj⟩ + ⟨imm⟩? Do we need
negative immediate constants?

21.5 This question deals with how a binary adder is used to compute the effective address.

1. Prove that addition modulo 232 is not sensitive to binary or two’s complement represen-
tation. Namely, let X[31 ∶ 0] and Y [31 ∶ 0] be two binary strings, then

mod(⟨X⃗⟩ + ⟨Y⃗ ⟩,232) =mod ([X⃗] + ⟨Y⃗ ⟩,232) =mod ([X⃗] + [Y⃗ ] ,232) .
2. Prove that ea =mod([imm] + [Rj] ,232)] =mod(⟨sext(imm)⟩ + ⟨Rj⟩,232)].
3. Suggest an way to compute the effective address. (Hint: the immediate constant must be

sign-extended before added with ⟨Rj⟩.)
21.6 Consider the computation of the effective address. Suppose that we wish to detect the
event that the computation overflows. Formally,

⟨Rj⟩ + [imm] ≥ 232 or ⟨Rj⟩ + [imm] < 0.

Suggest how to compute the effective address and how to detect overflow.

21.7 Let A⃗ and C⃗ denote 32-bit binary strings. Let B⃗ denote a binary string of any length.
Think of A as the 32 bit two’s complement representation of [X] + [Y ] if no overflow occurs.
Think of B as the representation of [X] + [Y ] in two’s complement (using as many bits as
required). Suppose that [A⃗] = [B⃗] and that ⟨C⃗⟩ =mod([B⃗] ,232). Prove that A⃗ = C⃗.

21.8 How is the condition [Rj1] < [imm] computed? Let us return to the negative flag of
the signed adder/subtractor. Is it crucial that the negative flag indicates correctly whether the
sum/difference is negative even in case of an overflow?

21.9 Why is the address of the next instruction defined as PC+1+[imm] instead of PC+[imm]
when a branch is taken? Does this definition simplify or complicate the implementation of a
branch instruction?

21.10 Can you suggest reasons for using the no-operation and halt instructions?

21.11 Convert the following program segments to equivalent program segments in the DLX
instruction set.

• In each example, specify the assignment of registers.

• Use the DLX assembly editor and compiler to implement and compile your program.

• Use the DLX assembly simulator to verify by yourself that your program is correct.

• Submit your annotated program.
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1. A[4]:= A[8];

2. A:= B[7];

A:=A+8;

if (A==B[2]) then C:=A+1;

else C:=2*A;

3. for i:=1 to K do

begin

S:=S+A[i];

end

4. A:=A[A];

5. A:=0;

for i:=1 to 13 do

begin

A:=A+B;

end

6. if (A[2]==3) then

C:=1;

else

C:=2;

7. if (A[2]==A[4]) then

A[2]:=A[2]+A[4];

else

A[4]:=A[4]-5;

halt;
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In this chapter we show how to implement the simplified DLX. The implementation consists
of two parts: a finite state machine, called the control , and a circuit containing registers and
functional modules, called the datapath. The separation of the design into a controller and a
datapath greatly simplifies the task of designing the simplified DLX.

The datapath contains all the modules needed to execute instructions. These modules
include registers, a shifter, and an arithmetic logic unit, etc. The control is the “brain” that
uses the datapath to execute the instructions.

22.1 Datapath

In this section we outline an implementation of the datapath of a simplified DLX, as depicted in
Figure 22.1. We outline the implementation by specifying the inputs, outputs, and functionality
of every module in the datapath. The implementation of every module is done by using the
memory modules and the combinational circuits that we have implemented throughout this
book. Note that Figure 22.1 is not complete: (1) inputs and outputs of the control FSM are not
presented, (2) Some of the input/output ports, and their corresponding wires, are not presented.
In fact, only wires that are 32-bit wide are presented in Figure 22.1.

22.1.1 The Outside World: The Memory Controller

We begin with the “outside world”, that is the (external) memory. Recall that both the executed
program and the data are stored in the memory.

Thememory controller is a circuit that is positioned between the DLX and the main memory.
It is a synchronous circuit that receives memory access requests from the DLX. The main
problem related to a memory access is that it requires an unpredictable number of cycles to
complete. Accessing a register always takes a single clock cycle, however, loading or storing in
the external memory typically requires several cycles. The reason that memory accesses are not
executed in a fixed number of clock cycles has to do with the organization of the memory, also
called the memory hierarchy. This organization involves caches, cache misses, page faults, and
other issues that are beyond the scope of this book.

The fact that the number of clock cycles required to complete a memory is not fixed requires
a special signal, called the busy signal. The busy signal is an output of the memory controller
that tells the DLX whether the memory is still executing the previous memory access. The
DLX may issue a new memory access request only if the busy signal is low.

Recall that M[232 −1 ∶ 0] denotes the memory array. Each memory cell M[i] is 32-bit wide.
Definition 22.1 The Memory Controller is a synchronous circuit specified as follows:

Input: IN[31 ∶ 0],Address[31 ∶ 0] ∈ {0,1}32, MR,MW ∈ {0,1}, and a clock clk.

Output: OUT [31 ∶ 0] ∈ {0,1}32, busy ∈ {0,1}.
Functionality: 1. The input may change in cycle t only if busy(t) = 0.

2. If busy(t) = 0 and busy(t − 1) = 1, then the output must satisfy the following condi-
tions:

(a) If MR(t − 1) = 1 then

OUT (t)←M[⟨Address(t − 1)⟩](t − 1).
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(b) If MW(t − 1) = 1 then

M[⟨Address(t − 1)⟩](t)← IN(t − 1).
Note that the functionality only refers to the clock cycles in which a memory access has just

completed. These clock cycles are characterized by the condition busy(t) = 0 and busy(t−1) = 1.

The memory controller is depicted in Fig. 22.2.
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32

32

32
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Memory

OUT[31:0]

MW

MR

busy

Address[31:0]IN[31:0]
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Figure 22.2: The memory controller.

The busses depicted in Fig. 22.1 are connected to the memory controller as follows.

• The bus AO[31 ∶ 0] is connected to the Address[31 ∶ 0] input of the memory controller.

• The bus DO[31 ∶ 0] is connected to the IN[31 ∶ 0] input of the memory controller.

• The bus DI[31 ∶ 0] is connected to the OUT [31 ∶ 0] input of the memory controller.

The signals MR,MW and busy are connected to the FSM that is called the DLX control. These
signals are discussed in detail in Section 22.2.2.

22.1.2 Registers

All the registers of the simplified DLX datapath are 32-bits wide, and are as follows.

1. There are 32 General Purpose Registers (GPR): R0 to R31. The GPR module is discussed
in Section 22.1.7.

2. The Instruction Register (IR) is, also, a clock enabled parallel load register. This register
is part of the IR environment. The IR environment is discussed in Section 22.1.5.

3. The remaining registers: Program Counter (PC), Memory Address Register (MAR),Mem-
ory Data Register (MDR), and registers A,B and C are all clock enabled parallel load
registers. Each of these registers has a distinct clock enable signal that is computed by an
FSM called the DLX control (see Section 22.2). The clock enable signals are called PCCE,

MARCE, MDRCE, ACE, BCE, CCE.
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22.1.3 ALU Environment

The ALU is a combinational circuit that supports, addition and subtraction, bitwise logical
instructions, and comparison instructions. A sketch of the ALU is depicted in Fig. 22.3. The
main three subcircuits of the ALU are: (1) 32-bit Adder/subtractor, add-sub(32), (2) bitwise
logical operations, xor,or,and, and (3) a comparator, comp(32). Note that the comparator
is fed by the outputs of the adder/subtractor circuit.

32

32

ALU

5 type[4:0]

Z[31:0]

32

X[31:0] Y[31:0]

or(32)
xor(32)

add-sub(32) comp(32)
and(32)

Figure 22.3: A sketch of the ALU

Definition 22.2 An ALU environment is a combinational circuit specified as follows:

Input: x[31 ∶ 0], y[31 ∶ 0] ∈ {0,1}32, type ∈ {0,1}5.
Output: z[31 ∶ 0] ∈ {0,1}32.
Functionality:

z⃗
△

= ftype(x⃗, y⃗) ,
Table 22.1 lists the functions in the set {ftype ∶ type ∈ {0,1}5}.
We note the following regarding the functionality of the ALU.

1. The outcome of a comparison is one or zero depending on whether the expression is true.

2. The logical operations are bitwise.

3. The comparison operations return either 032 or 031 ○ 1.

4. The input type[0] indicates if the function is addition. It is used, for example, to increment
the program counter.

5. The input type[1] indicates if the function is comparison.

The busses depicted in Fig. 22.1 are connected to the ALU as follows.
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• The bus S1[31 ∶ 0] is connected to the x[31 ∶ 0] input of the ALU.

• The bus S2[31 ∶ 0] is connected to the y[31 ∶ 0] input of the ALU.

• The bus Z2[31 ∶ 0] is connected to the z[31 ∶ 0] output of the ALU.

The signals type[4 ∶ 0] are outputs of the FSM called the DLX control. These signals are
discussed in detail in Section 22.2.2.

type[4 ∶ 2] type[1] type[0] ftype(x⃗, y⃗)
001 1 0 [x⃗] > [y⃗]
010 0 0 [x⃗] − [y⃗] (mod 232)
010 1 0 [x⃗] = [y⃗]
011 0 0 [x⃗] + [y⃗] (mod 232)
011 1 0 [x⃗] ≥ [y⃗]
100 0 0 xor(x⃗, y⃗)
100 1 0 [x⃗] < [y⃗]
101 0 0 or(x⃗, y⃗)
101 1 0 [x⃗] ≠ [y⃗]
110 0 0 and(x⃗, y⃗)
110 1 0 [x⃗] ≤ [y⃗]
*** * 1 [x⃗] + [y⃗] (mod 232)

Table 22.1: The type input is partitioned into three fields, i.e., type[4 ∶ 2], type[1] , and type[0].
The values of each of these fields are listed in the left three columns. The symbol ‘*’ denotes a
“don’t care”, that is, the corresponding entry can be either, ‘0’ or ‘1’.

22.1.4 Shifter Environment

The shifter is a 32-bit bi-directional logical shifter by one position. Formally, recall that lls(x⃗, i)
denotes the logical left shift of x⃗ by i positions, and that lrs(x⃗, i) denotes the logical right shift
of x⃗ by i positions (see Section 14.3 in page 220).

Definition 22.3 The shifter environment is a combinational circuit defined as follows:

Input:

• x[31 ∶ 0] ∈ {0,1}32,
• shift ∈ {0,1}, and
• right ∈ {0,1}.

Output: y[n − 1 ∶ 0] ∈ {0,1}32.
Functionality: The output y⃗ satisfies

y⃗
△

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x⃗, if shift = 0,

lls(x⃗,1), if shift = 1,right = 0,

lrs(x⃗,1), if shift = 1,right = 1.
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The shifter environment also implements the identity function (i.e., no shift at all). This
possibility is used to route a word through the shifter in the execution of some instructions.

The busses depicted in Fig. 22.1 are connected to the shifter as follows.

• The bus S1[31 ∶ 0] is connected to the x[31 ∶ 0] input of the shifter.

• The bus Z1[31 ∶ 0] is connected to the y[31 ∶ 0] output of the shifter.

The signals shift and right are outputs of the FSM that is called the DLX control. These
signals are discussed in detail in Section 22.2.2.

22.1.5 The IR Environment

The IR environment holds the 32 bits of the current instruction. Recall that there are two
instruction formats, i.e., I-type and R-type. When executing an I-type instruction, the IR
environment outputs the sign extension of the immediate field, and the indices of RS1 and
RD. On the other hand, when executing an R-type instruction, the IR environment outputs
the indices of RS1,RS2 and RD. Note that the RD field is positioned in a different “places”.
Selecting the right bits requires a circuit that computes whether the instruction is an I-type
instruction. We delegate this computation to the DLX control, and denote the outcome of this
computation as the Itype signal.
Formally, the IR environment is, a synchronous circuit defined as follows.

Definition 22.4 The IR environment is a synchronous circuit defined as follows:

Input: DI[31 ∶ 0] ∈ {0,1}32, IRce,JLINK,Itype ∈ {0,1} and a clock signal clk.

Output: An instruction Inst[31 ∶ 0], sign extension of the immediate constant Imm[31 ∶ 0],
and the GPR addresses Aadr[4 ∶ 0],Badr[4 ∶ 0],Cadr[4 ∶ 0] ∈ {0,1}5.

Functionality:

Inst(t + 1) = ⎧⎪⎪⎨⎪⎪⎩
Inst(t) if IRce(t) = 0,

DI(t) if IRce(t) = 1.

Imm[31 ∶ 0](t) = sign extension of Inst[15 ∶ 0](t) to 32 bits.

Aadr[4 ∶ 0](t) = Inst[25 ∶ 21](t),
Badr[4 ∶ 0](t) = Inst[20 ∶ 16](t),
Cadr[4 ∶ 0](t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
11111 if JLINK(t) = 1,

Inst[20 ∶ 16](t), if Itype(t) = 1 and JLINK(t) = 0,

Inst[15 ∶ 11](t), otherwise.

The IR environment is implemented by a parallel load clock enabled register and a 3 ∶ 1-mux to
select the value of Cadr.

Inputs and outputs of IR environment are connected as follows.

• The datapath bus DI[31 ∶ 0] is connected to the DI[31 ∶ 0] input of the IR environment.

• The Imm[31 ∶ 0] output of the IR environment is connected to the S2MUX.
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• The outputs Aadr,Badr and Cadr are input to the GPR environment, as discussed in
detail in Section 22.1.7.

• The output Inst[31 ∶ 0] is input to the FSM called the DLX control.

• The inputs Itype, JLINK and IRce are outputs of the DLX control.

22.1.6 The PC Environment

The PC environment is simply a 32-bit clock enabled parallel load register. The PC is initialized
to the value 032.

22.1.7 The GPR Environment

The GPR environment is sometimes called the register file. There are 32 registers in the GPR
Environment, called R0,R1, . . . ,R31. The GPR Environment (or GPR, for short) can support
one of two operations in each clock cycle.

1. Write the value of input C in Ri, where i = ⟨Cadr⟩.
2. Read the contents of the registers Ri and Rj, where i = ⟨Aadr⟩ and j = ⟨Badr⟩.

Formally, the GPR is specified as follows:

Definition 22.5 A GPR is a synchronous circuit specified as follows.

Inputs: GPR addresses (output by the IR environment) Aadr[4 ∶ 0],Badr[4 ∶ 0],Cadr[4 ∶ 0] ∈{0,1}5, a data input C[31 ∶ 0] ∈ {0,1}32, a write-enable signal GPR WE ∈ {0,1} and a clock
signal clk.

Output: A flag AEQZ ∈ {0,1}, and inputs to the clock enabled registers A and B denoted by
Ain[31 ∶ 0],Bin[31 ∶ 0] ∈ {0,1}32.

Functionality : Let R[i] denote the ith register in the GPR. The functionality of a GPR is
specified by the following program:

1. data: array R[31 ∶ 0] of 32-bit wide registers.

2. initialize: ∀i ∶ R[i]← 032.

3. For t = 0 to ∞ do

(a) If GPR WE = 1 and ⟨Cadr⟩ ≠ 0, then

R[⟨Cadr⟩](t + 1)← C⃗(t).
(b) If GPR WE = 0 then

A⃗in(t)← R[⟨Aadr⟩](t),
B⃗in(t)← R[⟨Badr⟩](t)

(c) (Let Aout denote the output of the clock enabled register A.)

AEQZ(t)← ⎧⎪⎪⎨⎪⎪⎩
1 if A⃗out(t) = 032,

0 otherwise.
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Note that the specification only describes the registers that change. This means that registers
not mentioned in the functionality retain their value. In addition, note that the comparison of
A[31 ∶ 0] = 032 requires connecting the output of register A to the input of the zero-tester. This
is sloppy because the register A is not part of the GPR environment.

An implementation of the GPR environment is depicted in Figure 22.4. In essence, it is a
dual port RAM (see Question 18.4) that is implemented somewhat inefficiently by two parallel
RAMs.

The GPR input C and two outputs A and B are connected to the datapath registers with
the same names (see Fig. 22.1). The output AEQZ is input to the DLX control. The input
GPR WE is an output of the DLX control.

22.2 Control

The control is an FSM that helps execute a DLX program. Loosely speaking, it “tells” the
datapath what to do in every clock cycle. We begin in Section 22.2.1 with a high level view
of how instructions are executed. We continue in Section 22.2.2 with a detailed description of
the FSM. We then continue in Section 22.3 with a description of how the control governs the
datapath. We conclude in Section 22.4 with examples of instruction execution.

22.2.1 A High Level View of the Execution Cycle

An execution of a DLX instruction requires multiple clock cycles. It is common to consider the
following steps in the execution of an instruction:

1. Instruction Fetch. In this step the instruction to be executed is copied from the main
memory to the Instruction Register (IR). Formally, in this step the following operation
takes place:

IR ←M[⟨PC⟩].
2. Instruction Decode. In this step the instruction stored in the IR is decoded. Decoding

means that the control decides what actions should take place.

3. Execute. In this step the instruction is executed. For example, in an add instruction,
addition takes place in this step.

4. Memory Access. In this step load and store instructions access the main memory.

5. Write-back. In this step the result of an instruction that computes a value is stored, if
needed, in the GPR.

22.2.2 The Control FSM

In this section we present a formal description of the FSM that constitutes the control of the
DLX.
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States. The FSM has 19 states. We first list the states that correspond to steps in the
execution cycle:

1. Instruction Fetch. The Fetch state is the only state that deals with instruction fetch.

2. Instruction Decode. The Decode state is the only state that deals with instruction decode.

3. Execute. The states: Alu, TestI, AluI, and Shift deal with the execute step.

4. Memory Access. The states Load and Store deal with memory access.

5. Write-back. The states WBR and WBI deal with writing back the result in the GPR.

There are additional states that do not belong to the standard execution steps. These include
the following states:

1. States that deal with the execution of branch and jump instructions. These are the states:
Branch, Btaken, JR, Save PC, and JALR.

2. States that deal with load and store instructions. These are the states: Address-Computation,
CopyMDR2C, and CopyGPR2MDR.

3. A sink state, called Halt, for stopping the execution.

FSM inputs. Each bit of the input alphabet of the FSM is called a control input. We list
the control inputs as follows:

1. The current instruction Inst[31 ∶ 0] that is an output of the IR environment.

2. The AEQZ flag that indicates if A equals zero. This flag is an output of the GPR environ-
ment.

3. The busy flag that is output by the memory controller.

FSM Outputs. Each bit of the output alphabet of the FSM is called an control output.
Table 22.4 summarizes the control outputs of the simplified DLX and their effect. We elaborate
on the control outputs in the following list.

1. IRCE, PCCE, ACE, BCE, CCE, MARCE, MDRCE: clock enable signals of the corresponding
registers.

2. S1SEL[1:0], S2SEL[1:0], DINTSEL, MDRSEL, ADSEL: select signals of the S1MUX, S2MUX,
DINTMUX, MDRMUX, and ADMUX selectors in the datapath.

3. ALUF[2:0], ADD, TEST: signals that are input to the ALU environment, as follows:
type[4 ∶ 2] ← ALUF[2 ∶ 0], type[1] ← test, and type[0] ← add. The value of ALUF[2 ∶ 0] is
computed by

ALUF[2 ∶ 0] ← ⎧⎪⎪⎨⎪⎪⎩
opcode[2 ∶ 0] if Inst is an I-type instruction

function[2 ∶ 0] if Inst is an R-type instruction.
(22.1)

Note that the opcode and function strings are fields in the instruction as described in
Fig. 21.1.
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4. SHIFT, RIGHT: signals that are input to the Shifter environment.

5. Itype: indicates whether the current instruction is an I-type instruction. The Itype

signal is input to the IR environment.

6. JLINK: This signal is input to the IR environment. The signal equals one if and only if
the current instruction is a jalr instruction.

7. The signals MR,MW are input to the memory controller. These signals indicate whether a
read or write access is performed by the memory controller.

8. The signal GPR WE is the write enable signal of the GPR environment.

Output Function. Table 22.3 lists the control outputs that equal one in each state. The
other control outputs equal zero. One often refers to a control output that equals one as an
active signal. Note that in states Alu and TestI the control output ALUF is computed according
to Equation 22.1.

State Diagram. Figure 22.5 depicts a sketch of the state diagram of the control of the
simplified DLX. Note that the contents of the datapath registers is not part of the state of the
FSM of the control. Figure 22.5 does not depict the reset signal. Reset is added tot he FSM
using the transformation described in Section 20.3. The reset signal causes a transition in the
control of the DLX to the “fetch” state.

Transition Function. In Figure 22.5, one can easily see, that the out-degree of most the
control states is one. This means that the FSM transitions to the only “next state” independent
of the input to the FSM. Only six states have an out-degree greater than one. We elaborate on
the transitions from these six states.

1. The Fetch, Load and Store states have a self-loop labeled by busy. This means, that if
the input busy equals one, then the FSM stays in the same state.

2. The Branch state has two possible transitions. The transition to state BTaken is labeled
bt, and the transition back to Fetch is labeled not(bt). The value of bt is computed
by the control and equals one if the condition of a conditional branch is satisfied. It is
computed by

bt = AEQZ⊕ Inst[26].
3. The Address-Computation has two possible transitions. The transition to CopyGPR2MDR

is labeled is − store, and transition to Load is labeled not(is − store). The value of
is − store is computed by the control and equals one if the current instruction is a store-
word (sw) instruction.

4. The Decode state has 10 possible transitions. These transitions are labeled D1 − D10.
Exactly one of these signals equals one, so that the transition is well defined. Table 22.2
describes how the values of D1 − D10 are determined.
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condition when does it equal 1?

D1 special NOP

D2 beqz, bnez

D3 jalr

D4 jr

D5 lw, sw

D6 sgti, seqi, sgei, slti, snei, slei

D7 addi

D8 sll, srl

D9 add, sub, and, or, xor

D10 halt

Table 22.2: Determining the transition from the Decode state

22.3 RTL Instructions

The control governs the behavior of the datapath by its outputs called control outputs. The
simplest control signal is a clock enable signal of a register in the datapath. In each state, the
control tells which registers should store new values. We specify this action by a Register Trans-
fer Level(RTL) instruction. The operands of an RTL instruction are the datapath registers,
and the calculations are performed by the combinational circuits in the datapath.

We list the RTL instructions in each state of the control in Table 22.3. In this table we refer
to a control signal, the value of which is 1, as an active control signal.

For example, the RTL in the fetch state is:

IR =M[PC],
that is, copy the contents of M[PC] to the IR. Reading from the value stored in M[PC] is
performed by setting a control signal MR to be high. Once the result of the read is ready, the
value is stored in the IR register since the clock enable of the IR register is set to high. We
denote this clock enable signal by IRCE.

22.4 Examples of Instruction Execution

In this section we present the execution of two instructions, load-word (lw) and branch-equal-
zero (beqz). Executing the rest of the instructions in the ISA is done similarly.

Executing the load-word instruction. In this example we follow the execution of the lw

instruction step by step.
We begin by finding out the path of states that are traversed during the execution of the

load-word instruction (see Figure 22.6 for a depiction of this path). This path begins with
a FETCH state and ends when the control re-enters the FETCH state. After the FETCH
state, the control always transitions to the DECODE state. The current instruction is stored
in the instruction register IR. The binary representation of the instruction determines which of
the internal signals D1..D10 equals one. The active internal signal in the case of a load-word
instruction is D5 (see Table 22.2). Thus, the control transitions from the DECODE state to the
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Name RTL Instruction Active Control Outputs

Fetch IR =M[PC] MR, IRce

Decode A = RS1, Ace,
B = RS2 Bce,
PC = PC + 1 S2sel[1], S2sel[0], add, PCce

Alu C = A op B S1sel[0], Cce, active bits in ALUF[2:0]

TestI C = (A rel imm) S1sel[0], S2sel[0], Cce, test, Itype,
active bits in ALUF[2:0]

AluI(add) C = A + imm S1sel[0], S2sel[0], Cce, add, Itype

Shift C = A shift sa S1sel[0], Cce
sa = 1, (−1) DINTsel, shift (,right)

Adr.Comp MAR = A + imm S1sel[0], S2sel[0], MARce, add

Load MDR =M[MAR] MDRce, ADsel, MR, MDRsel

Store M[MAR] =MDR ADsel, MW

CopyMDR2C C =MDR(≫ 0) S1sel[0], S1sel[1], S2sel[1], DINTsel, Cce

CopyGPR2MDR MDR = B(≪ 0) S1sel[1], S2sel[1], DINTsel, MDRce

WBR RD = C (R-type) GPR WE

WBI RD = C (I-type) GPR WE, Itype

Branch branch taken?

Btaken PC = PC + imm S2sel[0], add, PCce

JR PC = A S1sel[0], S2sel[1], add, PCce

Save PC C = PC S2sel[1], add, Cce

JALR PC = A S1sel[0], S2sel[1], add, PCce,
R31 = C GPR WE, jlink

Table 22.3: The output function of the DLX control. The leftmost column lists the states of the
control. The RTL instructions that are executed in each state are listed in the middle column.
The active control outputs in each state are listed in the rightmost column.
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Signal Value Semantics

ALUf[2:0] Controls the functionality of ALU

Rce Register clock enable

S1sel[1:0] 00 PC
01 A
10 B
11 MDR

S2sel[1:0] 00 B
01 IR
10 0
11 1

DINTsel 0 ALU
1 Shifter

MDRsel 0 DINT
1 DI

ADsel 0 PC
1 MAR

shift explicit Shift-Instruction

right Shift to the right

add Forces an addition

test Forces a test (in the ALU)

MR Memory Read

MW Memory Write

GPR WE GPR write enable

itype Itype-Instruction

jlink jump and link

Table 22.4: Summary of the control outputs
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ADDRESSCMP. Since the internal signal is-store equals zero, the next transition is to the
LOAD state. Once the busy signal is low, the control transitions to the COPYMDR2C state.
The next state is the WBI state, and from there the control transitions back to the FETCH
state, and the execution of the load-word instruction is finished.

For each state traversed in the execution of the load-word instruction, we execute the cor-
responding RTL instructions (as listed in Table 22.3). Figure 22.7 depicts the execution of
every RTL instruction in every control state in this sequence. For every state in this sequence,
Figure 22.7 depicts the active modules and the wires along which data is transferred to execute
the RTL instruction. For example, in the FETCH state, the RTL instruction IR =M[PC] is
executed as follows:

1. Send the output of the PC to the memory controller.

2. Send the data-in signal DI to the IR-environment.

This is implemented by the active control outputs MR and IRCE (see Table 22.3). The MR is
input to the memory controller and the IRCE is input to the IR register. While the busy signal
is high the FSM stays in the FETCH state. When busy is low the FSM moves to the next
state in the sequence. Note that the IRCE is high during all that time, hence eventually the IR
samples and stores the correct value M[PC], as required.
Executing the ‘beqz’ instruction. The control states that are traversed while executing
the ‘beqz’ instruction are depicted in Figure 22.8. Indeed, the control’s internal signal bt is
high iff AEQZ ⊕IR[26] = 1. The encoding of ‘beqz’ (see Table 21.1) implies that IR[26] = 0,
hence branch is taken iff AEQZ= 1. The contents of register RS1 is stored in register A, hence
the decision whether to branch or not is correct. Recall that the signal AEQZ is output by the
GPR (see Section 22.1.7).

22.5 Summary

We described every module in the datapath by specifying its inputs, outputs and functionality.
We described the control of the DLX by its state machine. We “glued” all these components
by describing which RTL instruction is executed in every step. We conclude the discussion by
following the execution of two DLX instructions step by step.

In this chapter we described all the details of an implementation of the simplified DLX.
There is no need to learn this implementation by heart. It is merely a suggestion for an
implementation. If this is the first time you see such an implementation, try to understand
the underlying principles. The best way to see how the design works is by executing all the
instructions step by step.
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Problems

22.1 Follow the execution of each of the following DLX instructions. List the sequence of
control states that are traversed in the execution for each instruction. For each state: write the
RTL and explain how this RTL is executed by the datapath (i.e., active control outputs, and
flow of signals in the datapath).

1. JALR R2

2. SW R1 R2 -5

3. BEQZ R1 12

22.2 The contents of the MDR register is copied to register C by using the SHIFT environment,
as depicted in Figure 22.7e. Suggest how to copy the contents of the MDR register to register
C by using the ALU.

22.3 Suggest an implementation of the DLX (datapath and control) that uses a GPR with a
single RAM.

22.4 Suggest an implementation of the DLX (datapath and control) in which the ALU envi-
ronment and the shifter environment are “merged” into a single environment.

22.5 Suggest an implementation of the DLX (datapath and control) in which the WBI and the
WBR states in the DLX control are unified into a single state WB.

22.6 Figure 22.9 depicts a simple datapath that contains clock enabled registers, muxes, a
logical left shifter by one position and a binary adder (without a carry-out).

Suggest how to execute the following RTL segments using as few clock cycles as possible.

1.

A ← shift(A)
D ← B +C.

2.

D ← shift(D)
A ← B +C.

3.

A← B

B ← A.

22.7 We would like to extend the DLX ISA. Suggest an implementation of the DLX (datapath
and control) that supports the execution of the following new instructions. Note that the new
implementation should support the “old” ISA as well. For every instruction:

• Encode the instruction, i.e., choose an instruction format.
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• List the changes that should be made to the datapath.

• List the changes that should be made to the control FSM, in particular list the new control
signals and their semantics, update the state-RTL table (Table 22.3), and draw the flow
of information in the datapath during the execution of the new instruction.

Instruction Semantics

swap RS1 RS2 Swap the contents of RS1 and RS2.
check17 RD RS1 if RS1[17]=1, then RD := 1, else RD:=0.
beq2 RS1 imm if RS1 = 2, then PC = PC + 1 + sext(imm), else PC:=PC+1.
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Figure 22.1: Datapath of the simplified DLX machine
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Figure 22.7: Executing the RTL instructions in the control states: FETCH, DECODE, AD-
DRESSCMP, LOAD, COPYMDR2C, WBI. In every state, the active modules in the datapath
are grayed, and the active 32-bit wide wires are bolded.
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